
iOS Security
iOS 12.3

May 2019

Contents

Page 5 Introduction

Page 6 System Security
 Secure boot chain
 System Software Authorization
 Secure Enclave
 OS Integrity Protection
 Touch ID
 Face ID

Page 15 Encryption and Data Protection
 Hardware security features
 File Data Protection
 Passcodes
 Data Protection classes
 Keychain data protection
 Keybags

Page 25 App Security
 App code signing
 Runtime process security
 Extensions
 App Groups
 Data Protection in apps
 Accessories
 HomeKit
 SiriKit
 HealthKit
 ReplayKit
 Secure notes
 Shared notes
 Apple Watch

Page 39 Network Security
 TLS
 VPN
 Wi-Fi
 Bluetooth
 Single sign-on
 Continuity
 AirDrop security
 Wi-Fi password sharing

iOS Security | May 2019 2

Page 47 Apple Pay
 Apple Pay components
 How Apple Pay uses the Secure Element
 How Apple Pay uses the NFC controller
 Credit, debit, and prepaid card provisioning
 Payment authorization
 Transaction-specific dynamic security code
 Paying with credit and debit cards in stores
 Paying with credit and debit cards within apps
 Paying with credit and debit cards on the web
 Contactless passes
 Apple Pay Cash
 Transit cards
 Student ID cards
 Suspending, removing, and erasing cards

Page 58 Internet Services
 Apple ID
 iMessage
 Business Chat
 FaceTime
 iCloud
 iCloud Keychain
 Siri
 Safari Suggestions, Siri Suggestions in Search, Lookup,
 #images, News app, and News widget in non-News  
 countries
 Safari Intelligent Tracking Prevention

Page 73 User Password Management
 App access to saved passwords
 Automatic strong passwords
 Sending passwords to other people or devices
 Credential provider extensions

Page 76 Device Controls
 Passcode protection
 iOS pairing model
 Configuration enforcement
 Mobile device management (MDM)
 Shared iPad
 Apple School Manager
 Apple Business Manager
 Device Enrollment
 Apple Configurator 2
 Supervision
 Restrictions
 Remote wipe
 Lost Mode
 Activation Lock

 Screen Time

iOS Security | May 2019 3

Page 84 Privacy Controls
 Location Services
 Access to personal data
 Privacy policy

Page 85 Security Certifications and Programs

 ISO 27001 and 27018 certifications
 Cryptographic validation (FIPS 140-2)
 Common Criteria Certification (ISO 15408)
 Commercial Solutions for Classified (CSfC)
 Security configuration guides

Page 87 Apple Security Bounty

Page 88 Conclusion
 A commitment to security

Page 89 Glossary

Page 92 Document Revision History

iOS Security | May 2019 4

https://support.apple.com/HT201263

https://developer.apple.com/homekit/

https://support.apple.com/HT204387

https://support.apple.com/HT204915
https://support.apple.com/HT204152
https://help.apple.com/schoolmanager/#/tes78b477c81
https://help.apple.com/schoolmanager/#/tesd8fcbdd99

derived from the sender and receiver public key and the plaintext. The
concatenation of the 88-bit and 40-bit values makes a 128-bit key, which
encrypts the message with it using AES in CTR mode. The 40-bit value is
used by the receiver side to verify the integrity of the decrypted plaintext.
This per-message AES key is encrypted using RSA-OAEP to the public key
of the receiving device. The combination of the encrypted message text and
the encrypted message key is then hashed with SHA-1, and the hash is signed
with ECDSA using the sending device’s private signing key. The resulting
messages, one for each receiving device, consist of the encrypted message
text, the encrypted message key, and the sender’s digital signature. They are
then dispatched to the APNs for delivery. Metadata, such as the timestamp
and APNs routing information, isn’t encrypted. Communication with APNs is
encrypted using a forward-secret TLS channel.

APNs can only relay messages up to 4KB or 16KB in size, depending on iOS
version. If the message text is too long, or if an attachment such as a photo is
included, the attachment is encrypted using AES in CTR mode with a randomly
generated 256-bit key and uploaded to iCloud. The AES key for the attachment,
its URI (Uniform Resource Identifier), and a SHA-1 hash of its encrypted
form are then sent to the recipient as the contents of an iMessage, with their
confidentiality and integrity protected through normal iMessage encryption,
as shown in the following diagram.

For group conversations, this process is repeated for each recipient and their devices.

On the receiving side, each device receives its copy of the message from APNs,
and, if necessary, retrieves the attachment from iCloud. The incoming phone
number or email address of the sender is matched to the receiver’s contacts
so that a name can be displayed when possible.

iOS Security | May 2019 61

!"#$%&

'(()*+,#-(
#-*$./(#0%12(+

$)-03,%4#.

56782*%4#.%
)-0%'59"%(34#-%

:3$%6"#$%&

2;8360

<=>

!"#$%?

56782*%4#.%
)-0%'59"%(34#-%

:3$%6"#$%?

>2@-#0%)-0%#-*$./(#0%
,#"")@#%:3$%6"#$%&%12(+%!A<%)-0%

4#.%:3$%)(()*+,#-(

'59"

As with all push notifications, the message is deleted from APNs when it is
delivered. Unlike other APNs notifications, however, iMessage messages are
queued for delivery to offline devices. Messages are currently stored for up
to 30 days.

Business Chat
Business Chat is a messaging service that enables users to communicate with
businesses using the Messages app. Only users can initiate the conversation,
and the business receives an opaque identifier for the user. The business
doesn’t receive the user’s phone number, email address, or iCloud account
information. When you chat with Apple, Apple receives a Business Chat ID
associated with your Apple ID. Users remain in control of whether they want
to communicate. Deleting a Business Chat conversation removes it from the
user’s Messages app and blocks the business from sending further messages
to the user.

Messages sent to the business are individually encrypted between the user’s
device and Apple’s messaging servers, and Apple’s messaging servers decrypt
these messages and relay them to the business over TLS. Businesses’ replies
are similarly sent over TLS to Apple’s messaging servers, which then re-encrypt
the message to the user’s device. As with iMessage, messages are queued for
delivery to offline devices for up to 30 days.

FaceTime
FaceTime is Apple’s video and audio calling service. Similar to iMessage,
FaceTime calls also use the Apple Push Notification service to establish an
initial connection to the user’s registered devices. The audio/video contents
of FaceTime calls are protected by end-to-end encryption, so no one but the
sender and receiver can access them. Apple can’t decrypt the data.

The initial FaceTime connection is made through Apple server infrastructure
that relays data packets between the users’ registered devices. Using APNs
notifications and Session Traversal Utilities for NAT (STUN) messages over  
the relayed connection, the devices verify their identity certificates and
establish a shared secret for each session. The shared secret is used to derive
session keys for media channels streamed via the Secure Real-time Transport
Protocol (SRTP). SRTP packets are encrypted using AES-256 in Counter Mode
and HMAC-SHA1. Subsequent to the initial connection and security setup,
FaceTime uses STUN and Internet Connectivity Establishment (ICE) to establish
a peer-to-peer connection between devices, if possible.

Group FaceTime extends FaceTime to support up to 33 concurrent participants.
As with classic one-to-one FaceTime, calls are end-to-end encrypted among
the invited participants’ devices. While much of the infrastructure and design
of one-to-one FaceTime is reused, Group FaceTime calls feature a new key-
establishment mechanism built on top of the authenticity provided by IDS. This
protocol provides forward secrecy, meaning the compromise of a user’s device
will not leak the contents of past calls. Session keys are wrapped via AES-SIV
and distributed among participants using an ECIES construction with ephemeral
P-256 ECDH keys.

When a new phone number or email address is added to an ongoing Group
FaceTime call, active devices will establish new media keys and will never share
previously used keys with the newly invited devices.

iOS Security | May 2019 62

iCloud
iCloud stores a user’s contacts, calendars, photos, documents, and more,
and keeps the information up to date across all of their devices, automatically.
iCloud can also be used by third-party apps to store and sync documents
as well as key values for app data as defined by the developer. Users set up
iCloud by signing in with an Apple ID and choosing which services they would
like to use. iCloud features, including My Photo Stream, iCloud Drive, and iCloud
Backup, can be disabled by IT administrators via MDM configuration profiles.
The service is agnostic about what is being stored and handles all file content
the same way, as a collection of bytes.

Each file is broken into chunks and encrypted by iCloud using AES-128 and
a key derived from each chunk’s contents that utilizes SHA-256. The keys
and the file’s metadata are stored by Apple in the user’s iCloud account.
The encrypted chunks of the file are stored, without any user-identifying
information or the keys, using both Apple and third-party storage services—
such as Amazon Web Services or Google Cloud Platform—but these partners
don’t have the keys to decrypt your data stored on their servers.

iCloud Drive
iCloud Drive adds account-based keys to protect documents stored in iCloud.
As with existing iCloud services, it chunks and encrypts file contents and stores
the encrypted chunks using third-party services. However, the file content
keys are wrapped by record keys stored with the iCloud Drive metadata. These
record keys are in turn protected by the user’s iCloud Drive Service Key, which
is then stored with the user’s iCloud account. Users get access to their iCloud
documents’ metadata by having authenticated with iCloud, but must also possess
the iCloud Drive Service Key to expose protected parts of iCloud Drive storage.

CloudKit
CloudKit allows app developers to store key-value data, structured data,
and assets in iCloud. Access to CloudKit is controlled using app entitlements.
CloudKit supports both public and private databases. Public databases are used
by all copies of the app, typically for general assets, and aren’t encrypted. Private
databases store the user’s data.

