
On the Spectre
and Meltdown Processor
Security Vulnerabilities

Mark D. Hill

University of Wisconsin-Madison

Jon Masters

Red Hat

Parthasarathy Ranganathan

Google

Paul Turner

Google

John L. Hennessy

Alphabet and Stanford University

Abstract—This paper first reviews the Spectre and Meltdown processor security

vulnerabilities that were revealed during January–October 2018 and that allow the

extraction of protected information from billions of processors in large and small systems.

It then discusses short-termmitigation actions and speculates on the longer term

implications to computer software and hardware. This paper expands from a keynote/

panel by the authors at IEEE Hot Chips 2018.

& SECURITY AND PRIVACY are more important

than ever. Substantial personal, business, and

governmental information is stored online. Sys-

tems are interconnected across the world. State

actors and cybercriminals are using increasingly

sophisticated methods. The attack surface is con-

stantly growing due to ever more complex soft-

ware, complex hardware, executing untrusted

downloaded code, and cloud cotenancy.

While many attacks continue to focus on

software vulnerabilities, the increased targeting

of hardware vulnerabilities—such as Spectre var-

iants1,2 (including Meltdown3) described herein—

are of great concern because they can be widely

available (e.g., across operating systems) and

because hardware may take months, or even

years, to replace or patch, even after a fix is found.

Moreover, Spectre variants cast concern regard-

ing the half-century-old industry definition of com-

puter hardware correctness. Further, strategic

industry goals, including accelerators and vector

instructions, necessary for scaling performance,

are likely to provide new exploitable scope.

Digital Object Identifier 10.1109/MM.2019.2897677

Date of publication 5 February 2019; date of current version

15 March 2019.

March/April 2019 Published by the IEEE Computer Society 0272-1732 � 2019 IEEE 9

As early as IBM System/360 in 1964, computer

systems have defined hardware correctness in

terms of timing-independent functional behavior

complying with a particular Instruction Set

Architecture specification, ISA, or architecture

for short.4 Software is written or compiled to the

architecture specification, enabling it to run cor-

rectly on many different implementations of the

architecture. While implementations may differ

significantly, they are all capable of executing

software written to the ISA specification.

Implementers of an architecture use

techniques—called microarchitecture—to create

optimized processors for the market, allowing for

many tradeoffs appropriate to the intended use.

Design teams may target speed, low cost, low

power, silicon area, or some combination thereof.4

Important performance techniques include

instruction (or micro-op) level parallelism (ILP)

with speculation and substantial use of caches.

To maximize ILP, modern out-of-order pro-

cessor cores commonly allow for many instruc-

tions to be scheduled onto the hardware in

parallel; e.g., Intel’s Skylake CPUs can issue

four instructions every clock and have up to 224

instructions in overlapped execution. However,

to satisfy this, the CPU is required to predict

the outcome of branches so that it can

choose a path to

specul-ate against.

Correct specula-

tion is made arc-

hitecturally visible

(“retired”), while

incorrect specula-

tion is discarded

(“aborted”). Spec-

tre variants exploit such speculation, but we con-

jecture that fixing Spectre by naively eliminating

such speculation would make it hard to deliver

viable, high-performance products.

Spectre variants are a form of “side-channel”

attack5 in whichmicroarchitectural state, formerly

intended to be isolated from retired execution,

becomes observable at an architectural level by an

attacker program sharing resources with the vic-

tim. This state can include secrets loaded into

shared architectural state including data

referenced via speculation prior to completing

access, validity, or bounds checks. The resources

through which such secrets are extracted may

take the form of a shared cache hierarchy, but also

include other shared structures, such as Transla-

tion Lookaside Buffers. Known microprocessor

side channels are at least a dozen years old.6

Side channels are not a new concept. An early

example occurred in a 1970s password cracking

attack against TENEX OS software. The OS would

perform password validation by comparing a

user-supplied string against a stored password.

A vulnerability existed because the OS would

return a failure as soon as there was a mismatch

between the current user supplied character

and the stored password. Exploitation relied

upon cleverly placing the user-supplied string

on a page boundary, and setting an architectural

“trap to user” bit on the next page. This allowed

the attacker to effectively guess a password, one

letter at a time, by measuring page faults.

The U.S. Department of Defense was specifi-

cally concerned about side channels in its 1983–

1985 “Orange Book.”7 Until Spectre variants,

many especially computer architects outside of

the computer security and cryptography com-

munities considered side channels at most a

modest concern for the private sector. There are

also forms of side-channel attacks, such as

TLBleed and BranchScope, that rely on micro-

architectural leakage, but are different from

Spectre attacks, and usually expose information

at significantly lower rates or in a more

restricted manner.

