

I’m Jon 👋
@jonhoo on the internet;
formerly MIT, now Rust at AWS

Supply Chain Security
MIT 6.5660 — 2023

All the software you use matters.

Not just “is the code insecure”, but *could* it be insecure/manipulated.

Supply Chain Attacks are increasing

Sonatype 8th State of the Software Supply Chain (2022)
https://www.sonatype.com/state-of-the-software-supply-chain/

According to the EU, top threat in the next 7 years

European Union Agency for Cybersecurity (ENISA)
was European Network and Information Security Agency
https://www.enisa.europa.eu/publications/enisa-foresight-cybersecurity-threats-for-20
30

Stricter supply chain security rules in the EU

https://ec.europa.eu/commission/presscorner/detail/en/ip_22_5374

Stricter supply chain security rules in Japan

https://www.japantimes.co.jp/news/2022/05/11/business/japan-passes-economic-sec
urity-bill-protect-sensitive-technology/

Executive Order in the US

https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nat
ions-cybersecurity

New supply chain security guidance; no laws (yet)

https://www.nist.gov/news-events/news/2022/05/nist-updates-cybersecurity-guidance-
supply-chain-risk-management

New supply chain security guidance in the UK

https://www.ncsc.gov.uk/blog-post/new-supply-chain-mapping-guidance

https://www.sonatype.com/resources/vulnerability-timeline

When you have a moment:

https://www.sonatype.com/resources/vulnerability-timeline

The scariest part: many aren’t even aware

(from Sonatype)

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

Questions you should be able to answer:
- What software is currently at each host?

- What software was on host H at time T?

- Why did a deploy happen to host H at time T?

- Where are artifacts of software version V deployed?

- When were artifacts of software version V no longer in use anywhere?

- What configuration did V have on host H at time T?

Some of these are for “where are known risks present”
Some are for “where and when were we vulnerable”
Some are for proactive analytics (e.g., “how many different versions are we using at
once”)
Note: “artifacts of software version V”, not “software version V”. We’ll get back to that
one.

Every deployment should be logged
- How was the deployment initiated?

- When did the deployment happen?

- What went into the deployment?

- What was deployed to?

This information must be append-only, durable, and kept long term.

The first one is important for cases like CI/CD credentials being leaked (Travis CI,
GitHub Actions, etc.)
Append-only because even rollbacks are important. Don’t let attackers hide their
tracks.
Securing the deployment logging system is itself tricky!

Every host matters
Production hosts

Developer environments

Beta environments

Embedded devices

Customer devices

Other environments (e.g., Lambda, CloudFlare Workers)

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

Can you trace every artifact back
to sources you trust?

Not quite a “turtles all the way down” problem, but close.

Verified path from only trust anchors
If you downloaded it:

- Do you trust the entity that built it?
- How do you know that entity actually built it?
- Did that entity verify ↓↓↓ (and how do you know?)

If you built it yourself:

- How did you get the source?
- Is that source what the author intended to publish?
- Do you trust the tools you downloaded the source with?
- Do you trust the tools you verified the source with?
- Do you trust the tools you built the artifact with?
- Do you trust the host you’re building the source on?

Trust anchor: a source you assume, rather than derive, is trustworthy
As an example, Maven Central serves binary JARs, and allows publishing source, but
no requirement the two match up.
Note: you can sever this search at many different points. May trust “Microsoft”, and
that eliminates chunks of the graph.
Will need to choose authors you trust, mark particular source instances as trusted, or
trust tools you run over the source they provide you.

Tained sources are real.

Not quite a “turtles all the way down” problem, but close.

Dependency Confusion (2021)

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firm
s-in-novel-supply-chain-attack/

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Dependency Confusion (2021)

SolarWinds (2020)

It’s hard to get this right! Very briefly: widely used tool for IT monitoring (oh the irony)
with auto-updates. A (signed) update from SolarWinds included a backdoored DLL.
Attackers either access build hosts or got access to signing creds (updates lived on
FTP server with bad pw (“solarwinds123”)). How would you detect this?

https://www.politico.eu/article/solarwinds-largest-cyberattack-ever-microsoft-president
-brad-smith/
https://www.nytimes.com/2020/12/14/us/politics/russia-hack-nsa-homeland-security-p
entagon.html

https://www.politico.eu/article/solarwinds-largest-cyberattack-ever-microsoft-president-brad-smith/
https://www.politico.eu/article/solarwinds-largest-cyberattack-ever-microsoft-president-brad-smith/

University of Minnesota & Linux (2021)

The commits did not ultimately land, but the attack vector is real (and scary).

https://raw.githubusercontent.com/QiushiWu/qiushiwu.github.io/main/papers/OpenSo
urceInsecurity.pdf
https://www.phoronix.com/news/University-Ban-From-Linux-Dev

https://raw.githubusercontent.com/QiushiWu/qiushiwu.github.io/main/papers/OpenSourceInsecurity.pdf
https://raw.githubusercontent.com/QiushiWu/qiushiwu.github.io/main/papers/OpenSourceInsecurity.pdf
https://www.phoronix.com/news/University-Ban-From-Linux-Dev

Credential Leaks (constantly)

Makes it hard to trust that third-party artifacts (or code!) you download is actually from
the author.
“But Jon, just sign it” — many repositories don’t even support signing!
Also watch out for outright compromised registries.