As with iCloud Drive, CloudKit uses account-based keys to protect the
information stored in the user’s private database and, similar to other iCloud
services, files are chunked, encrypted, and stored using third-party services.
CloudKit utilizes a hierarchy of keys, similar to Data Protection. The per-file keys
are wrapped by CloudKit Record keys. The Record keys, in turn, are protected
by a zone-wide key, which is protected by the user’s CloudKit Service Key. The
CloudKit Service Key is stored in the user’s iCloud account and is available only
after the user has authenticated with iCloud.

iOS Security | May 2019 63

CloudKit
Zone Key

CloudKit
Record Key

File
Metadata

File
Chunk List

CloudKit
Service Key

Convergent
Encryption

File
Chunk

CloudKit end-to-end encryption
Many Apple services, listed in the Apple Support article “iCloud security
overview” (https://support.apple.com/HT202303), use end-to-end encryption
with a CloudKit Service Key protected by iCloud Keychain syncing. For these
CloudKit containers, the key hierarchy is rooted in iCloud Keychain and
therefore shares the security characteristics of iCloud Keychain—the keys are
available only on the user’s trusted devices, and not to Apple or any third party.
If access to iCloud Keychain data is lost (see “Escrow security” section later in
paper), the data in CloudKit is reset; and if data is available from the trusted
local device, it is re-uploaded to CloudKit.

Messages in iCloud also uses CloudKit end-to-end encryption with a CloudKit
Service Key protected by iCloud Keychain syncing. If the user has enabled
iCloud Backup, the CloudKit Service Key used for the Messages in iCloud
container is backed up to iCloud to allow the user to recover their messages
even if they have lost access to iCloud Keychain and their trusted devices.
This iCloud Service Key is rolled whenever the user turns off iCloud Backup.

iCloud Backup
iCloud also backs up information—including device settings, app data, photos,
and videos in the Camera Roll, and conversations in the Messages app— 
daily over Wi-Fi. iCloud secures the content by encrypting it when sent
over the Internet, storing it in an encrypted format, and using secure tokens
for authentication. iCloud Backup occurs only when the device is locked,
connected to a power source, and has Wi-Fi access to the Internet. Because
of the encryption used in iOS, the system is designed to keep data secure
while allowing incremental, unattended backup and restoration to occur.

Here’s what iCloud backs up:

• Records for purchased music, movies, TV shows, apps, and books. A user’s
iCloud Backup includes information about purchased content present on
the user’s iOS device, but not the purchased content itself. When the user
restores from an iCloud Backup, their purchased content is automatically
downloaded from the iTunes Store, Apple Books, or the App Store. Some
types of content aren’t downloaded automatically in all countries or regions,
and previous purchases may be unavailable if they have been refunded or
are no longer available in the store. Full purchase history is associated with
a user’s Apple ID.

• Photos and videos on a user’s iOS devices. Note that if a user turns on
iCloud Photo Library on their iOS device (iOS 8.1 or later) or Mac (OS X 10.10.3
or later), their photos and videos are already stored in iCloud, so they aren’t
included in the user’s iCloud Backup.

• Contacts, calendar events, reminders, and notes
• Device settings
• App data
• Call history and ringtones
• Home screen and app organization
• HomeKit configuration
• HealthKit data
• Visual Voicemail password (requires the SIM card that was in use during

backup)
• iMessage, Business Chat, text (SMS), and MMS messages (requires the

SIM card that was in use during backup)

iOS Security | May 2019 64

Situation User recovery options for
Messages in iCloud

iCloud Backup
enabled and access
to trusted device

Data recovery possible via
iCloud Backup, access to
a trusted device, or iCloud
Keychain recovery.

iCloud Backup
enabled and no
access to trusted
device

Data recovery possible via
iCloud Backup or iCloud
Keychain recovery.

iCloud Backup
disabled and access
to trusted device

Data recovery possible via
a trusted device or iCloud
Keychain recovery.

Backup disabled and
no trusted devices

Data recovery only possible via
iCloud Keychain recovery.

Recovery Options

Situation User recovery options for
CloudKit end-to-end
encryption

Access to trusted
device

Data recovery possible via
a trusted device or iCloud
Keychain recovery.

No trusted devices Data recovery only possible
via iCloud Keychain recovery.

https://support.apple.com/HT202303

Note: When Messages in the Cloud is enabled, iMessage, Business Chat,
text (SMS), and MMS messages are removed from the user’s existing
iCloud Backup, and are instead stored in an end-to-end encrypted CloudKit
container for Messages. The user’s iCloud Backup retains a key to that
container. If the user subsequently disables iCloud Backup, that container’s
key is rolled, the new key is only stored in iCloud Keychain (inaccessible to
Apple and any third parties), and new data written to the container can’t be
decrypted with the old container key.

When files are created in Data Protection classes that aren’t accessible when
the device is locked, their per-file keys are encrypted using the class keys
from the iCloud Backup keybag. Files are backed up to iCloud in their original,
encrypted state. Files in Data Protection class No Protection are encrypted
during transport.

The iCloud Backup keybag contains asymmetric (Curve25519) keys for each
Data Protection class, which are used to encrypt the per-file keys. For more
information about the contents of the backup keybag and the iCloud Backup
keybag, see “Keychain Data Protection” in the Encryption and Data Protection
section of this paper.

The backup set is stored in the user’s iCloud account and consists of a copy of
the user’s files, and the iCloud Backup keybag. The iCloud Backup keybag is
protected by a random key, which is also stored with the backup set. (The user’s
iCloud password isn’t utilized for encryption, so changing the iCloud password
won’t invalidate existing backups.)

While the user’s Keychain database is backed up to iCloud, it remains protected
by a UID-tangled key. This allows the Keychain to be restored only to the same
device from which it originated, and it means no one else, including Apple, can
read the user’s Keychain items.

On restore, the backed-up files, iCloud Backup keybag, and the key for the
keybag are retrieved from the user’s iCloud account. The iCloud Backup
keybag is decrypted using its key, then the per-file keys in the keybag are
used to decrypt the files in the backup set, which are written as new files to
the file system, thus re-encrypting them as per their Data Protection class.

iCloud Keychain
iCloud Keychain allows users to securely sync their passwords between iOS
devices and Mac computers without exposing that information to Apple. In
addition to strong privacy and security, other goals that heavily influenced the
design and architecture of iCloud Keychain were ease of use and the ability to
recover a Keychain. iCloud Keychain consists of two services: Keychain syncing
and Keychain recovery.

Apple designed iCloud Keychain and Keychain recovery so that a user’s
passwords are still protected under the following conditions:

• A user’s iCloud account is compromised.
• iCloud is compromised by an external attacker or employee.
• A third party accesses user accounts.

iOS Security | May 2019 65

Safari integration with iCloud Keychain
Safari can automatically generate
cryptographically strong random strings
for website passwords, which are stored
in Keychain and synced to other devices.
Keychain items are transferred from device
to device, traveling through Apple servers,
but are encrypted in such a way that Apple
and other devices can’t read their contents.

Keychain syncing
When a user enables iCloud Keychain for the first time, the device establishes
a circle of trust and creates a syncing identity for itself. The syncing identity
consists of a private key and a public key. The public key of the syncing identity
is put in the circle, and the circle is signed twice: first by the private key of the
syncing identity, then again with an asymmetric elliptical key (using P-256)
derived from the user’s iCloud account password. Also stored with the circle are
the parameters (random salt and iterations) used to create the key that is based
on the user’s iCloud password.

The signed syncing circle is placed in the user’s iCloud key value storage
area. It can’t be read without knowing the user’s iCloud password, and can’t
be modified validly without having the private key of the syncing identity of
its member.

When the user turns on iCloud Keychain on another device, it notices that the
user has a previously established syncing circle in iCloud that it isn’t a member
of. The device creates its syncing identity key pair, then creates an application
ticket to request membership in the circle. The ticket consists of the device’s
public key of its syncing identity, and the user is asked to authenticate with  
their iCloud password. The elliptical key generation parameters are retrieved
from iCloud and generate a key that is used to sign the application ticket. Finally,
the application ticket is placed in iCloud.

When the first device sees that an application ticket has arrived, it displays
a notice for the user to acknowledge that a new device is asking to join the
syncing circle. The user enters their iCloud password, and the application ticket
is verified as signed by a matching private key. This establishes that the person
who generated the request to join the circle entered the user’s iCloud password
at the time the request was made.

Upon the user’s approval to add the new device to the circle, the first device
adds the public key of the new member to the syncing circle, signs it again with
both its syncing identity and the key derived from the user’s iCloud password.
The new syncing circle is placed in iCloud, where it is similarly signed by the
new member of the circle.

There are now two members of the signing circle, and each member has the
public key of its peer. They now begin to exchange individual Keychain items
via iCloud key value storage or store them in CloudKit as appropriate. If both
circle members have the same item, the one with the most recent modification
date will be synced. Items are skipped if the other member has the item and
the modification dates are identical. Each item that’s synced is encrypted so
it can be decrypted only by a device within the user’s circle of trust. It can’t be
decrypted by any other devices or Apple.

This process is repeated as new devices join the syncing circle. For example,
when a third device joins, the confirmation appears on both of the other user’s
devices. The user can approve the new member from either of those devices.
As new peers are added, each peer syncs with the new one to ensure that all
members have the same Keychain items.