Spectre variants rely upon abusing the specu-

lative nature of modern microprocessors. When

speculating, a processor dispatches instructions

prior to resolving control flow dependencies,

such as branches. Exceptions occurring during

speculation cannot be handled until we know the

instruction is not speculative; this happens at

instruction retirement. Some processors may

also speculate beyond an exception-causing

instruction, such as an access violation, and the

Meltdown variants result from this deferred han-

dling of potential exceptions as well as the associ-

ated permission check itself. All widely used

processors implement speculation on top of out-

of-order execution, which allows a processor to

dynamically schedule instructions based upon

data dependencies, rather than literal program

order. Instructions are allocated into an internal

Side channels are not a

new concept. An early

example occurred in a

1970s password crack-

ing attack against

TENEX OS software.

Hot Chips 30

10 IEEE Micro

processor structure known as a ReOrder Buffer

(ROB) and tracked while in-flight, only “retiring”

and becoming architecturally visible in program

order. When misspeculation occurs, the ROB is

cleared, and the processor restarts on the cor-

rect path.

To exploit Spectre, a malicious attacker

causes intentionalmisspeculation of instructions.

These instructions, which have been called

“transient,”8 will be aborted prior to retirement

and thus do not have an architectural impact.

However, they will cause a change to internal pro-

cessor microarchitectural state that can be

observed using a side channel, such as a shared

cache. Cache access times depend upon whether

data are present in a particular location, and this

can be used to determine data that might have

been brought into the cache as a result of specula-

tive execution of instructions.

The typical structure of an attack has three

steps.

1) Train some microarchitectural state, e.g.,:

a) clear 256 blocks from the cache at

address X, so that we can sense which

block has been moved into the cache;

b) prime the branch predictor to predict a

given branch “not taken,” so that we can

coax the processor to execute code that

will eventually misspeculate.

2) Save secret in the microarchitecture, e.g.,

cache state:

a) branch-equal r0, r1, elsewhere: pre-

dicted “not taken”; but will actually

branch to “elsewhere” this time;

b) load-byte r2, (r1): load secret at

“protected address” r1, load will abort;

when instruction aborts, protection

exception ignored;

c) load-word r3, (X þ r2): this instruction

also aborts, but it causes a cache fill; the

block loaded in cache depends on value

of r2; r2 contains the secret from pro-

tected address r1!; The value loaded into

r3 is never used.

3) Extract secret from the microarchitecture,

e.g., cache state:

a) time accesses to 256 cache blocks at X; the

block that hits (and is faster) corresponds

to the value ofMemory at address r1!

This basic format is followed by the Spectre

variants, and most other microarchitectural

attacks described here as well. Each targets a dif-

ferent underlying hardware vulnerability, and the

impact varies significantly. Some vulnerabilities

can be exploited by interpreted code running

within a normally secure “sandbox,” some can be

exploited across virtual machine boundaries, and

some allow attacks from applications on the OS

kernel, or against other applications. In some

cases, even new extensions with encrypted mem-

ory (e.g., within an SGX enclave) may be vulnera-

ble, as these attacks allow the extraction of state

from microarchitectural structures previously

believed to be sufficiently isolated to contain

plain-text values. Practical application of these

attacks often use results from the composition of

one or more ‘gadgets.’ Gadgets, a term from

return-oriented programming, are code snippets

within an existing program that are useful to the

attack being performed.

The next section presents the initial Spectre

variants v1-v3 announced in January 2018, exam-

ples of vulnerable gadgets, and initial mitigation

strategies. We then provide a table of variants

publically known as of October 2018 and opine on

longer term implications. Unfortunately, no sim-

ple, single hardware or software change solves all

issueswithout a significant performance impact.

Spectre Variant 1: Bounds
Check Bypass

Spectre-v1 follows the template above to

enable user code (e.g., downloaded Javascript) to

use speculation and extract protected informa-

tion elsewhere in the user’s address space (e.g.,

Chrome browser state) at an incredible rate (e.g.,

500 Kbytes/second). Here is simplified C code:

if (untrusted_offset < array_length) {
val = private_memory[untrusted_offset]
x = accessible_memory[(val & 1)*cache_

line_size]
}

A conditional expression (untrusted_offset
< array_length) is the subject of possible specu-

lative execution in which the hardware will spec-

ulate that the untrusted_offset lies within the

array bounds prior to determining (resolving)

March/April 2019 11

whether this is indeed the case. Within the spec-

ulatively executed block, the offset is used to

index into a private_memory region which may

cause a speculative read beyond the bounds of

that memory. A subsequent secondary access

touches a predictable memory location having a

dependence upon the value of the private_me-
mory. An attacker uses cache side-channel anal-

ysis to determine the cache line affected by the

dependent load and is able to reconstruct the

value of a data item in private_memory.
The example demonstrates a gadget code that

may execute speculatively following a predicted

conditional expression. While the example has all

attack code in one place, in practice, there could

be significant code distance between the compo-

nent parts, making it difficult to find Spectre-v1

gadgets through simple code inspection. Various

tooling has been created to aid in automating this

process such as “smatch,” used by some Linux

kernel developers to scan for gadgets in order to

aid manual mitigation, while others rely upon

automated compiler solutions. Notable is LLVM’s

Speculative Load Hardening, which introduces

data-dependencies against the control-flow itself;

restricting the potential divergence and exploit-

ability of speculative execution.

