

Hardware Security
With an Emphasis on

Supply Chain Attacks & Verifiability

bunnie (@bunniestudios / twitter)
MIT 6.858 May 2022

Topics

● Breaking Hardware Security
● Direct physical tampering
● Indirect supply chain tampering

● Mitigations
● vs. supply chain attacks: User-verifiable hardware
● vs. direct attacks: plausible deniability
● vs. direct attacks: (Not in covered, mentioned for completeness)

tamper-evident / tamper-resistant and anti-cloning techniques

Protecting Secrets within a "Vault":
Hardware Security Modules (HSMs)

V
ia

 le
dg

er
w

al
le

t.
co

m

Q
u

rr
en

 –
 C

C
 B

Y
-S

A
 3

.0

Q
u

a
lc

om
m

 G
ob

i M
D

M
9

23
5

M
od

em
 2

0
 n

m
 H

K
M

G

L
og

ic
 D

e
ta

ile
d

 S
tr

u
ct

ur
al

 A
n

al
ys

is
, T

e
ch

In
si

g
ht

s

Direct Attacks on Hardware: Overview
● Passive – little to no modification of target system

● Direct observation
– Optical
– SEM

● Side-channel (emissions)
– Power
– RF
– Optical

● Active – no holds barred
● Fault induction

– Glitching (clock/VDD)
– Coupling (e.g. row hammer)
– Photonic

● FIB edit

Passive: Direct Observation

A
ca

g
as

ty
a

 –
 C

C
-B

Y
-S

A
 4

.0

Passive: Direct Measurement

Passive: Optical Emissions

Schlosser, A., Nedospasov, D., Kramer J., Orlic, S., Seifert, JP. “Simple Photonic Emission Analysis of AES”

Passive: Power Side-Channels

Moradi, A and Schneider, T. “Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series”

ChipWhisperer-Lite (CW1173)

Passive: RF Side-Channels

Moradi, A and Schneider, T. “Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series”

Active: FIB

From http://www.electronicdesign.com/eda/fib-circuit-edit-becomes-increasingly-valuable-advanced-node-design

Kr
ie

go
r2

7
–

Pu
bi

lc
 d

om
ai

n

Cm
 th

e
p,

 C
C-

BY
-S

A
3.

0

Active: Fault Injection (Glitching, Optical)

Also available in remote attacks: See https://plundervolt.com/doc/plundervolt.pdf

Fault Injection: The General Idea

Valid?

Compute
Credentials

Do Secure
Thing

Abort

Y

N

Glitching To Run an Alternate Code Base

Valid?

Compute
Credentials

Do Secure
Thing

Abort

Y

N

Something
Else

Glitching to Change a Branch

Valid?

Compute
Credentials

Do Secure
Thing

Abort

Y

N

Something
Else

Glitching To Cause Cipher Faults That Leak
Private Data

Valid?

Compute
Credentials

Do Secure
Thing

Abort

Y

N

Invalid Result
Leaks Secret

* Some ciphers (e.g. RSA)
leak secrets if the computation
is glitched

Fault Injection

● Can be surprisingly trivial to
execute ("twiizer" attack") ---->

Tw
iiz

er
 h

ac
k

vi
a

M
ar

ca
n.

st

Active: Coupling (e.g. Rowhammering)

Dsimic – CC-BY-SA 4.0

From
https://www.raith.com/products/chipscanner.html

Active: Microarchitectural Side Channels

● Leverage timing differences in
latency hiding features to leak
secrets

DOI:10.1109/ACCESS.2020.2988370

Can't Access the Hardware?

Attacks Prior to Installation:
Supply Chain Tampering

"State of the Practice" for Trusting Chips:
Reading the Label on the Box

Not Just Chips: Whole Assemblies Are Swapped
Without Detection

NSA: Implanting beacons in CISCO routers

https://arstechnica.com/tech-policy/2014/05/photos-of-an-
nsa-upgrade-factory-show-cisco-router-getting-implant/

NSA: Implanting beacons in CISCO routers

https://arstechnica.com/tech-policy/2014/05/photos-of-an-
nsa-upgrade-factory-show-cisco-router-getting-implant/

NSA: Implanting beacons in CISCO routers

https://arstechnica.com/tech-policy/2014/05/photos-of-an-
nsa-upgrade-factory-show-cisco-router-getting-implant/

JTAG implants Dell PowerEdge servers

Swapped
boards

Andy Müller-Maguhn – listening device in cryptophone

https://datareisen.de/2020/20201228-RC3-AMM-CIA-VS-WL.pdf

An Ontology of Supply Chain Attacks

Degrees of Detection Difficulty

Visual/
JTAG

X-Ray

SEM

Degrees of Execution Difficulty

<$1,
seconds

$10,
weeks

$1mm+,
months

If custom ICs
are involved

"Substitute Component"

● Relies on the fact that many components look alike

"Add A Component"

● Easily detectable -> higher awareness

"Add IC in Package"

● Hide an additional chip inside a package
● Multiple chips in package is a mature technology

Solution: X-Ray All the Things?