However, the entire Keychain isn’t synced. Some items are device-specific,
such as VPN identities, and shouldn’t leave the device. Only items with the
attribute kSecAttrSynchronizable are synced. Apple has set this attribute
for Safari user data (including user names, passwords, and credit card
numbers), as well as Wi-Fi passwords and HomeKit encryption keys.

iOS Security | May 2019 66

Additionally, by default, Keychain items added by third-party apps don’t sync.
Developers must set the kSecAttrSynchronizable when adding items to
the Keychain.

Keychain recovery
Keychain recovery provides a way for users to optionally escrow their Keychain
with Apple, without allowing Apple to read the passwords and other data it
contains. Even if the user has only a single device, Keychain recovery provides
a safety net against data loss. This is particularly important when Safari is used
to generate random, strong passwords for web accounts, as the only record of
those passwords is in the Keychain.

A cornerstone of Keychain recovery is secondary authentication and a secure
escrow service, created by Apple specifically to support this feature. The user’s
Keychain is encrypted using a strong passcode, and the escrow service will
provide a copy of the Keychain only if a strict set of conditions are met.

When iCloud Keychain is turned on, if two-factor authentication is enabled for
the user’s account, the device passcode will be used to recover an escrowed
Keychain. If two-factor authentication isn’t set up, the user is asked to create  
an iCloud Security Code by providing a six-digit passcode. Alternatively, without
two-factor authentication, users can specify their own longer code, or let their
devices create a cryptographically random code that they can record and keep
on their own.

Next, the iOS device exports a copy of the user’s Keychain, encrypts it wrapped
with keys in an asymmetric keybag, and places it in the user’s iCloud key value
storage area. The keybag is wrapped with the user’s iCloud Security Code and
the public key of the hardware security module (HSM) cluster that will store the
escrow record. This becomes the user’s iCloud Escrow Record.

If the user decides to accept a cryptographically random security code,
instead of specifying their own or using a four-digit value, no escrow record
is necessary. Instead, the iCloud Security Code is used to wrap the random
key directly.

In addition to establishing a security code, users must register a phone number.
This provides a secondary level of authentication during Keychain recovery.
The user will receive an SMS that must be replied to in order for the recovery
to proceed.

Escrow security
iCloud provides a secure infrastructure for Keychain escrow that ensures
only authorized users and devices can perform a recovery. Topographically
positioned behind iCloud are HSM clusters that guard the escrow records.
Each has a key that is used to encrypt the escrow records under their watch,
as described previously in this paper.

To recover a Keychain, users must authenticate with their iCloud account and
password and respond to an SMS sent to their registered phone number. After
this is done, users must enter their iCloud Security Code. The HSM cluster
verifies that a user knows their iCloud Security Code using the Secure Remote
Password (SRP) protocol; the code itself isn’t sent to Apple. Each member of
the cluster independently verifies that the user hasn’t exceeded the maximum
number of attempts allowed to retrieve their record, as discussed below. If

iOS Security | May 2019 67

a majority agree, the cluster unwraps the escrow record and sends it to the
user’s device.

Next, the device uses the iCloud Security Code to unwrap the random key
used to encrypt the user’s Keychain. With that key, the Keychain—retrieved
from iCloud key value storage—is decrypted and restored onto the device.
Only 10 attempts to authenticate and retrieve an escrow record are allowed.
After several failed attempts, the record is locked and the user must call
Apple Support to be granted more attempts. After the 10th failed attempt,
the HSM cluster destroys the escrow record and the Keychain is lost forever.
This provides protection against a brute-force attempt to retrieve the record,
at the expense of sacrificing the Keychain data in response.

These policies are coded in the HSM firmware. The administrative access cards
that permit the firmware to be changed have been destroyed. Any attempt to
alter the firmware or access the private key will cause the HSM cluster to delete
the private key. Should this occur, the owner of each Keychain protected by the
cluster will receive a message informing them that their escrow record has been
lost. They can then choose to re-enroll.

Siri
By simply talking naturally, users can enlist Siri to send messages, schedule
meetings, place phone calls, and more. Siri uses speech recognition, text-to-
speech, and a client-server model to respond to a broad range of requests.
The tasks that Siri supports have been designed to ensure that only the
absolute minimal amount of personal information is utilized and that it is  
fully protected.

When Siri is turned on, the device creates random identifiers for use with the
voice recognition and Siri servers. These identifiers are used only within Siri and
are utilized to improve the service. If Siri is subsequently turned off, the device
will generate a new random identifier to be used if Siri is turned back on.

To facilitate Siri features, some of the user’s information from the device is sent
to the server. This includes information about the music library (song titles, artists,
and playlists), the names of Reminders lists, and names and relationships that
are defined in Contacts. All communication with the server is over HTTPS.

When a Siri session is initiated, the user’s first and last name (from Contacts),
along with a rough geographic location, are sent to the server. This allows Siri
to respond with the name or answer questions that need only an approximate
location, such as those about the weather.

If a more precise location is necessary—such as determining the location of
nearby movie theaters—the server asks the device to provide a more exact
location. This is an example of how, by default, information is sent to the server
only when it’s strictly necessary to process the user’s request. In any event,
session information is discarded after 10 minutes of inactivity.

When Siri is used from Apple Watch, the watch creates its own random unique
identifier, as described previously. However, instead of sending the user’s
information again, its requests also send the Siri identifier of the paired iPhone
to provide a reference to that information.

iOS Security | May 2019 68

The recording of the user’s spoken words is sent to Apple’s voice recognition
server. If the task involves dictation only, the recognized text is sent back to
the device. Otherwise, Siri analyzes the text and, if necessary, combines it
with information from the profile associated with the device. For example,
if the request is “send a message to my mom,” the relationships and names
that were uploaded from Contacts are utilized. The command for the identified
action is then sent back to the device to be carried out.

Many Siri functions are accomplished by the device under the direction of the
server. For example, if the user asks Siri to read an incoming message, the
server simply tells the device to speak the contents of its unread messages.
The contents and sender of the message aren’t sent to the server.

User voice recordings are saved for a six-month period so that the recognition
system can utilize them to better understand the user’s voice. After six months,
another copy is saved, without its identifier, for use by Apple in improving  
and developing Siri for up to two years. A small subset of recordings,
transcripts, and associated data without identifiers may continue to be used  
by Apple for ongoing improvement and quality assurance of Siri beyond two
years. Additionally, some recordings that reference music, sports teams and
players, and businesses or points of interest are similarly saved for purposes  
of improving Siri.

Siri can also be invoked hands-free via voice activation. The voice trigger
detection is performed locally on the device. In this mode, Siri is activated only
when the incoming audio pattern sufficiently matches the acoustics of the
specified trigger phrase. When the trigger is detected, the corresponding  
audio including the subsequent Siri command is sent to Apple’s voice
recognition server for further processing, which follows the same rules as
other user voice recordings made through Siri.

Users can also invoke Siri on Apple Watch by raising their watch close to their
mouth and speaking a Siri request. Siri is activated in this way when both:

• An on-device machine learning model detects the acoustics of human
speech near the device.

• A second on-device machine learning model identifies a motion profile
and device pose matching the Raise to Speak gesture.

When this combination of motion and audio is detected, the corresponding
audio is sent to Apple’s voice recognition server for further processing, which
follows the same rules as other user voice recordings made through Siri.

Siri Suggestions
Siri Suggestions for apps and shortcuts are generated using on-device
machine learning. No data goes to Apple except information that can’t be
used to identify the user about what signals were useful predictors of
shortcuts or app launches.

Shortcuts in Siri
Shortcuts added to Siri are synced across all Apple devices using iCloud, and
encrypted using CloudKit end-to-end encryption. The phrases associated with
shortcuts are synced to the Siri server for speech recognition, and associated
with the random Siri identifier described previously in this section. Apple
doesn’t receive the contents of the shortcuts, which are stored locally in a  
data vault.

iOS Security | May 2019 69

Shortcuts app
Custom shortcuts in the Shortcuts app are optionally synced across Apple
devices using iCloud. Shortcuts can also be shared with other users through
iCloud.

Custom shortcuts are versatile—they’re similar to scripts or programs. A
quarantine system is used to isolate shortcuts that were downloaded from
the Internet. The user is warned the first time they try to use the shortcut
and given an opportunity to inspect the shortcut, including information about
where it originated.

Custom shortcuts can also run user-specified JavaScript on websites in
Safari when invoked from the share sheet. In order to protect against malicious
JavaScript that, for example, tricks the user into running a script on a social
media website that harvests their data, updated malware definitions are
downloaded to identify malicious scripts at runtime. The first time that a user
runs JavaScript on a domain, the user is prompted to allow Shortcuts containing
JavaScript to run on the current web page for that domain.

Safari Suggestions, Siri Suggestions in Search,
Lookup, #images, News app, and News widget  
in non-News countries
Safari Suggestions, Siri Suggestions in Search, Lookup, #images, News app,
and News widget in non-News countries show users suggestions that go
beyond their devices, from sources like Wikipedia, the iTunes Store, local News,
Maps results, and the App Store—and even offer suggestions before a user
begins typing.

When a user starts typing in the Safari address bar, opens or uses Siri
Suggestions in Search, uses Lookup, opens #images, uses Search in the News
app, or uses the News widget in non-News countries, the following context is
sent encrypted using HTTPS to Apple to provide the user with relevant results:

• An identifier that rotates every 15 minutes to preserve privacy.
• User’s search query.
• The most likely query completion based on context and locally cached

past searches.
• The approximate location of their device, if they have Location Services for

Location-Based Suggestions turned on. The level of location “blurring” is
based on estimated population density at the device’s location; for instance,
more blurring in a rural location where users may be geographically more
separated versus less blurring in a city center where users will typically be
closer together. Users can disable the sending of all location information
to Apple in Settings, by turning off Location Services for Location-Based
Suggestions. If Location Services is turned off, then Apple may use the
device’s IP address to infer an approximate location.