Spectre-v1 is of great concern because many

modern high-performance microprocessors are

susceptible to it. These include processors made

by Intel, AMD, IBM, and Arm (and their licensees).

A particular challenge for Spectre-v1–and for

many Spectre variants–is that hardware mitiga-

tion is difficult because managed languages and

browsers have software protection boundaries

(e.g., sandboxes for Javascript) that are not

revealed to hardware, much less manifest as

hardware boundaries.Moreover, Spectre variants

currently invalidate the assumption that the lan-

guage and runtime can protect secrets in the

same address space. While it may be possible to

add contextual information into future ISAs and

extensions to existing architectures, implement-

ing such mitigations in hardware will take some

time and perhaps add inherent performance pen-

alties. A number of different approaches have

been proposed and are under debate.

Mitigating Spectre-v1 in software requires

that we either prevent speculation beyond the

bounds check operation, or that we ensure any

subsequent array index operation is “clamped”

such that under speculation it always falls within

the bounds of the array. The process of deter-

mining which way the bounds check branch will

go is known as “resolving” the branch, and the

time taken for this to occur is a function of the

time taken to load the desired offset and array

limit. Initial mitigations on some architectures

focused on forcing the processor to wait until it

had resolved the branch by inserting an archi-

tecture-specific context serializing instruction

following the bounds check. In the case of Intel

and AMD x86 architectures, the “lfence” instruc-

tion was used for this purpose, while IBM

POWER added a new millicoded instruction from

their nop encoding space having a similar effect.

Other architectures began with the clamping

approach. For example, Arm exploited the fact

that existing designs do not speculate through a

conditional select (CSEL) to form a data depen-

dence. This necessitated a new barrier (CSDB)

to future revisions of the architecture in order to

avoid future speculation through the CSEL.

While the initial serializing load mitigations

were effective, they had a significant performance

impact in someworkloads. As a result, the software

community is generally transitioning to a specula-

tive index clamping solution in which the proces-

sor is allowed to speculate beyond a bounds check,

but any array access is performed through amacro

that will cause the index to be clamped between 0

and the size of the array (e.g., with logical AND).

Contemporaryprocessors generally donot yet con-

tain sophisticated enough value predictors to

attempt to speculate upon the logical operation.

Spectre Variant 3: Rogue Load
From Kernel Space (a.k.a., Meltdown)

We next discuss Spectre-v3 (a.k.a., Melt-

down), despite the enumeration, as it closely

resembles Spectre-v1. Example V3 C code:

if (mispredicted_branch) {// We’d fault if we
actually retired below.
val = kernel_memory [untrusted_offset]
x = user_memory [(val & 1)*64]

}

In the quest for more performance, specula-

tion may occur even past potential exceptions in

transient instructions. Spectre-v3 (Meltdown) is

Hot Chips 30

12 IEEE Micro

an example of this, using the same basic attack

structure as Spectre-v1, with the conditional

being a user/kernel permission check that may

or may not trap. Vulnerable processor designs

will identify an exception generating instruction

during speculation, tagging its entry in the ReOr-

der Buffer (ROB). They will then continue to

speculate, only handling the potential exception

if the instructions actually retire and become

the architecturally visible state. Implicit in this

design is the incorrect assumption that specula-

tion is a “black box” that cannot be observed by

attacker code.

In the above example, an untrusted_offset
in kernel_memory is supplied by the attacker

and speculatively loaded into the variable val.
The processor tags the ROB entry for this load

instruction with an exception bit and continues

speculation (since the exception is not yet

known to be as a result of any retired instruc-

tion). It then performs a second load from user_-
memory that depends upon the value of the

secret data val from kernel_memory. This

second load has a measurable impact upon the

state of the shared cache that can be exploited

later by an attacker to determine the value of

the secret data. This is where the boundary

between microarchitectural and architectural

state is broken and exfiltration can occur.

A number of processor designs are vulnerable

to one of several Meltdown attacks [SysTrans8],

including most recent x86-64 implementations

from Intel, some aggressive implementations

from Apple, Arm (and their licensees), and IBM as

well. Meltdown can be avoided if all subsequent

dependent loads are always serialized against the

permission checks they depend on.

Exploitation in practice on vulnerable designs

is typically tied to the L1 cache. Its latency (and

access accelerating features such as additional

data tagging) is sufficiently low that there is an

opportunity for further OOO parallelism when

evaluating the permission check above asynchro-

nously. As a consequence, Meltdown can also be

avoided in some cases by keeping secrets out of

the L1 data cache. This has created a broader

interest in secret “scrubbing” in software.

Software mitigation of Meltdown involves one

of two possible paths.

1) Preventing vulnerable processors from hav-

ing valid address translations for privileged

(kernel)memorywhen running in an unpriv-

ileged (user) state. This is known as “Page

Table Isolation” (PTI). It is the approach

used on Intel x86-64 andArmprocessors.