https://www.bleepingcomputer.com/news/security/github-attackers-stole-login-details-
of-100k-npm-user-accounts/
https://blog.gitguardian.com/the-state-of-secrets-sprawl-2023/

https://www.bleepingcomputer.com/news/security/github-attackers-stole-login-details-of-100k-npm-user-accounts/
https://www.bleepingcomputer.com/news/security/github-attackers-stole-login-details-of-100k-npm-user-accounts/
https://blog.gitguardian.com/the-state-of-secrets-sprawl-2023/

PHP git repository compromise (2021)

What did they do? Inject an RCE backdoor into PHP itself. Found a few hours later.

https://www.bleepingcomputer.com/news/security/phps-git-server-hacked-to-add-back
doors-to-php-source-code/

Rogue maintainers (2022)

https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-librari
es-projects-affected —colors.js (23M/wk), faker.js — infinite loop weird characters
https://jfrog.com/blog/malware-civil-war-malicious-npm-packages-targeting-malware-a
uthors/ — many masquerading as colors.js! some are _for_ writing malware, but are
_also_malicious
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/ —
overwrite all files with ♥ if origin is Russia or Belarus

https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://jfrog.com/blog/malware-civil-war-malicious-npm-packages-targeting-malware-authors/
https://jfrog.com/blog/malware-civil-war-malicious-npm-packages-targeting-malware-authors/
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/

Linux Mint ISO hack (2016)

https://www.trendmicro.com/vinfo/fr/security/news/cybercrime-and-digital-threats/linux
-mint-website-hacked-iso-downloads-replaced-with-a-backdoor

https://www.trendmicro.com/vinfo/fr/security/news/cybercrime-and-digital-threats/linux-mint-website-hacked-iso-downloads-replaced-with-a-backdoor
https://www.trendmicro.com/vinfo/fr/security/news/cybercrime-and-digital-threats/linux-mint-website-hacked-iso-downloads-replaced-with-a-backdoor

Fighting tainted sources is difficult
SigStore to have authors sign what they publish.

The Update Framework (TUF) to check that registries behave.

Mandate 2FA for publishing to mitigate leaked credentials.

Automated continuous monitoring of known risks (like CVEs).

Ultimately, you’re at the mercy of authors…

 …so choose the authors you’ll depend on wisely.

There’s more, such as if the author’s publish box is compromised!
Automated code scanning may help, if you have the source…

Carl Sagan

If you wish to make an apple
pie from scratch, you must first
invent the universe.

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

Whether you download or run `make` yourself, how do you know all the things that
ended up in the artifact?
Need to know that list so that we know what we’ve deployed!

One artifact, many inputs
Regular dependencies.

Dependencies from the build host.

Downloads during the build.

Vendored or inlined sources.

Bundled binary artifacts.

Any of the above transitively…

Finding all of these is tricky even if you have the source.
If you don’t doubly so.
Software that tries to do this does exist, although it’s best-effort.

Heuristics will only get you so far.

Software
Bill of Materials

This is a trust exercise too — do you trust that authors included everything?
But it’s better than only relying on heuristics/detection.

BoMs have existed elsewhere for ages
- Started in car manufacturing, since everywhere.
- Helps for:

- Design: which part should go there?
- Sales: what parts do I order?
- Manufacturing: which part goes here?
- Repair: which part broke?
- Recall: is the affected part present?

- Similar benefits for software.

Provenance (origin info) is useful
- Security breadcrumbs

- Tells you if something is at-risk (e.g., via CVE + NVD)
- May tell you how it is at-risk
- Can also tell you if it is not!

- License and compliance information
- Supply chain funding (in theory)
- Waste identification
- Quality assessment (e.g., maintenance status/EoL)

Less important to an attacker
A list of potential weak-points, true.

But in practice, attackers:

- already have decent heuristics and other incomplete channels;
- can probe for weaknesses directly;

The SBOM is more incrementally-useful to defenders.

SBOMs are hierarchical lists of contents
I produce one for my software.

It includes a list of records, each one holding:

Multiple data formats exist. Two common ones are:

- Software Package Data Exchange (SPDX)
- Software Identification Tagging (SWID)

Component name Version string Hash UID

Supplier name Author Relationship Relationship assertion

Why is author and supplier different? Quoth spec: “Until this state of transcendent
SBOM utopia is achieved, SBOM authors may want to make non-authoritative claims
or assertions about SBOMs for which the authors are not the suppliers.”
Relationship is usually “included in”. Can be “self”.

Assertion is “what do I know of these relationships?”, such as: “unknown”, “partial” (I
know there at at least these, but there may be more), “known” (I know there are only
these), and “root” (I know there are none).
https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf
Multiple formats exist; SPDX and SWID are two common ones. SPDX = Software
Package Data Exchange; SWID = Software Identification (tagging)

https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf

SBOMs can be combined
If you use my software, you can concatenate my SBOM.

Incomplete SBOMs are okay — there’s incremental benefit!

Don’t even need to publish your SBOMs!

SBOMs are not required to be signed, but it’s vital if you want the trust anchor,
especially around author == supplier.

Imagine here for example that this was concatenated with an SBOM signed by Carol
that asserts Supplier = Author = Carol for Compression Engine with a _different_ hash
for same version.

https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf

SBOMs also combine horizontally
Doesn’t have to be “included in”:

- “was built by”
- “was present when built”
- “generated by”
- “patched with”
- “read data from”
- etc.

You can keep adding info and improving analysis independently.

Also “runtime/test” dependencies

Do you know:
(the answer better be yes)

What you are deploying where?

Where it came from?

What’s in it?