• The type of device and whether the search is made in Siri Suggestions in
Search, Safari, Lookup, News app, or Messages.

• The type of connection.
• Information on the three apps most recently used on the device (for additional

search context). Only apps that are in an Apple-maintained allow list of
popular apps and have been accessed within the last 3 hours are included.

• A list of popular applications on the device.

iOS Security | May 2019 70

• Regional language, locale, and input preferences.
• If the user’s device can access music or video subscription services,

then information such as names of the subscription services and types of
subscriptions may be sent to Apple. The user’s account name, number,
and password aren’t sent to Apple.

• Summarized, aggregated representation of topics of interests.

When a user selects a result or exits the app with no result selected, some
information is sent to Apple to help improve the quality of future results. This
information is tied only to the same 15-minute session identifier and not tied
to a particular user. The feedback includes some of the previously described
context information as well as interaction information such as:

• Timings between interactions and search network requests.
• Ranking and display order of suggestions.
• The ID of the result and action selected if result is non-local, or the category

of the result selected if it is local.
• A flag indicating whether the user selected the result.

Apple retains Suggestions logs with queries, context, and feedback for
18 months. A subset of logs are retained for up to five years; for example,
queries, locale, domain, approximate location, and aggregate metrics.

In some cases, Suggestions may forward queries for common words and
phrases to a qualified partner, in order to receive and display the partner’s
search results. Apple proxies the queries so that partners don’t receive user
IP addresses or search feedback. Communication with the partner is encrypted
via HTTPS. For queries that occur frequently, Apple provides city-level location,
device type, and client language as search context to the partner to improve
search performance.

To understand and improve Suggestions performance geographically and
across different types of networks, the following information is logged without
a session identifier:

• Partial IP address (without the last octet for IPv4 addresses; without the last
80 bits for IPv6 addresses)

• Approximate location
• Approximate time of the query
• Latency/transfer rate
• Response size
• Connection type
• Locale
• Device type and requesting app

Safari Intelligent Tracking Prevention
Intelligent Tracking Prevention, or ITP, is part of the privacy-friendly default
cookies and website data policy of Safari. It helps prevent cross-site tracking
by limiting access to cookies and other website data.

ITP collects statistics on resource loads (images, scripts, etc.) as well as user
interactions such as taps and text entries. A machine learning model is used
for on-device classification of which domain names have the ability to track
the user cross-site, based on the collected statistics.

iOS Security | May 2019 71

When a domain is classified as having tracking abilities, ITP immediately
partitions its cookies if the user has previously interacted with that domain
as a first party; for classified domains that a user hasn’t interacted with,
ITP immediately begins to block their cookies. For example:

• video.example offers an ad-free subscription service and has many of
its videos embedded on other websites.

• A user signs in to video.example and then other websites containing
video.example embedded content.

• ITP classifies video.example as having tracking abilities and therefore
partitions its cookies.

• When a user visits newspaper.example and it contains embedded content
from video.example, the cookies provided to video.example are partitioned
cookies specific to video.example on newspaper.example.

Embedded third-party content may ask a user for access to their first-party
cookies with the Storage Access API. When a user taps or clicks on embedded
third-party content that uses the Storage Access API, Safari presents a prompt
asking if the user wants to allow the third party to have access to its cookies
and website data, which allows the third party to track them on the first-party
domain. If a user selects Allow, the embedded third-party content is allowed
access to their first-party cookies for the duration of that page visit; on
subsequent visits, the embedded third-party content will get access to their
first-party cookies after a user interacts with the embedded content and the
content calls the Storage Access API. And, because the user previously allowed
this access, they aren’t re-prompted. The user’s decision is maintained for the
combination of first and third parties and is cleared when a user clears their
Safari history.

Existing cookies from domains classified as having tracking abilities are purged
if a user hasn’t interacted with that domain—directly or through the Storage
Access API—for 30 days of active Safari usage. After 30 days without
interaction, a domain classified as having tracking abilities also can’t set new
cookies. Safari never allows access to other first-party website data in third-
party contexts.

Through ITP’s isolation of first-party and third-party data, it helps prevent
the use of cookies and website data for the purposes of cross-site tracking.
Apple has no access to which domain names a particular device has captured
statistics for or classified as having tracking abilities.

In addition to blocking third-party cookies from domains classified as having
tracking abilities, ITP also trims the HTTP Referer information sent to third-party
domains classified as having tracking abilities to just the page’s origin. 

iOS Security | May 2019 72

User Password Management

iOS offers a number of features to make it easy for users to securely and
conveniently authenticate to third-party apps and websites that use passwords
for authentication. Passwords are saved to a special Password AutoFill keychain
that is user-controlled and manageable in Settings > Passwords & Accounts >
Website & App Passwords. Apps can’t access the Password AutoFill keychain
without user permission. Credentials saved to the Password AutoFill keychain
are synchronized across devices with iCloud Keychain when it is enabled.

The iCloud Keychain password manager and Password AutoFill provide the
following features:

• Filling credentials in apps and websites
• Generating strong passwords
• Saving passwords in both apps and websites in Safari
• Sharing passwords securely to a users’ contacts
• Providing passwords to a nearby Apple TV that’s requesting credentials

App access to saved passwords
Shared web credentials API
iOS apps can interact with the Password AutoFill keychain using the following
two APIs:

• SecRequestSharedWebCredential

• SecAddSharedWebCredential

Access is granted to iOS apps only if the app developer and website
administrator have given their approval, and the user has given consent.
App developers express their intent to access Safari saved passwords by
including an entitlement in their app. The entitlement lists the fully qualified
domain names of associated websites, and the websites must place a file
on their server listing the unique app identifiers of apps approved by Apple.

When an app with the com.apple.developer.associated-domains entitlement
is installed, iOS makes a TLS request to each listed website, requesting one
of the following files:

• apple-app-site-association
• .well-known/apple-app-site-association

If the file lists the app identifier of the app being installed, then iOS marks the
website and app as having a trusted relationship. Only with a trusted relationship
will calls to these two APIs result in a prompt to the user, who must agree
before any passwords are released to the app, updated, or deleted.

Password AutoFill for Apps
iOS allows users to input saved user names and passwords into credential-
related fields in apps by tapping a “key” affordance in the iOS keyboard’s
QuickType bar. It leverages the same app-website association mechanism
powered by the apple-app-site-association file to strongly associate apps

iOS Security | May 2019 73

and websites. This interface exposes no credential information to the app
until a user consents to release a credential to the app. When iOS has marked
a website and app as having a trusted relationship, the QuickType bar will also
directly suggest credentials to fill into the app. This allows users to choose to
disclose Safari-saved credentials to apps with the same security properties,
but without apps having to adopt an API.

When an app and website have a trusted relationship and a user submits
credentials within an app, iOS may prompt the user to save those credentials
to the Password AutoFill keychain for later use.

Automatic strong passwords
When iCloud Keychain is enabled, iOS creates strong, random, unique passwords
when users sign up for or change their password within an app or on a website
in Safari. Users must opt-out of using strong passwords. Generated passwords
are saved in the keychain and synchronized across devices with iCloud Keychain,
when enabled.

Passwords generated by iOS, by default, are 20 characters long. They contain
one digit, one uppercase character, two hyphens, and 16 lowercase characters.
These generated passwords are strong, containing 71 bits of entropy.

iOS will generate passwords in apps and in Safari based on heuristics that
determine that a password-field experience is for password creation. If the
heuristics fail to recognize a password context as for password creation,
app developers can set UITextContentType.newPassword on their text field,
and web developers can set autocomplete="new-password" on their
<input> elements.

Apps and websites can provide rules to iOS that ensure generated passwords
are compatible with the relevant service. iOS will generate the strongest
password it can that fulfills these rules. Developers provide these rules using
UITextInputPasswordRules or the passwordrules attribute on their <input>
elements.

Sending passwords to other people or devices
AirDrop
When iCloud is enabled, users can AirDrop a saved credential, including the
websites it’s saved for, its user name, and its password, to another device.
Sending credentials with AirDrop always operates in Contacts Only mode,
regardless of the user’s settings. (See the “AirDrop security” section for
more information.) On the receiving device, after user consent, the credential
will be stored in the user’s Password AutoFill keychain.

Apple TV
Password AutoFill is available to fill credentials in apps on Apple TV. When the
user focuses on a user name or password text field in tvOS, Apple TV begins
advertising a request for Password AutoFill over Bluetooth Low Energy (BLE).

Any iPhone nearby displays a prompt inviting the user to share a credential
with Apple TV. An iPhone and Apple TV that use the same iCloud account  

iOS Security | May 2019 74

encrypt communication between the two devices during this process. If the
iPhone is signed in to a different iCloud account than Apple TV:

• A PIN code is used to establish an encrypted connection.
• iPhone must be unlocked and in close proximity to the Siri Remote paired

to that Apple TV to receive this prompt.

After the encrypted connection is made using Bluetooth LE link encryption,
the credential is sent to Apple TV and is automatically filled in to the relevant
text fields on the app.