2) Preventing the Level 1 data cache from

containing secret data that could be loaded

by malicious user code. This is achieved

through flushing the L1 data cache on

return from the OS or Hypervisor into

application code. It is the approach used

on IBMPOWERprocessors.

Hardware fixes will address the root cause of

Meltdown by reworking the handling of permis-

sion checks. As an example, Intel announced at

IEEE Hot Chips 2018 that their upcoming Cascade

Lake product would advertise an “RDCL_NO”

(Rogue Data Cache Load NO) feature indicating

the part is not vulnerable to Meltdown and does

not require software to apply mitigations.

Spectre Variant 2: Branch
Target Injection

Unfortunately, other Spectre variants exploit

microarchitecture features beyond branch and

trap prediction used above for Spectre-v1 and

Meltdown. Instructions—such as returns and

indirect jumps—transfer control flow (“jump”)

to one of many different locations with the

expected next instruction location predicted

with a Branch Target Buffer (BTB). Here is C-like

code for Spectre-v2 that exploits branch target

(address) (mis-)prediction:

4148c0: object->Foo();
. . .

9812ab: val = private_memory[untrusted_
large_offset]
x = accessible_memory[(val & 1)*64]

The attacker trains the BTB for the jump at

4148c0 to predict next instruction address to

be 9812ab where the attacker has identified

existing code that can serve as a malicious gad-

get that then speculatively executes the pattern

from the introduction: load a secret, use bit(s)

from the secret in an address to a second load

that perturbs the cache, and end speculation.

Due to sharing of functional units, it may even be

possible to mistrain or influence the BTB state

March/April 2019 13

from a different simultaneous multithreading

(SMT or hyperthreading) thread on the same

core, or even across host/guest boundaries. This

exploitation occurs, in part, because BTB entries

are shared instead of isolated via address space

and virtual machine identifiers. In many contem-

porary processors, only a limited number of vir-

tual address bits are used to disambiguate

between two different branch addresses,

increasing conflict likelihood.

The mitigation of Spectre-v2 involves either lim-

iting the amount of speculation performed using

the indirect branch predictor or replacing indirect

brancheswith a safe alternative. The short deadline

prior to public disclosure resulted in many initial

software updates leveraging newly defined hard-

ware control interfaces added through firmware,

microcode, or millicode intended to limit specula-

tion. We examine these hardware approaches first

and then explore the software approach, called a

“return trampoline” or “retpoline.”

Modern microprocessors are built with some

(limited) ability for in-field update, referred to as

patching. The precise mechanisms differ from one

architecture (and microarchitecture) to the next,

but typically involve a combination of “chicken

bits” (previously undisclosed configuration knobs

used to restrict various capabilities within the pro-

cessor post-release), microcode extensions (addi-

tions that allow certain operations to trigger a

“microcode assist” that canmodify behavior), and

firmware that provides certain platform control

interfaces or pre-OS configuration. There can be a

significant performance impact for some applica-

tions fromusingmicrocode or firmware interfaces.

Intel and AMD x86 microarchitectures initi-

ally added a new microcoded processor specu-

lation control interface (SPEC_CTRL) through

which the Operating System can limit indirect

branch speculation (IBRS - Indirect Branch

Restrict Speculation), or flush the predictor state

(IBPB - Indirect Branch Predictor Barrier). IBRS is

typically used across privilege boundaries to pre-

vent indirect branch speculation during system

calls into the Operating System, while IBPB is

used to invalidate the predictor state when

switching from one process into another (with

an optimization limiting this to those switches

where the target is not already dumpable/

debuggable by the first). The SPEC_CTRL

interface is implemented as an MSR (Model Spe-

cific Register) in microcode, which introduces a

performance impact for some applications due

to the serializing nature of using MSRs on x86.

Other architectures implement similar interfa-

ces. For example, Arm extends ATF (Arm Trusted

Firmware) to perform indirect predictor invalida-

tion (or other appropriate platform-specific miti-

gation) on kernel entry or process context

switch. IBM implement millicode assists for their

processors that extend existing nop instructions

to achieve similar results. Across all architec-

tures, the presence of SMT may necessitate addi-

tional controls due to the tight coupling of thread

resources within a single physical core. Intel x86

processors add Single Threaded Indirect Branch

Predictors that can be used by an Operating Sys-

tem to inhibit indirect branch speculation within

one thread while another is active on a core.

An alternative approach to mitigating Spectre-

v2 in pure software comes from the realization that

function returns are merely special case variants of

branches. In the case of a return, however, the pro-

cessor does not (normally) use the indirect branch

prediction hardware. In fact, since they are strongly

predictable, a return specific predictor such as a

Return Stack Buffer (RSB) is often implemented.