Obvious

Less
obvious

Problem #1

● Silicon (Z=14) is relatively
transparent to X-rays

● Copper traces, solder
tend to mask the
presence of silicon

● Mitigations
● CT (Computerized

Tomography) scanners
● X-ray diffraction,

spectroscopy

Problem #2: X-Rays Don't Trivially Detect
Multiple ICs

https://electroiq.com/chipworks_real_chips_blog/2010/09/13/samsungs-eight-stack-flash-shows-up-in-apples-iphone-4/

Top view: looks like straight
wires

Side view: visible, but
requires unobstructed line
of sight

IC Modifications

IC Fab: Attack Surfaces

● Netlist Tampering
● RTL = Verilog, VHDL, Python

● Hard IP Tampering
● Mask Tampering

“ASIC” flow

“COT” flow

Netlist Tampering: ASIC vs COT

● ASIC – “Application Specific
Integrated Circuit”

● Customer does RTL + floorplan
● Foundry does detail

place/route, IP integration,
pad ring

● Popular for e.g. cheap support
chips:

– Server BMC (Baseboard
Management Controller)

– Disk controllers
– Mid-to-low end I/O controllers

● COT – “Customer Owned
Tooling”

● Customer does full flow,
down to a nominal GDS-II
mask

● Several extra headcount +
$millions for back-end
tooling software

● Necessary for high-
performance / flagship
products (CPU/GPU/router)

ASIC Design Flow Example: SOCIONEXT

● One of many billion-dollar ASIC
companies you've never heard of

So I'm Safe with COT, Right?

COT Weaknesses: "Hard IP"

● COT designers still leave large
“holes” in the layout for hard
IP

● Foundry merges proprietary
blocks with agreed upon
connection points

https://cornell-ece5745.github.io/ece5745-tut8-sram/

COT Weaknesses: "Hard IP"

● COT designers still leave large
“holes” in the layout for hard
IP

● Foundry merges proprietary
blocks with agreed upon
connection points

https://cornell-ece5745.github.io/ece5745-tut8-sram/

“SRAM”

Hard IP: Who Cares?

● RF/analog
● PLL, ADC, DAC, bandgap

● RAM
● ROM
● eFuse
● Pad rings

● Basically, all the points you need to backdoor an IC

Mask Tampering: Post-Design Processing

● Sub-wavelength features requires substantial mask post-
processing

https://semiengineering.com/self-aligned-double-patterning-part-one/

Mask Editing

● All masks go through an editing ("checking") step

Proc. of SPIE Vol. 8322 83220C-1

What Can you Do with Mask Editing?

● Example: Dopant Tampering
● No morphological change
● Circuit-level behavioral

change
● Spare cell rewiring
● Signal bypass

http://people.umass.edu/gbecker/BeckerChes13.pdf

My Personal Fear: TSV + WLCSP Implants

With TSV
implant

Unmodified

Concept: WLCSP

● Sold as "almost naked
silicon"

● Direct chip-to-board
solderballs

● Sold as "Ready to Hack"
Wafer
Level
Chip
Scale
Package

Concept: Through-Silicon Via
"Mature" Tech (Used in HBM RAM)

https://www.youtube.com/watch?v=20t4FCH3K60

0.1-
0.2mm

WLCSP Cross Section

Cross
section

3D view

TSV + WLCSP = Nearly Undetectable Implant

With TSV
implant

Unmodified

Threat &
Mitigation

● Scalable
● Targets off-the-shelf chips
● No decap / debond

● Hard to detect
● Many WLCSP already have

a small seam
● No X-ray footprint

● Mitigation:
● TSV templates are

"expensive" ($100k's)
● But Pegasus is even more

expensive ($1mm+)...

Execution of Supply Chain Attacks:

The Attack Surface

We're Not Going to Talk about "Evil Maids"
(But They are Also Real)

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/

Everyday Hacks
for Everyday People Targets

● DIY supply chain attack:
● Buy item online
● Hack it
● Return it to warehouse
● ???
● Profit!

It's a Big Attack Surface

What Can We Do About It?

Can Open Source Save Us?

Problem: Place of Check Too far from Place of Use

Open Factory Test (Trustable Factory)
Is Only a Marginal Improvement

What, Then Is the Role of Open Source in
Trustable Hardware?

● Design Correctness
● Peer review can find bugs
● SPECTRE hardening

– Microarchitectural state modeling in
compilers

– Potential for provably correct
compiler mitigations

The Big Problem: You Can't "Hash" Hardware

● There is no convenient, easy-
to-use method to confirm the
correctness of hardware
immediately before its use

● Hardware is one big "Time of
Check versus Time of Use"
(TOCTOU) problem!