Credential provider extensions
Users can designate a conforming third-party application as a credential
provider to AutoFill in Passwords & Accounts settings. This mechanism is
built on extensions. The credential provider extension must provide a view for
choosing credentials, and can optionally provide iOS metadata about saved
credentials so they can be offered directly on the QuickType bar. The metadata
includes the website of the credential and the associated user name, but not
its password. iOS will communicate with the extension to get the password
when the user chooses to fill it into an app or a website in Safari. Credential
metadata is stored inside the credential provider’s sandbox, and is automatically
removed when an app is uninstalled.

iOS Security | May 2019 75

Device Controls

iOS supports flexible security policies and configurations that are easy
to enforce and manage. This enables organizations to protect corporate
information and ensure that employees meet enterprise requirements,
even if they are using devices they’ve provided themselves—for example,  
as part of a “bring your own device” (BYOD) program.

Organizations can use resources such as passcode protection, configuration
profiles, remote wipe, and third-party MDM solutions to manage fleets of
devices and help keep corporate data secure, even when employees access
this data on their personal iOS devices.

Passcode protection
By default, the user’s passcode can be defined as a numeric PIN. On devices
with Touch ID or Face ID, the minimum passcode length is four digits. Users  
can specify a longer alphanumeric passcode by selecting Custom Alphanumeric
Code in the Passcode Options in Settings > Passcode. Longer and more
complex passcodes are harder to guess or attack, and are recommended.

Administrators can enforce complex passcode requirements and other policies
using MDM or Exchange ActiveSync, or by requiring users to manually install
configuration profiles. The following passcode policies are available:

• Allow simple value
• Require alphanumeric value
• Minimum passcode length
• Minimum number of complex characters
• Maximum passcode age
• Passcode history
• Auto-lock timeout
• Grace period for device lock
• Maximum number of failed attempts
• Allow Touch ID or Face ID

For administrator details about each policy, go to:
https://support.apple.com/guide/mdm/

For developer details about each policy, go to:
https://developer.apple.com/business/documentation/Configuration-Profile-
Reference.pdf

iOS pairing model
iOS uses a pairing model to control access to a device from a host computer.
Pairing establishes a trust relationship between the device and its connected
host, signified by public key exchange. iOS uses this sign of trust to enable
additional functionality with the connected host, such as data synchronization.

iOS Security | May 2019 76

https://support.apple.com/guide/mdm/
https://developer.apple.com/business/documentation/Configuration-Profile-Reference.pdf
https://developer.apple.com/business/documentation/Configuration-Profile-Reference.pdf

In iOS 9, services that require pairing can’t be started until after the device has
been unlocked by the user.

Additionally in iOS 10 or later, some services, including photo syncing, require
the device to be unlocked to begin.

In iOS 11 or later, services won’t start unless the device has been recently
unlocked.

The pairing process requires the user to unlock the device and accept the
pairing request from the host. In iOS 11 or later, the user is also required to  
enter their passcode. After the user has done this, the host and device
exchange and save 2048-bit RSA public keys. The host is then given a 256-bit
key that can unlock an escrow keybag stored on the device (refer to “Escrow
keybag” within the Keybags section of this paper). The exchanged keys are
used to start an encrypted SSL session, which the device requires before it will
send protected data to the host or start a service (iTunes syncing, file transfers,
Xcode development, etc.). The device requires connections from a host over
Wi-Fi to use this encrypted session for all communication, so it must have been
previously paired over USB. Pairing also enables several diagnostic capabilities.
In iOS 9, if a pairing record hasn’t been used for more than six months, it
expires. This timeframe is shortened to 30 days in iOS 11 or later.

For more information, go to:
https://support.apple.com/HT203034

Certain services, including com.apple.pcapd, are restricted to work only over
USB. Additionally, the com.apple.file_relay service requires an Apple-signed
configuration profile to be installed.

In iOS 11 or later, Apple TV can use the Secure Remote Password protocol to
wirelessly establish a pairing relationship.

A user can clear the list of trusted hosts with the “Reset Network Settings” or
“Reset Location & Privacy” options.

For more information, go to:
https://support.apple.com/HT202778

Configuration enforcement
A configuration profile is an XML file that allows an administrator to distribute
configuration information to iOS devices. Settings that are defined by an
installed configuration profile can’t be changed by the user. If the user deletes
a configuration profile, all the settings defined by the profile are also removed.
In this manner, administrators can enforce settings by tying policies to Wi-Fi
and data access. For example, a configuration profile that provides an email
configuration can also specify a device passcode policy. Users won’t be able
to access mail unless their passcode meets the administrator’s requirements.

An iOS configuration profile contains a number of settings that can be specified,
including:

• Passcode policies
• Restrictions on device features (disabling the camera, for example)
• Wi-Fi settings
• VPN settings

iOS Security | May 2019 77

https://support.apple.com/HT203034
https://support.apple.com/HT202778

• Mail server settings
• Exchange settings
• LDAP directory service settings
• CalDAV calendar service settings
• Web clips
• Credentials and keys
• Advanced cellular network settings

To view a current list for administrators, go to:
https://support.apple.com/guide/mdm/mdm5370d089

To view a current list for developers, go to:
https://developer.apple.com/business/documentation/Configuration-Profile-
Reference.pdf

Configuration profiles can be signed and encrypted to validate their origin,
ensure their integrity, and protect their contents. Configuration profiles are
encrypted using CMS (RFC 3852), supporting 3DES and AES-128.

Configuration profiles can also be locked to a device to completely prevent
their removal, or to allow removal only with a passcode. Since many enterprise
users own their iOS devices, configuration profiles that bind a device to an
MDM solution can be removed—but doing so also removes all managed
configuration information, data, and apps.

Users can install configuration profiles directly on their devices using Apple
Configurator 2, or they can be downloaded via Safari, sent via a mail message,
or sent over the air using an MDM solution. When a user sets up a device in
Apple School Manager or Apple Business Manager, the device downloads
and installs a profile for MDM enrollment.

Mobile device management (MDM)
iOS support for MDM allows businesses to securely configure and manage
scaled iPhone, iPad, Apple TV, and Mac deployments across their organizations.
MDM capabilities are built on existing iOS technologies such as configuration
profiles, over-the-air enrollment, and the Apple Push Notification service. For
example, APNs is used to wake the device so it can communicate directly with
its MDM solution over a secured connection. No confidential or proprietary
information is transmitted via APNs.

Using MDM, IT departments can enroll iOS devices in an enterprise
environment, wirelessly configure and update settings, monitor compliance
with corporate policies, manage software update policies, and even remotely
wipe or lock managed devices.

For more information on MDM, go to:

• https://www.apple.com/iphone/business/it/management.html
• https://help.apple.com/deployment/ios/#/ior07301dd60
• https://support.apple.com/guide/mdm/mdmbf9e668

iOS Security | May 2019 78

https://support.apple.com/guide/mdm/mdm5370d089
https://developer.apple.com/business/documentation/Configuration-Profile-Reference.pdf
https://developer.apple.com/business/documentation/Configuration-Profile-Reference.pdf
https://www.apple.com/iphone/business/it/management.html
https://help.apple.com/deployment/ios/#/ior07301dd60
https://support.apple.com/guide/mdm/mdmbf9e668

Shared iPad
Shared iPad is a multi-user mode for use in educational iPad deployments. It
allows students to share an iPad without sharing documents and data. Each
student gets their own home directory, which is created as an APFS volume
protected by the user’s credential. Shared iPad requires the use of a Managed
Apple ID that is issued and owned by the school. Shared iPad enables a student
to sign in to any organizationally owned device that is configured for use by
multiple students. Student data is partitioned into separate home directories,
each in their own data protection domains and protected by both UNIX
permissions and sandboxing.

Signing in to Shared iPad
When a student signs in, the Managed Apple ID is authenticated with Apple’s
identity servers using the SRP protocol. If successful, a short-lived access token
specific to the device is granted. If the student has used the device before, they
already have a local user account that is unlocked using the same credential.

If the student hasn’t used the device before, a new UNIX user ID, an APFS
volume with the user’s home directory, and a logical Keychain are provisioned.
If the device isn’t connected to the Internet (say, because the student is on
a field trip), authentication can occur against the local account for a limited
number of days. In that situation, only users with previously existing local
accounts can sign in. After the time limit has expired, students are required
to authenticate online, even if a local account already exists.

After the student’s local account has been unlocked or created, if it is remotely
authenticated, the short-lived token issued by Apple’s servers is converted to
an iCloud token that permits signing in to iCloud. Next, the student’s settings
are restored and their documents and data are synced from iCloud.

While the student session is active and the device remains online, documents
and data are stored on iCloud as they are created or modified. In addition, a
background syncing mechanism ensures that changes are pushed to iCloud
after the student signs out. After background syncing for that user is complete,
the user’s APFS volume is unmounted and can’t be mounted again without
supplying the user’s credentials.

Signing out of Shared iPad
When a student signs out of Shared iPad, the user keybag for the student  
is immediately locked and all apps are shut down. To accelerate the case of  
a new student signing in, the system defers some ordinary sign-out actions
temporarily and presents a Login Window to the new student. If a student
signs in during this time (approximately 30 seconds), Shared iPad performs
the deferred cleanup as part of signing in to the new student account. However,
if Shared iPad remains idle, it triggers the deferred cleanup. During the cleanup
phase, Login Window is restarted as if another sign-out had occurred.

Shared iPad upgrades
When a Shared iPad is upgraded from a version prior to iOS 10.3 to a version
of 10.3 or later, a one-time file system conversion takes place to convert
the HFS+ data partition to an APFS volume. If, at that time, any user home
directories are present on the system, they will remain on the main data volume
instead of being converted to individual APFS volumes.

iOS Security | May 2019 79

When additional students sign in, their home directories will also be placed
on the main data volume. New user accounts won’t be created with their own
APFS volume, as described previously, until all user accounts on the main
data volume have been deleted. Thus, to ensure that users have the additional
protections and quotas afforded by APFS, the iPad should either be upgraded
to 10.3 or later via an erase-and-reinstall, or all user accounts on the device
should be deleted through the Delete User MDM command.

