
Spark Wasm UDFs

Raymond Huffman

MIT 6.858 Final Project
May 2022

1 Introduction

Apache Spark is a popular system for data processing and analytics. Spark typically runs
on a cluster of machines, and enables users to process datasets that may be too large to
fit on a single machine. Spark provides a simple interface for writing SQL-like queries, but
also supports arbitrary user-defined functions (UDFs). UDFs are treated as black-boxes for
functional operations like map, filter, and reduce. Spark has official support for Java, Scala,
Python, and R, and UDFs can be implemented in any of those languages.

Consider a cloud computing provider that hosts shared Spark clusters and allows its
users to submit jobs. Spark UDFs would essentially allow users to run arbitrary code on the
Spark cluster, with the potential to interfere with and access the filesystems of peer jobs on
the cluster. Spark does provide some security features, such as authenticated and encrypted
RPCs between processes, authentication for requests to the cluster, and encryption for local
temporary files. These features, however, are not sufficient to isolate a malicious job with
submit permissions on the cluster. Currently, the best way to isolate Spark jobs its to spin up
separate clusters, which introduces significant overhead and startup time. At a major data
analytics company that uses Spark to power a customer-facing analytics product, initializing
a Spark environment could take anywhere from 10 minutes to nearly an hour, depending on
the dependencies required.

This project explores a novel solution for isolating untrusted Spark UDFs using We-
bAssembly. Specifically, it uses a generic UDF wrapper written in Java that serves as an
interface between Spark RDDs and a WebAssembly runtime.

2 Design

2.1 WebAssembly

WebAssembly (Wasm) was first introduced by Mozilla in 2017, and enables programs written
in any supported language to be compiled for and run in a web browser. Wasm is a binary
instruction format and a compilation target for programming languages. Just as a program
can be compiled for x86 or for ARM, it can be compiled for Wasm. Wasm programs can
execute at native speed, making them significantly faster than equivalent programs written

1

in JavaScript. Additionally, by acting as a common compiler target for any programming
language, a programmer can choose the language and packages that best fit their needs.

While WebAssembly was designed primarily to run in web browsers, Wasm binaries can
also be run in non-web containers. Wasmtime and Wasmer are two competing implemen-
tations of non-web runtime environments for Wasm. For this project, Wasmer was selected
as it provides an officially supported package for interacting with Wasm modules. Wasmer
provides an isolated execution environment that can be initialized in less than a second.

The isolation provided by the Wasmer runtime is sufficient to allow us to safely run
untrusted code on a shared Spark cluster. As configured, Wasmer provides no access to
the filesystem, the network, or system calls. Wasm’s memory model also restricts programs
from escaping Wasmer’s allocation, preventing a malicious application from corrupting the
memory of the Spark cluster.

2.2 Frontend

A simple frontend application was implemented using React. The user first selects a dataset
from a list of uploaded files. Next, they select the columns from the dataset on which their
UDF should operate. Then, they implement their function in C using an embedded code
editor. Lastly, they specify the Spark return type of their function, whether the function is
a Map function or a Filter function, and click ”Execute Function” to submit the request to
the server.

2

2.3 Backend

2.3.1 Web Server

The frontend is served by a Flask web server. It serves requests from the frontend, includ-
ing listing the available datasets, getting the schema of a dataset, executing a UDF, and
retrieving the results. When the user clicks ”Execute Function,” an ExecutionRequest is
created.

interface IExecutionRequest {

program: string; // text of c program

data: string; // name of input file

operation: "MAP" | "FILTER";

function_name: string;

input_column_names: string[];

output_column_name?: string;

output_column_type?: "INTEGER" | "FLOAT" | "BOOLEAN" | "STRING";

}

The program is written to disk on the server, and then compiled to a Wasm module using
Emscripten. Then, the Spark Runner program is executed.

2.3.2 Spark Runner

The Spark runner is implemented in Java and is responsible for setting up a Spark ses-
sion, loading the Wasm module, and running the Wasm module as a UDF. For this initial
implementation, a local Spark session was used, but the initialization logic could easily be
modified to connect to a Kubernetes cluster or other Spark environment.

Once the Spark session is initialized, the Wasmer JNI is used to load the freshly compiled
Wasm module, creating an object of type org.wasmer.Instance. This instance must then be
passed to the Spark executor to be used in a UDF. Unfortunately, a Wasmer Instance is not
serializable, so it cannot be passed directly to Spark.

One option is to use Wasmer’s serialization feature, which serializes the module to a
byte[], which can be passed around by Spark. However, this byte array must be re-
instantiated within the UDF, meaning that a new org.wasmer.Instance is created for each
row. This worked with small datasets but quickly caused out-of-memory exceptions when
used with larger datasets.

Module module = new Module(Files.readAllBytes("module.wasm"));

byte[] wasmBytes = module.serialize();

Instance instance = Module.deserialize(wasmBytes).instantiate();

3

An alternative approach is to create a wrapper class that holds the org.wasmer.Instance
as a static member. With this solution, the instance must be created once per JVM (once
per cluster node) instead of once per row, a significant improvement.

public class InstanceWrapper {

private static Instance instance;

public static Instance get(){

return instance;

}

public static void set(Instance instance) {

InstanceWrapper.instance = instance;

}

}

Module module = new Module(Files.readAllBytes("module.wasm"));

InstanceWrapper.set(module.instantiate());

Next, the UserDefinedFunction is created, which makes a call to the Wasmer Instance.

UserDefinedFunction myUdf = org.apache.spark.sql.functions.udf(

(a1) -> {

return InstanceWrapper

.get()

.exports

.getFunction(functionName)

.apply(a1)[0];

});

Last, the UDF is invoked on the Spark dataset, creating a new column when using a Map
function, or filtering the rows when using a Filter function.

dataset.select(

col("*"),

myUdf.apply(columns(inputColumnNames)).as("RESULT"));

dataset

.select(col("*"))

.filter(myUdf.apply(columns(inputColumnNames)))

3 Results

The current implementation of this system works as described for any numeric Map or Filter
function. The compilation of the Wasm module and instantiation of the Wasmer runtime
do not add significant overhead to the processing of the Spark job. However, using a Wasm
UDF did introduce a significant increase in processing time when compared to a native

4

implementation of the same operation. On a 1 million row dataset, the Wasm UDF took
2.5 times longer to execute, and on a 10 million row dataset, the Wasm UDF took 7 times
longer. These experiments were run with Spark in local mode on a 24-core machine with
96GB of RAM.

4 Conclusion

This project has successfully demonstrated that it is feasible to use a Wasm runtime to
safely execute untrusted code as a Spark User-defined function. While the calls to Wasmer
do introduce significant overhead, this increase in execution time may be acceptable if it
enables operations that would be otherwise impossible using native Spark, or if the increased
execution time is outweighed by the significantly decreased initialization time. For ad-hoc
analytics workflows, a decreased initialization time may be preferred as it allows users to
more quickly compute their first results.

5 Future Work

This implementation does not handle strings or more complex data types. Support for strings
could be added by calling the Wasm module’s malloc function and copying a string from
Java memory to Wasm memory.

This implementation has not been tested on a multi-node Spark cluster. Further experi-
mentation should be done on a more realistic Spark cluster, and some modifications to the
initialization code will be necessary to properly load the Wasmer Instance object.

5

	Introduction
	Design
	WebAssembly
	Frontend
	Backend
	Web Server
	Spark Runner

	Results
	Conclusion
	Future Work