But You Once Said:
"There's Always a Bigger Microscope..."

● "Ptychographic X-Ray
Imaging" to the rescue?

● Non-destructive
● 3D imaging of complex chips
● Great for reverse

engineering and design
verification

https://www.nature.com/articles/nature21698

Problem #1: A Building-Sized Microscope

https://www.psi.ch/en/sls/about-sls

Problem #2:
Verifying One Chip Verifies Only One Chip

● Just because 99.9% of your
hardware is OK...

● Doesn't mean you are safe
● One compromised server out

of thousands is all it takes
● Random sampling is not

effective
● Would you "random sample"

signature checks on
downloaded software?

Can We Build an Evidence-Based Case
To Trust Our Computers?

Three Principles For Evidence-Based Trust in
Hardware

1) Complexity is the enemy of verification

2) Verify entire systems, not just components

3) Empower end-users to verify and seal their hardware

Problem: Complexity is Complicated

● Absent a robust "hashing"
function, verification falls back
to bit-by-bit...or "atom-by-
atom"

● More complexity ->
● More difficult to verify
● More places to hide things
● Verification might be

destructive

via iFixit

Point of Use Verification Tradeoff:
Ease of Verification vs. Features & Usability

Features &
Usability

Ease of
verification

Petey21 -CC0Maurizio Pesce CC BY 2.0

>107 transistors 1 transistor

Three Principles For Evidence-Based Trust in
Hardware

1) Complexity is the enemy of verification

2) Verify entire systems, not just components

3) Empower end-users to verify and seal their hardware

Why a Device, and Not a Chip?
Your
Phone ● Private keys are not your

private matters
● Screens can be scraped,

keyboards can be logged

The "IME Problem"

Your
Phone

The "IME Problem"

Your
Phone

Three Principles For Evidence-Based Trust in
Hardware

1) Complexity is the enemy of verification

2) Verify entire systems, not just components

3) Empower end-users to verify and seal their hardware

Empower Verification At Multiple Levels

Precursor: A Case Study in Verifiable Hardware

● Designed to facilitate
evidence-based trust

● Simple in construction
● Open in design
● Sufficient in function

Getting HCI Right is A Major Issue in Security

● HCI = Human Computer Interface
● Humans are increasingly the "weakest leak"

Token photo
courtesy D4m1en
BY-SA 3.0

● Simple, inflexible
interface
● Minimal attack surface

● Featureful, flexible
interface
● Intractable attack surface

● “Just enough and no
more”
● Securable attack surface

Precursor: What Functions?
● Designed for mostly single-app deployments of:

– Secure text messaging
– Voice chat
– Multi-lingual capability
– Password management
– Crypto wallet

● Not designed for
– Web browsing
– Games
– Photos and videos

● Specs:
– 100MHz RV32IMAC + MMU + AES extensions
– Curve25519 + SHA2 accel
– 16MiB RAM
– 536x336 "memory" LCD
– USB + Wifi connectivity
– Audio only via jack
– Full-custom OS "Xous"

● QNX-like microkernel, written in Rust

Precursor: Simple in Construction

Simple to Inspect

Physical Keyboard

● Wires visually inspectable
● 2-layer daughtercard:

● Bright light may be
employed to rule out buried
traces

● No silicon chips
● User replaceable keyboard

overlay for multi-lingual
support

Verification Difficulty: Trivial

Touch Keyboard Verification: Very Hard

● Captouch screens require the
use of a proprietary
microcontroller with a
firmware blob

Verifiable LCD

● High-DPI black and white
screen

● 200 dpi
● 336x536 pixels

Verifiable Screen

● All drive electronics on-glass
● Inspectable with a cheap

optical microscope (50x
zoom shown)

● All circuits verifiable through
non-destructive inspection

● No chips to verify
– Less places to hide things ->

less need to check things

Why Not a Color LCD?
● Virtually all LCDs incorporate a

driver IC
● Contains a framebuffer and

a command interface

The PCB:
Designed Along Attack Surfaces

T-Domain Attack Surfaces Illustrated

The Hardest Problem:
Evidence-Based Trust and the CPU (or SoC)

● Silicon inspection is typically
destructive and hard

● Difficult to check and use a
specific chip

https://www-03.ibm.com/press/us/en/photo/19014.wss

Non-Destructive Silicon Verification???
● Proposal: use optical fault induction

● Pros:
– Non-destructive
– Optical methods are relatively cheap

● Cons:
– Lower bound on trojan circuit complexity

● RTL-level design methods can make
small trojans difficult

– Probably requires chip thinning for
effective back-side illumination

● Top metal scatters light too much
● Years to develop

Laser

Chip

Laser spot size >> single transistor
Use sub- scan overlap + BIST syndrome readout
to correlate with expected silicon pattern

A Solution: The FPGA
● FPGAs are "Field Programmable Gate

Arrays"
● Consist of large arrays of logic + wires

that are user-configured to
implement hardware designs

FPGA: Narrowing the TOCTOU Gap
by Compiling Your Own SoC

● Anyone can compile their
design from source

● Enables trust transfer via
signatures "like software"!