For more information on Shared iPad, go to:
https://support.apple.com/guide/mdm/cad7e2e0cf56

Apple School Manager
Apple School Manager is a service for educational institutions that enables
them to buy content, configure automatic device enrollment in MDM solutions,
create accounts for students and staff, and set up iTunes U courses. Apple
School Manager is accessible on the web and is designed for technology
managers and IT administrators, staff, and teachers.

For more information on Apple School Manager, go to:
https://help.apple.com/schoolmanager/

Apple Business Manager
Apple Business Manager is a simple, web-based portal for IT administrators to
deploy iOS, macOS, and tvOS devices all from one place. When used with your
mobile device management (MDM) solution, you can configure device settings
and buy and distribute apps and books. Apple Business Manager is accessible
on the web and is designed for IT administrators.

For more information on Apple Business Manager, go to:
https://help.apple.com/businessmanager/

Device Enrollment
Apple School Manager and Apple Business Manager provide a fast, streamlined
way to deploy iOS devices that an organization has purchased directly from
Apple or through participating Apple Authorized Resellers and carriers. Devices
running iOS 11 or later and tvOS 10.2 or later can also be added to Apple School
Manager and Apple Business Manager after the time of purchase using Apple
Configurator 2.

Organizations can automatically enroll devices in MDM without having to
physically touch or prep the devices before users get them. After enrolling
in one of the programs, administrators sign in to the program website and
link the program to their MDM solution. The devices they purchased can
then be assigned to users through MDM. During the device configuration
process, security of sensitive data can be increased by ensuring appropriate
security measures in place. For example:

• Have users authenticate as part of the initial setup flow in the Apple device’s
Setup Assistant during activation.

• Provide a preliminary configuration with limited access and require
additional device configuration in order to access sensitive data.

iOS Security | May 2019 80

https://support.apple.com/guide/mdm/cad7e2e0cf56
https://help.apple.com/schoolmanager/
https://help.apple.com/businessmanager/

After a user has been assigned, any MDM-specified configurations, restrictions,
or controls are automatically installed. All communications between devices  
and Apple servers are encrypted in transit through HTTPS (SSL).

The setup process for users can be further simplified by removing specific
steps in the Setup Assistant for iOS, tvOS, and macOS, so users are up and
running quickly. Administrators can also control whether or not the user can
remove the MDM profile from the device and ensure that device restrictions are
in place from the very start. After the device is unboxed and activated, it can
enroll in the organization’s MDM solution—and all management settings, apps,
and books are installed.

Apple Configurator 2
In addition to MDM, Apple Configurator 2 for macOS makes it easy to set up
and preconfigure iOS devices and Apple TV before handing them out to users.
With Apple Configurator 2, devices can be quickly preconfigured with apps,
data, restrictions, and settings.

Apple Configurator 2 allows you to use Apple School Manager or Apple
Business Manager to enroll devices in an MDM solution without users having
to use Setup Assistant. Apple Configurator 2 can also be used to add iOS
devices and Apple TV to Apple School Manager or Apple Business Manager
after the time of purchase.

For more information on Apple Configurator 2, go to:
https://support.apple.com/guide/apple-configurator-2/

Supervision
During the setup of a device, an organization can configure the device to  
be supervised. Supervision denotes that the device is institutionally owned,  
which provides additional control over its configuration and restrictions.  
With Apple School Manager or Apple Business Manager, supervision can be
wirelessly enabled on the device as part of the MDM enrollment process, or
enabled manually using Apple Configurator 2. Supervising a device requires
the device to be erased and the operating system reinstalled.

For more information on configuring and managing iOS devices and Apple TV
using MDM or Apple Configurator 2, go to:
https://help.apple.com/deployment/ios/

Restrictions
Restrictions can be enabled—or in some cases, disabled—by administrators to
prevent users from accessing a specific app, service, or function of the device.
Restrictions are sent to devices in a restrictions payload, which is attached to
a configuration profile. Restrictions can be applied to iOS, tvOS, and macOS
devices. Certain restrictions on a managed iPhone may be mirrored on a paired
Apple Watch.

To view a current list for IT managers, go to:
https://support.apple.com/guide/mdm/mdm0f7dd3d8

iOS Security | May 2019 81

https://support.apple.com/guide/apple-configurator-2/
https://help.apple.com/deployment/ios/
https://support.apple.com/guide/mdm/mdm0f7dd3d8

Remote wipe
iOS devices can be erased remotely by an administrator or user. Instant remote
wipe is achieved by securely discarding the block storage encryption key from
Effaceable Storage, rendering all data unreadable. A remote wipe command can
be initiated by MDM, Exchange, or iCloud.

When a remote wipe command is triggered by MDM or iCloud, the device sends
an acknowledgment and performs the wipe. For remote wipe through Exchange,
the device checks in with the Exchange server before performing the wipe.

Users can also wipe devices in their possession using the Settings app. And as
mentioned, devices can be set to automatically wipe after a series of failed
passcode attempts.

Lost Mode
If a device is lost or stolen, an MDM administrator can remotely enable Lost
Mode on a supervised device with iOS 9.3 or later. When Lost Mode is enabled,
the current user is logged out and the device can’t be unlocked. The screen
displays a message that can be customized by the administrator, such as
displaying a phone number to call if the device is found. When the device is
put into Lost Mode, the administrator can request the device to send its current
location and, optionally, play a sound. When an administrator turns off Lost
Mode, which is the only way the mode can be exited, the user is informed of this
action through a message on the Lock screen or an alert on the Home screen.

Activation Lock
When Find My iPhone is turned on, the device can’t be reactivated without
entering the owner’s Apple ID credentials or the previous passcode of the device.

With devices that are owned by an organization, it’s a good idea to supervise
devices so that Activation Lock can be managed by the organization instead
of relying on the individual user to enter their Apple ID credentials to reactivate
devices.

On supervised devices, a compatible MDM solution can store a bypass code
when Activation Lock is enabled, or later use this code to clear Activation Lock
automatically when the device needs to be erased and assigned to a new user.

By default, supervised devices never have Activation Lock enabled, even if the
user turns on Find My iPhone. However, an MDM solution may retrieve a bypass
code and permit Activation Lock to be enabled on the device. If Find My iPhone is
turned on when the MDM solution enables Activation Lock, it is enabled at that
point. If Find My iPhone is turned off when the MDM server enables Activation
Lock, it’s enabled the next time the user activates Find My iPhone.

For devices used in education with a Managed Apple ID created through
Apple School Manager, Activation Lock can be tied to an administrator’s
Apple ID rather than the user’s Apple ID, or disabled using the device’s
bypass code.

iOS Security | May 2019 82

Screen Time
Screen Time is a feature in iOS 12 that lets a user understand and control their
own app and web usage, or that of their children. Users can:

• View usage data
• Set app or web usage limits
• Configure Downtime
• Enforce additional restrictions

For a user managing their own device usage, Screen Time controls and usage
data can be synced across devices associated to the same iCloud account
using CloudKit end-to-end encryption. This requires that the user’s account
has two-factor authentication enabled (synchronization is off by default).
Screen Time replaces the Restrictions feature in previous versions of iOS.

When a user clears Safari history or deletes an app, the corresponding usage
data is removed from the device and all synchronized devices.

Parents and Screen Time
Parents can also use Screen Time on iOS devices to understand and control
their children’s usage. If the parent is a family organizer (in iCloud Family
Sharing), they can view usage data and manage Screen Time settings for
their children. Children are informed when their parents turn on Screen Time,
and can monitor their own usage as well. When parents turn on Screen Time
for their children, the parents set a passcode so their children can’t make
changes. Once they are 18 years old (depending on country or region),
children can turn this monitoring off.

Usage data and configuration settings are transferred between the parent’s
and child’s devices using an end-to-end encrypted connection to Apple identity
service (IDS). Encrypted data may be briefly stored on IDS servers until it is read
by the receiving device (for example, as soon as the iPhone/iPad is turned on,
if it was off). This data isn’t readable by Apple.

Screen Time analytics
If the user turns on Share iPhone & Watch Analytics, only the following
anonymized data is collected so Apple can better understand how Screen Time
is being used:

• Was Screen Time turned on during Setup Assistant or later in Settings
• Is Screen Time turned on
• Is Downtime enabled
• Number of times the “Ask for more” query was used
• Number of app limits

No specific app or web usage data is gathered by Apple. When a user sees a list
of apps in Screen Time usage information, the app icons are pulled directly from
the App Store, which doesn’t retain any data from these requests.

iOS Security | May 2019 83

Privacy Controls

Apple takes customer privacy seriously and has numerous built-in controls
and options that allow iOS users to decide how and when apps utilize their
information, as well as what information is being utilized.

Location Services
Location Services uses GPS, Bluetooth, and crowd-sourced Wi-Fi hotspot and
cell tower locations to determine the user’s approximate location. Location
Services can be turned off using a single switch in Settings, or users can approve
access for each app that uses the service. Apps may request to receive location
data only while the app is being used or allow it at any time. Users may choose
not to allow this access, and may change their choice at any time in Settings.
From Settings, access can be set to never allowed, allowed when in use, or always,
depending on the app’s requested location use. Also, if apps granted access to
use location at any time make use of this permission while in background mode,
users are reminded of their approval and may change an app’s access.