Thus, it is possible to convert indirect function calls

into manufactured returns through careful and

deliberate manipulation of the local stack. A tradi-

tional x86 indirect branchmay look like:

jmp �%r11

The target of this branch is placed into the pro-

cessor General Purpose Register r11, and then the

jmp instruction is used to cause a jump to this loca-

tion. The indirect branch can be converted into an

x86 implementation of a retpoline such as this:

call set_up_target;
capture_spec: // next two instrs never exe-
cute, except speculatively

pause;
jmp capture_spec;

set_up_target:
mov %r11, (%rsp);
ret;

In the above code, set_up_targetoverwrites its
own return addresswith the desired location of the

indirect branch and then performs a return

Hot Chips 30

14 IEEE Micro

Table 1. Spectre Variants and Mitigation Strategies as of October 2018.

Variant Name and Gist The gist of Mitigation Strategies

V1 (Bounds Check Bypass).Mistrained conditional branch

predictor used to violate program semantics by speculatively

accessing data beyond an array limit. Scope: user-to-kernel,

process-to-process, sandboxes

Either enforce instruction stream serialization with respect

to later loads (e.g., through a “lfence” on x86) or introduce

dependencies on the retired control flow (LLVM calls this

“speculative load hardening”). Implementation: software

V1.1 (Bounds Check Bypass Store). Similar to variant 1 but

applies to stores, allowing e.g., speculative buffer overflow/

stack overflow with resteering of returns. Scope: sandboxes

Careful auditing for potentially risky stores, aided by

automated tools (smatch, etc.) or compiler lift (e.g., LLVM

speculative load hardening, MSVC). Enforce instruction stream

serialization or use clamping. Implementation: software

V1.2 (Read-only Protection Bypass). Hardware may implement

lazy enforcement of page table protections allowing speculative

writes to read-only data. Scope: sandboxes

Extension of Bounds Check Bypass Store. Relying on read-only

memory protections against, e.g., function pointer overwrite is

not sufficient. It is necessary to protect against potential

overwrites into RO memory. Implementation: software

V2 (Branch Target Injection).Mistrained indirect branch

predictor Branch Target Buffer (BTB) to speculatively execute

attacker-controlled “gadgets.” Scope: user-to-kernel, user-to-

user, virtual machines, sandboxes

Limit ability to train the branch predictor and/or to use branch

predictor information based on data from different security

domains (kernel versus user, guest versus host, different tasks)

Implementation: software with perf cost, future hardware

V3 (Rogue Data Cache Load, aka “Meltdown”). User load that

speculatively accesses kernel space. See Lipp et al.

3

]. Scope:

user-to-kernel

Exploitation requires both a valid address translation as well as

(typically) data present in the L1 data cache. Either separate

address space between privileged and unprivileged execution

states, and/or ensure data are not present in the cache and

cannot be loaded by an attacker. On some architectures,

implement Page Table Isolation (PTI) between user/kernel, on

others use an L1D flush. Implementation: software with perf

cost, future hardware

V3a (Rogue System Register Read). Speculative reads to

normally inaccessible system registers may be used to infer

information, such as page table base address used to point to

all active page tables Scope: user-to-kernel, virtual machines

In some cases, updated microcode (etc.) can be used to make

such reads serializing and not execute speculatively. In other

cases, it may not be possible to prevent certain information

leakage - such as the location in memory of page table base

address. Implementation: hardware change

V4 (Speculative Store Bypass). Speculative reads may proceed

prior to determining whether a conflicting store exists in the

store buffer (memory disambiguation), Scope: sandboxes

Disabling speculative store buffer bypassing (aka “memory

disambiguation”) either globally, or on a per-application basis,

is one mitigation path. Another is aggressive use of process-

level isolation (separating contexts of execution), but this is

difficult for some cases. Linux eBPF and Java runtimes are

examples where a per-process control to disable speculative

bypassing of the store buffer is typically employed.

Implementation: software with perf cost, future hardware

LazyFPU save/restore. Processor implementation may be

optimized to avoid saving Floating Point Unit (and vector)

context when switching tasks until the new task performs an

FPU operation. Vulnerable hardware still allows speculative

reads of the disabled FPU state. Scope: user-to-user, guest-

to-host-process

Disabling lazy save/restore of Floating Point Unit state. In many

cases, this actually improves performance on contemporary

processors, particularly those which have hardware assisted

save/restore FPU instructions. Implementation: software now,

future hardware

SpectreRSB/ret2spec. RSB manipulated in order to divert the

speculative execution of a function return into an attacker-

determine leak gadget [arXiv:1807.07940]. Scope: sandboxes

RSB “stuffing” is employed to ensure the RSB is filled with a

benign delay gadget. This RSB stuffing approach is also used as

part of the mitigation for Spectre-v2 on some processors (e.g.,

Intel Skylakeþ) wherein an underfill in the RSB causes

speculation from the BTB. Thus, it is preferable to reuse the

existing mitigation. Implementation: software now, future

hardware

NetSpectre. Similar to Spectre but performed over a network

using a combination of a leak gadget (used to alter

microarchitectural state) and transmission gadget (used to

transmit this altered state across a network). Scope: sandboxes

(without explicitly running code!), kernel, remotely exploitable

Mitigation is similar to Spectre-v1, however, the impacted code

is potentially very significant. As a result, other solutions at the

network layer may be employed, or the impact of leakage may

be reduced through careful application of rekeying during

transactions. Very sensitive deployments may choose to

recompile significant portions of applications using speculative

load hardening techniques, e.g., as found in LLVM.