● Subtlety: toolchain openness
● Symbiflow is the F/OSS flow

– Lattice ICE40 and ECP5 is
100% open flow

– 7-Series FPGA is "coming
soon" but currently requires
closed vendor tools

FPGA Features "ASLR for Hardware":
Pseudo-Random Mapping of Design to Device

ASLR = Address Space Layout Randomization

A Look Inside the SoC

FPGA's Biggest Potential Advantage:
Moves Point-of-Check Towards the End User

● One can imagine a bitstream
checker

● Correlate design-to-
bitstream

● Vision: a "one-click" tool to
verify the FPGA bitstream!

● Point of check = Point of use

Users
“From Boot to Root in One Hour”

https://www.bunniestudios.com/blog/?p=6336

What About Direct Attacks Against Users?

● Strong security makes humans
the weakest link

● Lawful (and unlawful)
coercion of secrets through
search, seizure, subpoena

● Philosophical debate:
● Should security prioritize the

user's safety, or the secret's
safety?

In Practice,
Security Is a Function of Social Context

● Doors remain locked not because locks are effective, but because
of social context

● Alternatively: police rarely have to pick locks

<<

Lesson Learned Since 2016: Under Investigation?
Plausible Deniability is Powerful!

Effective Plausible Deniablity

● Requirement: An omniscient adversary cannot prove or disprove that
a secret exists

● With a full forensic image of a device:
– Encrypted data is indifferentiable from empty space (free space wipe)
– No metadata leakage (veracrypt, truecrypt in certain modes)

● No mysterious partitions
● No "missing" free space on device

– No application leaks of pointers to encrypted data (PDDB, [1])
● No password-specific salts, usernames
● No dangling file references
● No record in browser history, application history

[1] https://www.schneier.com/wp-content/uploads/2016/02/paper-truecrypt-dfs.pdf

The Plausibly Deniable DataBase (PDDB)
● A (key, value) store
● (k,v) pairs stored in a Dictionary
● Dictionaries stored in a Basis
● User View of the database is the union of one or more Bases

Mitigating API Deniability Leakage
● Locked (unmounted) Bases are automatically hidden in the User

View
● Minimal application guidelines for successful plausible deniability

● Basically: don't cache state

Mitigating Forensic Disclosure

Both Basis A and Basis B Unlocked Only Basis A Unlocked

Cipher Requirement: IND$-CPA [1]
("indistinguishable from uniform
randomness by a chosen-plaintext attacker")

[1] https://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf

Details: Making It Run Fast

randomized
permutation

map
linear map

structured
map

Details: Free Space

● Locked Bases Are Indistinguishable from
Free Space

● Problem:
– How to allocate a block without erasing locked data?

● Solution:
– Map all known Bases
– Select a random subset of freespace equal to ~10%

of disk -> cache it as "definitely free space"
– Re-lock secret Bases
– Allocate from "definitely free space" until exhausted
– OOM -> go back to first step

PDDB General Properties

● Erasing a Basis is equivalent to forgetting the key
● "I do not recall" === "The data never existed (or is erased)"

● Strong deniability versus a single forensic imaging event
● Pros: Attacker cannot prove or deny that all Basis passwords have

been disclosed
● Cons: Attacker can force the deletion of undisclosed secret Bases

by filling a known Basis with junk data
– In some cases this is a desirable outcome

● Diminishing deniability versus repeated forensic imaging events
● Small secret datasets are easier to deny
● Disk can be re-encrypted/shuffled to restore deniability

PDDB Is Not a Panacea

● Deniability is fundamentally a social tool
● Not all people can execute deniability to the same proficiency
● Deniability is optional; it is not appropriate for all situations
● However, no users can successfully deny anything without the

option of strong plausible deniability
● PDDB is just one tool of many that are needed to help navigate

upcoming legal challenges to privacy and security

Q&A
@bunniestudios

Presentation CC-BY-SA 3.0

Some icons CC-BY 3.0 via
flaticon.com:

smashicons, Appzgear,
Gregor Cresnar, Freepik,

Good Ware, Mavadee,
Smallikeart, Rami McMin,

photo3idea_studio

https://precursor.dev
#betrusted:matrix.org

With thanks to:

“From Boot to Root in One Hour”
https://www.bunniestudios.com/blog/?p=6336