Additionally, users are given fine-grained control over system services’ use of
location information. This includes being able to turn off the inclusion of location
information in information collected by the analytics services used by Apple to
improve iOS, location-based Siri information, location-based context for Siri
Suggestions searches, local traffic conditions, and significant locations visited
in the past.

Access to personal data
iOS helps prevent apps from accessing a user’s personal information without
permission. Additionally, in Settings, users can see which apps they have
permitted to access certain information, as well as grant or revoke any future
access. This includes access to:

• Contacts • Microphone
• Calendars • Camera
• Reminders • HomeKit
• Photos • Health
• Motion activity and fitness • Speech recognition
• Location Services • Bluetooth sharing
• Apple Music • Your media library
• Your music and video activity

If the user signs in to iCloud, apps are granted access by default to iCloud Drive.
Users may control each app’s access under iCloud in Settings. Additionally, iOS
provides restrictions that prevent data movement between apps and accounts
installed by an MDM solution and those installed by the user.

Privacy policy
To read Apple’s privacy policy, go to:
https://www.apple.com/legal/privacy 

iOS Security | May 2019 84

https://www.apple.com/legal/privacy

Security Certifications and
Programs

Note: For the latest information on iOS Security Certifications, validations, and
guidance, go to:
https://support.apple.com/HT202739

ISO 27001 and 27018 certifications
Apple has received ISO 27001 and ISO 27018 certifications for the Information
Security Management System for the infrastructure, development, and operations
supporting these products and services: Apple School Manager, iTunes U,
iCloud, iMessage, FaceTime, Managed Apple IDs, Siri, and Schoolwork in
accordance with the Statement of Applicability v2.1 dated 7/11/2017. Apple’s
compliance with the ISO standards was certified by the British Standards
Institution. The BSI website has certificates of compliance for ISO 27001 and
ISO 27018. To view these certificates, go to:

https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-
client-directory/search-results/?
searchkey=company=apple&licencenumber=IS+649475

https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-
client-directory/search-results/?
searchkey=company=Apple&licencenumber=PII%20673269

Cryptographic validation (FIPS 140-2)
The cryptographic modules in iOS have been repeatedly validated for compliance
with U.S. Federal Information Processing Standards (FIPS) 140-2 following each
release since iOS 6. As with each major release, Apple submits the modules to
CMVP for re-validation when the iOS operating system is released. This program
validates the integrity of cryptographic operations for Apple apps and third-party
apps that properly utilize iOS cryptographic services and approved algorithms.

Apple received FIPS 140-2 Validation for the embedded hardware module
identified as Apple Secure Enclave Processor (SEP) Secure Key Store
(SKS) Cryptographic Module enabling approved use of SEP generated and
managed keys. Apple will continue to pursue higher levels for the hardware
module with each successive major iOS release as appropriate.

iOS Security | May 2019 85

https://support.apple.com/HT202739
https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-client-directory/search-results/?searchkey=company=apple&licencenumber=IS+649475
https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-client-directory/search-results/?searchkey=company=apple&licencenumber=IS+649475
https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-client-directory/search-results/?searchkey=company=apple&licencenumber=IS+649475
https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-client-directory/search-results/?searchkey=company=Apple&licencenumber=PII%20673269
https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-client-directory/search-results/?searchkey=company=Apple&licencenumber=PII%20673269
https://www.bsigroup.com/en-GB/our-services/certification/certificate-and-client-directory/search-results/?searchkey=company=Apple&licencenumber=PII%20673269

Common Criteria Certification (ISO 15408)
Since the release of iOS 9, Apple has achieved ISO certifications for each major
iOS release under the Common Criteria Certification program and has expanded
coverage to include the following:

• Mobile Device Fundamental Protection Profile
- Extended Package for Mobile Device Management Agents

- Extended Package for Wireless LAN Clients

- PP-Module for VPN Client
• Protection Profile for Application Software

- Extended Package for Web Browsers

• Apple plans to expand coverage with each successive major release of iOS.

Apple has taken an active role within the International Technical Community
(ITC) in developing currently unavailable Collaborative Protection Profiles (cPPs)
focused on evaluating key mobile security technology. Apple continues to
evaluate and pursue certifications against new and updated versions of the
cPPs available today and under development.

Commercial Solutions for Classified (CSfC)
Where applicable, Apple has also submitted the iOS platform and various
services for inclusion in the Commercial Solutions for Classified (CSfC)
Program Components List. As Apple platforms and services undergo
Common Criteria Certifications, they will be submitted for inclusion under
CSfC Program Components List as well.

To view the most recently listed components, go to:
https://www.nsa.gov/resources/everyone/csfc/components-list/

Security configuration guides
Apple has collaborated with governments worldwide to develop guides
that give instructions and recommendations for maintaining a more secure
environment, also known as device hardening for high-risk environments.
These guides provide defined and vetted information about how to configure
and utilize built-in features in iOS for enhanced protection.

iOS Security | May 2019 86

https://www.nsa.gov/resources/everyone/csfc/components-list/

Apple Security Bounty

Apple rewards researchers who share critical issues with Apple. In order to
be eligible for an Apple Security Bounty, researchers are required to provide
a clear report and working proof of concept. The vulnerability must affect the
latest shipping iOS and, where relevant, the latest hardware. The exact payment
amount will be determined after review by Apple. The criteria includes who
reported the vulnerability first, novelty, likelihood of exposure, and degree of
user interaction required.

Once the issues are properly shared, Apple makes it a priority to resolve
confirmed issues as quickly as possible. Where appropriate, Apple will provide
public recognition, unless otherwise requested.

Category Maximum payment (USD)

Secure boot firmware components $200,000

Extraction of confidential material protected by the Secure Enclave $100,000

Execution of arbitrary code with kernel privileges $50,000

Unauthorized access to iCloud account data on Apple servers $50,000

Access from a sandboxed process to user data outside of that sandbox $25,000

Apple matches donations of the bounty payment to qualifying charities.

For more information on reporting bugs to Apple, go to: 
https://developer.apple.com/bug-reporting/

iOS Security | May 2019 87

https://developer.apple.com/bug-reporting/

Conclusion

A commitment to security
Apple is committed to helping protect customers with leading privacy and
security technologies that are designed to safeguard personal information,
as well as comprehensive methods to help protect corporate data in an
enterprise environment.

Security is built into iOS. From the platform to the network to the apps,
everything a business needs is available in the iOS platform. Together, these
components give iOS its industry-leading security without compromising
the user experience.

Apple uses a consistent, integrated security infrastructure throughout iOS and
the iOS apps ecosystem. Hardware-based storage encryption provides remote
wipe capabilities when a device is lost, and enables users to completely remove
all corporate and personal information when a device is sold or transferred to
another owner. Diagnostic information is also collected anonymously.

iOS apps designed by Apple are built with enhanced security in mind. For
example, iMessage and FaceTime provide client-to-client encryption. For  
third-party apps, the combination of required code signing, sandboxing, and
entitlements gives users industry-leading protection against viruses, malware,
and other exploits. The App Store submission process works to further shield
users from these risks by reviewing every iOS app before it’s made available.

To make the most of the extensive security features built into iOS, businesses
are encouraged to review their IT and security policies to ensure that they
are taking full advantage of the layers of security technology offered by
this platform.

Apple maintains a dedicated security team to support all Apple products.
The team provides security auditing and testing for products under
development, as well as for released products. The Apple team also
provides security tools and training, and actively monitors for reports of
new security issues and threats. Apple is a member of the Forum of Incident
Response and Security Teams (FIRST).

To learn more about reporting issues to Apple and subscribing to security
notifications, go to:
https://www.apple.com/support/security

iOS Security | May 2019 88

https://www.apple.com/support/security

Glossary  

iOS Security | May 2019 89

Address space layout 
randomization (ASLR)

A technique employed by iOS to make the successful exploitation by a software
bug much more difficult. By ensuring memory addresses and offsets are
unpredictable, exploit code can’t hard code these values. In iOS 5 or later, the
position of all system apps and libraries are randomized, along with all third-party
apps compiled as position-independent executables.

Apple identity service (IDS) Apple’s directory of iMessage public keys, APNs addresses, and phone numbers
and email addresses that are used to look up the keys and device addresses.

Apple Push Notification service (APNs) A worldwide service provided by Apple that delivers push notifications to
iOS devices.

Boot Progress Register (BPR) A set of SoC hardware flags that software can use to track the boot modes the
device has entered, such as DFU mode and Recovery mode. Once a Boot Progress
Register flag is set, it can’t be cleared. This allows later software to get a trusted
indicator of the state of the system.

Boot ROM The very first code executed by a device’s processor when it first boots. As an
integral part of the processor, it can’t be altered by either Apple or an attacker.

Data Protection File and Keychain protection mechanism for iOS. It can also refer to the APIs that
apps use to protect files and Keychain items.

Device Firmware Upgrade (DFU mode) A mode in which a device’s Boot ROM code waits to be recovered over USB.
The screen is black when in DFU mode, but upon connecting to a computer  
running iTunes, the following prompt is presented: “iTunes has detected an
(iPad, iPhone, or iPad touch) in Recovery mode. You must restore this (iPad,
iPhone, or iPad touch) before it can be used with iTunes.”

Elliptic Curve Diffie-Hellman Exchange
(ECDHE)

Elliptic Curve Diffie-Hellman Exchange with ephemeral keys. ECDHE allows two
parties to agree on a secret key in a way that prevents the key from being discovered
by an eavesdropper watching the messages between the two parties.

ECDSA A digital signature algorithm based on elliptic curve cryptography.