Implementation: software

March/April 2019 15

which causes the function to be executed but

does not use the indirect predictor. Immedi-

ately following the actual call to set_up_tar-
get is a harmless code sequence intended to

capture any speculated execution into an infi-

nite loop. When present, structures such as

the RSB will guarantee speculation is captured

by the originally recorded return target

(capture_spec).

A special exception exists on Intel Skylake and

later processors (known as Skylakeþ). Like many

other contemporary processors, these include an

RSB that attempts to keep track of function calls

and returns, predicting the location of a matching

call for a return. The RSB shadows the actual

function call stack, and it is of a small, finite size.

There are many cases in which it can underflow,

especially with deep call stacks. Skylakeþ pro-

cessors will begin to speculate from the indirect

predictor BTB in the case of an RSB underflow.

To prevent this occurrence, it is necessary to

also add a benign RSB “stuffing” code sequence

to certain code paths within Operating System

kernels, such as those transitioning from one priv-

ilege level to another. This ensures that the RSB

never effectively empties. As a side effect of this,

the processor is also mitigated against various

attacks that target the RSB, such as SpectreRSB.

Hardware mitigations for Spectre-v2 are

expected as well, including in the Intel Cascade

Lake release.9 One step forward is for hardware

implementers to isolate predictors from differ-

ent SMT hyperthreads and host/guest via identi-

fiers (such as address space and virtual machine

IDs), partitioning, or flushing at a performance

cost to be determined.

Spectre Reference Table
Table 1 is a reference table of Spectre var-

iants publically known as October 2018 with text

that is necessarily denser than the rest of this

paper. To dig deeper, we also recommend a

recently developed promising taxonomy.8 We

also call out vulnerable isolation boundaries

beyond the local control flow which may be vio-

lated by each variant under “scope.”

Spectre of Spectre
Table 1 presents the many Spectre variants

that have been announced after the original

three, including store buffer bypassing and vir-

tual machine address translation. There have

also been ongoing discussions of exploiting

cache coherence, memory bank conflicts, func-

tional unit timing, and even GPU execution.

A troubling example is NetSpectre,10 which

can force a victim machine to inadvertently leak

information using packets crafted to trigger

Spectre-v1 attack(s), despite not directly execut-

ing any code on the victim machine. NetSpectre

currently achieves a very low bandwidth

(< 1 bit/min), but it is a recent existence proof

with the significant implication that local user

access is not fundamental for enabling micro-

architectural attacks.

The real “spectre” of Spectre is that we do not

currently know Spectre limits. It is hard tomitigate

known Spectre variants and harder to deal with

L1TF (L1 Terminal Fault, “Foreshadow” - SGX). Speculative

loads to virtual addresses translated by Page Table Entries

(PTEs) with “present” bit not set may result in the processor

forwarding the incorrect physical address to the L1 data cache

(L1D), allowing reads of attacker-controlled addresses if in the

cache. Scope: virtual machines

L1TF requires that data be present in the L1 Data cache of

impacted Intel processors and that it is possible to construct a

vulnerable page table entry. For the “bare metal” use case of an

OS on hardware, it is possible to protect against malicious

applications by ensuring that all “not present” OS PTEs are

masked such that the address is outside of populated physical

memory. For virtual machines, it is necessary to employ an L1D

cache flush via microcode assist on VM entry. Implementation:

software now, future hardware

PortSmash Precisely crafted instruction sequences based upon

known latencies and contention at the port interfaces to

processor execution units can be leveraged to infer the behavior

of a sibling SMT thread sharing resources within a core. Scope:

inference about execution on sibling SMT thread(s)

Currently proposed mitigations involve careful scheduling of

application and virtual machine code such that they are not

coresident on the same core as potentially malicious code. In

some cases, it may be necessary to disable SMT (known as

“Hyperthreading” in Intel’s implementation) through OS or

firmware interfaces provided by a given platform.

Implementation: software

Table 1. (Continued.) Spectre Variants and Mitigation Strategies as of October 2018.

Hot Chips 30

16 IEEE Micro

the unknown variants. Moreover, there is a real

danger of “Spectre fatigue” where it will be hard to

enthusiasticallymobilize for the nth variant.

Where Do We Go From Here?
Of course, security is an end-to-end property

with the weakest link determining the overall vul-

nerability. With Spectre, the hardware becomes a

weak link, one that undermines the security of all

software. These vulnerabilities will not be solved

by hardware and software engineers working in

isolation. Software engineers will need to have

some notion of how processors behave, an under-

standing of caches, memory management, specu-

lation, and out-of-order execution. Of course, we

cannot expect that software programmers will

have deep expertise in these areas, but we must

communicate more as we define the contract

between software and hardware. No more “us”

and “them,” as has sometimes been prevalent in

the space of hardware and software engineering;

we are in the same boat!

Second, Open Source specifications (ISA) and

implementations can help. Security benefits from

“many eyeballs,” cleaner design with smaller

attack surfaces, and fromdesigns that the security

researchers can use to collaborate on solutions

that are not specific to one commercial processor

vendor. Many security researchers are using RISC-

V (https://riscv.org/) already, and it is likely to

become the de facto reference used inmany future

developments. Unfortunately, open architectures

and implementations will not magically solve our

security problems as they too can contain unin-

tentional or intentional flaws. Opening up com-

mercial microprocessor microcode/designs—at

least to a core of trusted security experts—is

extremely difficult but arguably necessary.

Third, our concept of hardware must change.

AddressingMeltdownandSpectre-v2 in futurehard-

ware is relatively straightforward. Addressing Spec-

tre-v1 and v4 (SSB) may be possible through novel

approaches (such as register tagging/tainting).

More generally, Spectre variants have shown

the need to move beyond just delivering perfor-

mance—as markets and program committees

have often valued—tomore deeply consider secu-

rity. Of course, a fundamental adjustment in the

focus on security and performance will require

work on how to quantify tradeoffs: What

percentage of performance overhead is accept-

able to eliminate Spectre, and when? When is

security just paramount?

In the short and medium term, hardware

implementers should seek microarchitectural

remedies. Companies must focus first on

quickly implemen

table fixes/mitiga-

tions to known

variants. They may

wish to consider

more “chicken bits”

to turn on/off

various structures

to respond rapidly

against currently

unknown Spectre

variants as they are revealed.

Academics should seek broader solutions in

what we expect will be a groundswell of future

papers. R. Lee in her MICRO 2018 keynote advo-

cated: 1) no (even speculative) access without

authorization; 2) no observable microarchitec-

ture effects; and 3) no interference through

shared resources unless made indistinguishable

through randomization.

Other ideas for moving forward include:

� better specification of security expecta-

tion, e.g., among VMs and with cloud

cotenency;

� informing hardware of all software

boundaries;

� logically or physically isolating specula-

tive state to make some “poisoning”

infeasible;

� further gating, or even undoing,

microarchitectural changes after mis-

speculation;

� interfaces for flushing hardware state to

increase the scope of software mitigation,

� randomizing timing or indexing to reduce

side-channel bandwidth;

� bifurcating in time (mode) and space

(different cores) to support speed and

safety.

Moreover, security research benefits from the

robust interplay of “attack” and “defend” papers

(with coordinated disclosure) whereas, in the

Spectre variants have

shown the need to

move beyond just

delivering perfor-

mance—as markets

and program commit-

tees have often val-

ued—to more deeply

consider security.

March/April 2019 17

https://riscv.org/

past, architecture venues have had too few

attack papers and security venues perhaps too

many.

Greater use of formal methods will also be

required as simulation and testing alone do

not usually withstand a determined adversary

against a large, complex attack surface. At best,

these methods—e.g., from information flow the-

ory—can safeguard all processors; at a mini-

mum, they may be able to provide a template for

slower, “safe,” processors or modes.

In a larger sense, Spectre variants have

exposed a flaw in how we have defined hard-

ware correctness since 1964. The timing-inde-

pendent functional behavior of a computer—

let us call it Architecture 1.0—is not sufficient

to stop information extraction via Spectre-like

timing channels, both known and unknown.

We have discussed ways to improve micro-

architectures vis-a-vis Spectre, but can or will

this ever end? Must we manage it like crime,

which is essentially how software security

flaws are handled?

We challenge the computer science com-

munity to develop Architecture 2.0 wherein all

correct-by-Architecture-2.0 implementations

must provide both software compatibility (like

Architecture 1.0) and prevent Spectre-like tim-

ing channel information exfiltration (unlike

Architecture 1.0). While this may be hard—

and should begin with a better understanding

of threat models and timing channels—it is

important for the next decades of our cyber

world.

Beyond Spectre Attacks
The Spectre and Meltdown attacks just point

to one instance of the need to consider security

as a first-class design constraint at a system level

across hardware and software boundaries. For

example, another security vulnerability recently

in the news is around managing the root of

trust.11,12 opens many questions: How do we

know our computing equipment is not being

spoofed? How can we trust the boot chain on

our devices? How should we pre-emptively

design to protect against not-yet-known vulner-

abilities? New chips for root of trust were pre-

sented at IEEE Hot Chips 2018 by both Google

and Microsoft.

ACKNOWLEDGMENT
The authors would like to thank the numer-

ous professionals who commented on this

paper. They regret that the short paper format

precluded more elaborate discussion on some of

the nuances. The work of M. D. Hill was sup-

ported by Google during his sabbatical and

at Wisconsin by NSF CCF-1617824, NSF CNS-

1815656, and John P. Morgridge Endowed Chair.