Exclusive Chip Identification (ECID) A 64-bit identifier that’s unique to the processor in each iOS device. When a call is
answered on one device, ringing of nearby iCloud-paired devices is terminated by
briefly advertising through Bluetooth Low Energy 4.0. The advertising bytes are
encrypted using the same method as Handoff advertisements. Used as part of the
personalization process, it’s not considered a secret.

Effaceable Storage A dedicated area of NAND storage, used to store cryptographic keys, that can be
addressed directly and wiped securely. While it doesn’t provide protection if an
attacker has physical possession of a device, keys held in Effaceable Storage can
be used as part of a key hierarchy to facilitate fast wipe and forward security.

file system key The key that encrypts each file’s metadata, including its class key. This is kept in
Effaceable Storage to facilitate fast wipe, rather than confidentiality.

group ID (GID) Like the UID, but common to every processor in a class.
hardware security module (HSM) A specialized tamper-resistant computer that safeguards and manages digital keys.
iBoot Code that loads XNU, as part of the secure boot chain. Depending on the SoC

generation, iBoot may be loaded by LLB or directly by the boot ROM.
integrated circuit (IC) Also known as a microchip.
Joint Test Action Group (JTAG) Standard hardware debugging tool used by programmers and circuit developers.

iOS Security | May 2019 90

keybag A data structure used to store a collection of class keys. Each type (user, device,
system, backup, escrow, or iCloud Backup) has the same format:
• A header containing:

– Version (set to four in iOS 12 or later)
– Type (system, backup, escrow, or iCloud Backup)
– Keybag UUID
– An HMAC if the keybag is signed
– The method used for wrapping the class keys—tangling with the UID or
PBKDF2, along with the salt and iteration count

• A list of class keys:
– Key UUID
– Class (which file or Keychain Data Protection class)
– Wrapping type (UID-derived key only; UID-derived key and passcode-derived
key)
– Wrapped class key
– Public key for asymmetric classes

Keychain The infrastructure and a set of APIs used by iOS and third-party apps to store and
retrieve passwords, keys, and other sensitive credentials.

key wrapping Encrypting one key with another. iOS uses NIST AES key wrapping, as per RFC
3394.

Low-Level Bootloader (LLB) On systems with a two-stage boot architecture, code that’s invoked by the Boot  
ROM, and in turn loads iBoot, as part of the secure boot chain.

memory controller The subsystem in the SoC that controls the interface between the SoC and its main
memory.

per-file key The AES-256-bit key used to encrypt a file on the file system. The per-file key is
wrapped by a class key and is stored in the file’s metadata.

Provisioning Profile A plist signed by Apple that contains a set of entities and entitlements allowing apps
to be installed and tested on an iOS device. A development Provisioning Profile lists
the devices that a developer has chosen for ad hoc distribution, and a distribution
Provisioning Profile contains the app ID of an enterprise-developed app.

Recovery mode Recovery mode is used to restore an iOS device or Apple TV if:
• iTunes doesn't recognize your device or says it’s in Recovery mode.
• The screen is stuck on the Apple logo for several minutes with no progress bar.
• The connect to iTunes screen appears.

ridge flow angle mapping A mathematical representation of the direction and width of the ridges extracted
from a portion of a fingerprint.

software seed bits Dedicated bits in the Secure Enclave AES engine that get appended to the UID
when generating keys from the UID. Each software seed bit has a corresponding
lock bit. The Secure Enclave Boot ROM and OS can independently change the value
of each software seed bit as long as the corresponding lock bit hasn’t been set.
Once the lock bit is set, neither the software seed bit nor the lock bit can be
modified. The software seed bits and their locks are reset when the Secure Enclave
reboots.

System Coprocessor Integrity Protection
(SCIP)

System coprocessors are CPUs on the same SoC as the application processor.

system on chip (SoC) An integrated circuit (IC) that incorporates multiple components into a single chip.
The application processor, Secure Enclave and other coprocessors are components
of the SoC.

iOS Security | May 2019 91

tangling The process by which a user’s passcode is turned into a cryptographic key and
strengthened with the device’s UID. This ensures that a brute-force attack must
be performed on a given device, and thus is rate limited and can’t be performed in
parallel. The tangling algorithm is PBKDF2, which uses AES keyed with the device
UID as the pseudorandom function (PRF) for each iteration.

Uniform Resource Identifier (URI) A string of characters that identifies a web-based resource.

unique ID (UID) A 256-bit AES key that’s burned into each processor at manufacture. It can’t be read
by firmware or software, and is used only by the processor’s hardware AES engine.
To obtain the actual key, an attacker would have to mount a highly sophisticated and
expensive physical attack against the processor’s silicon. The UID isn’t related to any
other identifier on the device including, but not limited to, the UDID.

XNU The kernel at the heart of the iOS and macOS operating systems. It’s assumed to  
be trusted, and enforces security measures such as code signing, sandboxing,
entitlement checking, and ASLR.

iOS Security | May 2019 93

Date Summary
July 2017 Updated for iOS 10.3

• System Enclave

• File Data Protection

• Keybags

• Security Certifications and programs

• SiriKit

• HealthKit

• Network Security

• Bluetooth

• Shared iPad

• Lost Mode

• Activation Lock

• Privacy Controls

March 2017 Updated for iOS 10

• System Security

• Data protection classes

• Security Certifications and programs

• HomeKit, ReplayKit, SiriKit

• Apple Watch

• Wi-Fi, VPN

• Single Sign-on

• Apple Pay, Paying with Apple Pay on the web

• Credit, debit, and prepaid card provisioning

• Safari Suggestions

May 2016 Updated for iOS 9.3

• Managed Apple ID

• Two-factor authentication for Apple ID

• Keybags
• Security Certifications

• Lost Mode, Activation Lock

• Secure Notes

• Apple School Manager, Shared iPad

iOS Security | May 2019 94

Date Summary
September 2015 Updated for iOS 9

• Apple Watch Activation Lock
• Passcode policies
• Touch ID API support
• Data Protection on A8 uses AES-XTS
• Keybags for unattended software update
• Certification updates
• Enterprise app trust model
• Data protection for Safari bookmarks
• App Transport Security
• VPN specifications
• iCloud Remote Access for HomeKit
• Apple Pay Rewards cards, Apple Pay card issuer’s app
• Spotlight on-device indexing
• iOS Pairing Model
• Apple Configurator 2
• Restrictions

© 2019 Apple Inc. All rights reserved.

Apple, the Apple logo, AirDrop, AirPlay, Apple Music, Apple Pay, Apple TV, Apple Watch, CarPlay, Face ID, FaceTime, Handoff, iMessage, iPad, iPad Air, iPhone, iPod, iPod touch,
iTunes, iTunes U, Keychain, Lightning, Mac, macOS, QuickType, Safari, Siri, Siri Remote, Spotlight, Touch ID, TrueDepth, watchOS, and Xcode are trademarks of Apple Inc.,
registered in the U.S. and other countries.

HealthKit, HomeKit, HomePod, SiriKit, and tvOS are trademarks of Apple Inc.

AppleCare, App Store, CloudKit, iCloud, iCloud Drive, iCloud Keychain, and iTunes Store are service marks of Apple Inc., registered in the U.S. and other countries.

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Apple is under license.

Java is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Other product and company names mentioned herein may be trademarks of their respective companies. Product specifications are subject to change without notice.

May 2019

	Contents
	Introduction
	System Security
	Touch ID
	Face ID
	Encryption and Data Protection
	File Data Protection
	Passcodes
	Data Protection classes
	Keychain data protection
	Keybags
	App Security
	App code signing
	Runtime process security
	Extensions
	App Groups
	Data Protection in apps
	Accessories
	HomeKit
	SiriKit
	HealthKit
	ReplayKit
	Secure notes
	Shared notes
	Apple Watch
	Network Security
	TLS
	VPN
	Wi-Fi
	Bluetooth
	Single sign-on
	Continuity
	AirDrop security
	Wi-Fi password sharing
	Apple Pay
	Apple Pay components
	How Apple Pay uses the Secure Element
	How Apple Pay uses the NFC controller
	Credit, debit, and prepaid card provisioning
	Payment authorization
	Transaction-specific dynamic security code
	Paying with credit and debit cards in stores
	Paying with credit and debit cards within apps
	Paying with credit and debit cards on the web
	Contactless passes
	Apple Pay Cash
	Transit cards
	Student ID cards
	Suspending, removing, and erasing cards
	Internet Services
	Apple ID
	iMessage
	Business Chat
	FaceTime
	iCloud
	iCloud Keychain
	Siri
	Safari Suggestions, Siri Suggestions in Search, Lookup, #images, News app, and News widget in non-News countries
	Safari Intelligent Tracking Prevention
	User Password Management
	App access to saved passwords
	Automatic strong passwords
	Sending passwords to other people or devices
	Credential provider extensions
	Device Controls
	Passcode protection
	iOS pairing model
	Configuration enforcement
	Mobile device management (MDM)
	Shared iPad
	Apple School Manager
	Apple Business Manager
	Device Enrollment
	Apple Configurator 2
	Supervision
	Restrictions
	Remote wipe
	Lost Mode
	Activation Lock
	Screen Time
	Privacy Controls
	Location Services
	Access to personal data
	Privacy policy
	Security Certifications and Programs
	ISO 27001 and 27018 certifications
	Cryptographic validation (FIPS 140-2)
	Common Criteria Certification (ISO 15408)
	Commercial Solutions for Classified (CSfC)
	Security configuration guides
	Apple Security Bounty
	Conclusion
	A commitment to security
	Glossary
	Document Revision History