& REFERENCES

1. J. Horn, “Reading privileged memory with a side-

channel,” Project Zero, vol. 39, 2018. [Online].

Available: https://googleprojectzero.blogspot.com/

2018/01/reading-privileged-memory-with-side.html

2. P. Kocher et al., “Spectre attacks: Exploiting speculative

execution,” in Proc. 40th IEEE Symp. Security Privacy,

vol. 1801, May 2019, Art. no. 01203.

3. M. Lipp et al., “Meltdown: Reading kernel memory

from user space,” in Proc. 27th USENIX Secur. Symp.,

2018.

4. J. L. Hennessy and D. A. Patterson, Computer

Architecture: A Quantitative Approach. Amsterdam,

The Netherlands: Elsevier, 2019.

5. J. H. Saltzer and M. D. Schroeder, “The protection of

information in computer systems,” Proc. IEEE, vol. 63,

no. 20, pp. 1278–1308, Sep. 1975.

6. Z. Wang and R. B. Lee, “Covert and side channels

due to processor architecture,” in Proc. 22nd

Annu. Comput. Secur. Appl. Conf., 2006,

pp. 473–482.

7. U.S. Dept. Defense, “Trusted computer system

evaluation criteria,” Tech. Rep. 5200.28-STD, 1985,

A.k.a, “Orange Book.”

8. C. Canella et al., “A systematic evaluation of transient

execution attacks and defenses,” arXiv:1811.05441,

2018.

9. M. Arafa, “Cascade Lake: Next generation Intel Xeon

scalable processor,” IEEE Micro, vol. 39, no. 2, Mar./

Apr. 2019, DOI: 10.1109/MM.2019.2899330.

10. M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss,

“Netspectre: Read arbitrary memory over network,”

arXiv:1807.10535v1, 2018.

11. D. Rizzo, S. Johnson, J. McCune, R. Ho, and

P. Ranganathan, “Titan: Google’s root-of-trust

security” IEEE Hot Chips, 2018.

12. D. Stiles, “The hardware security behind Azure

Sphere,” IEEE Micro, vol. 39, no. 2, Mar./Apr. 2019,

DOI: 10.1109/MM.2019.2898633.

18 IEEE Micro

Hot Chips 30

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
http://dx.doi.org/10.1109/MM.2019.2899330
http://dx.doi.org/10.1109/MM.2019.2898633

Mark D. Hill is John P. Morgridge Professor and

GeneM. Amdahl Professor of Computer Sciences at the

University of Wisconsin-Madison, Madison, WI, USA.

His research interests include parallel-computer system

design, memory system design, and computer simula-

tion. He received the Ph.D. degree in computer science

from the University of California, Berkeley. He is a Fellow

of IEEE and the Association for Computing Machinery

(ACM), as well as the Chair of the Computer Community

Consortium. Contact him atmarkhill@cs.wisc.edu.

Jon Masters is a Computer Architect at Red Hat,

Raleigh, NC, USA, where he was tech lead for mitiga-

tion efforts against Meltdown and Spectre. He has

worked closely with high performance microproces-

sor design teams for years on emerging alternative

server platforms, and also currently leads the CCIX

software working group helping to define high perfor-

mance cache coherent interconnects for workload

acceleration. He has been a Linux developer for 22

years, since beginning college at the age of 13, and

has authored a number of books on Linux technol-

ogy. Contact him at jcm@redhat.com.

Parthasarathy Ranganathan is a Distinguished

Engineer at Google, Mountain View, CA, USA,

where he is the area tech lead for platforms hard-

ware and datacenters. Prior to this, he was an HP

Fellow and Chief Technologist at Hewlett Packard

Labs. His research interests include systems, archi-

tecture, and energy efficiency. He received the

Ph.D. degree in computer engineering from Rice

University. He is a Fellow of IEEE and the Associa-

tion for Computing Machinery (ACM). Contact him

at partha.ranganathan@google.com.

Paul Turner is a Principal Engineer at Google,

Mountain View, CA, USA, where he is the technical

lead for CPU scheduling and security. His research

interests include systems, concurrency, architecture,

virtual machines, and security. He received the B.S.

degree in pure mathematics and computer science

from the University of Waterloo. Contact him at

pjt@google.com.

John L. Hennessy is a Professor of Electrical Engi-

neering and Computer Science at Stanford University,

Stanford, CA, USA and the Director of Knight-Hen-

nessy Scholars, a graduate level scholarship program

for future world leaders. He is also the Chairman of the

Board of Alphabet (the parent of Google). Formerly,

the tenth President of Stanford University, he also co-

founded MIPS Computer Systems and Atheros

Communications. He was awarded the 2012 IEEE

Medal of Honor and the 2017 ACM A.M. Turing

Prize (jointly with David Patterson). Contact him at

hennessy@stanford.edu.

March/April 2019 19

mailto:
mailto:
mailto:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

