
Galen Hunt

Distinguished Engineer

Microsoft Azure Sphere

IoT Security in Best Practice:
Azure Sphere “Gen 1” on
the MediaTek MT3620

@galen_hunt

/in/galenh

https://aka.ms/19bestpractices

https://aka.ms/19bestpractices

Outline

Part I. The Problem

Part II. The Product

Part III. The Practices

Part IV. The Proof

Part I. The Problem

9 BILLION new MCU devices

built and deployed every year

Microcontrollers (MCUs)

low-cost, single chip computers

The “Embedded” World.

1. Customer experience:
Deliver consistent quality,
“the perfect pour every time”.

2. Operational efficiency:
Download recipes
directly to machines

3. Cost savings:
Reduce unnecessary
maintenance truck rolls

© Microsoft Corporation Azure

Connecting Devices into an IoT Estate

Part II. The Product

Azure Sphere Certified Chips
defense-in-depth chips with built-in

Microsoft Pluton hardware root of trust

Azure Sphere OS
multi-layer, defense-in-depth operating

system with robust application isolation

Azure Sphere Security Service
cloud service guarding every Azure Sphere device;

brokers trust, detects emerging threats, and

renews device security

The Azure Sphere mission is to
provide an end-to-end security platform for embedded devices.

Azure Sphere Servicing
ongoing security improvements from Microsoft protect against a

continuously evolving threat environment

MT3620 Azure Sphere Chip Architecture

CPUs
ARM Cortex A7 (500MHz) +

2 x Cortex M4 (200MHz)

RAM 4MB

Flash 16MB (8MB Runtime Firmware + 8MB Backup Firmware)

Connectivity WiFi 802.11 b/g/n, dual band: 2.4GHz, 5GHz

Microsoft Security
Pluton Security Subsystem, Firewalls, AES-256, SHA-2,

ECC, RSA2K, e-Fused private and public keys, attestation, …

I/O

GPIO 24, 4 configurable as PWM

SPI

6 configurableI2C

UART

ADC
8 Channels, 12bit SAR, 2M

sample/sec

I2S/TDM
I2S (2 interfaces) or TDM (4

channels)

Package DR-QFN 164

Microsoft

Pluton
Security

Subsystem

Wi-Fi
802.11

Microsoft Firewall

16MB

FLASH

4MB

SRAM

ARM Cortex-A7
64KB I / 32KB D L1

128KB L2
FPU, NEON (SIMD)

ARM Cortex-M4
256KB SRAM TCM

DMA, I/O

Multiplexed MCU I/O

Microsoft Firewall

ARM Cortex-M4
256KB SRAM TCM

DMA, I/O

SPII2CUARTI2STDMPWMGPIO ADC

M
icro

so
ft Firew

all

Azure Sphere OS Architecture

Executive Containers Real-Time Containers

On-chip Cloud Services

Custom Linux Kernel

Security Monitor

Pluton Core

Pluton Runtime

Cortex-A7 Cortex-M3s

Secure World Normal World

OS Layer 2

OS Layer 0

Hardware

OS Layer 4

OS Layer 3

OS Layer 1

Pluton Fabric

Pluton Architecture

Pluton
Security
Subsystem

Public Key Engine

Sparse Interconnect

AES
Engine

SHA
Engine

Random Number
Generator

Entropy
Source

Security Processor
CPU

Memory Interface Environmental
Sensors

Public Key RAM

Fuse
Controller Cryptographic

Operation Engine

Secure Fuse Array

Control Registers

MPU

Secure ROMSecure RAM

Key Store

Other cloud or

on-prem

infrastructure

Azure Sphere

Security Service

Azure

App and

OS updates

OS updates

from Microsoft

App updates

from OEM

App data and telemetry

Remote attestation &

cert based authentication

Online app and

OS failure reports

Azure Sphere Security Service Architecture

P R OT E C T S your devices and your

customers with certificate-based

authentication of all communication

D E T E C T S emerging security threats

through automated processing of on-

device failures

R E S P O N D S to threats with fully

automated on-device OS updates

A L L O W S for easy deployment of

software app updates to Azure Sphere

powered devices

Azure Sphere Protocols

Technology Purpose Protocol Notes

Server
authentication

Verify remote server identity. TLS Verifies Microsoft’s identity.
Certificate chain is put on chips during
manufacturing.

Secure Boot Verify software executed is
genuine.

ECDSA using ECC
public keys on
device

Uses chain of trust.
First public key burned into fuses on
device.

Measured Boot/
Remote Attestation

Proves to the Azure Sphere
Security Service that the chip is
genuine and running trusted
software.

Custom remote
attestation
protocol

Depends on ECC public/private key pair
generated within Pluton and burned into
fuses. Only private key on-device used by
Azure Sphere.

Device
authentication

Proves to any service on the
internet that the Azure Sphere
device completed attestation
successfully.

TLS Generates a special, short-lived device
certificate, via remote attestation, which
is used for TLS device authentication

Part III. The Practices

Treat ROM as non-

updatable software

and minimize its size.

Never expose

private device

keys to software.

In IoT, choose ECC,

not RSA, for device-

specific keys.

Use Secure Boot

everywhere and

always.

Use silicon-based

Measured Boot to

attest remotely that

Secure Boot

completed

successfully.

Do not use (or

parse) certificates in

the Trusted

Computing Base

(TCB).

+
Azure Sphere minimizes

the amount of ROM code

and includes

countermeasures that

make it more difficult to

skip critical code paths.

+
Azure Sphere chips

embed keys in silicon and

use elliptic-curve

cryptography (ECC)

public/private key pairs to

implement Measured

Boot and Secure Boot.

+
Azure Sphere uses ECC

keys. They are more cost-

effective for greater

security.

+
Azure Sphere helps

protect the boot process

by using ECC to power

Secure Boot on every

piece of software that

runs on the device.

+
Azure Sphere chips with

silicon-based Measured

Boot ensure only three

possible outcomes: a

successful attestation, an

attestation that requires a

software update, and a

failed attestation attempt.

+
There’s no need for

additional KPI to prove

certificates if you

generate keys on the

device and collect those

keys during the chip

manufacturing process.

That’s what Azure

Sphere does.

Use silicon-based Measured Boot to

attest remotely that Secure Boot

completed successfully.

Azure Sphere chips perform silicon-based
Measured Boot on start-up.

This ensures only three possible outcomes when
authenticating to the cloud: a successful
attestation, an attestation that requires a software
update, or a failed attestation attempt.

Handle server

certificate expiration

gracefully.

Connectivity is

optional.

Make it harder to

build botnets out of

zero-day

vulnerabilities.

Use a policy of “deny

by default” and

enforce it in silicon.

Eliminate the concept

of users on IoT

devices.

Physically separate

real-time execution

from internet

communication.

+
With Azure Sphere,

devices manage server

certificates before they

connect for attestation—

no matter how long

they’ve been offline.

+
With Azure Sphere,

devices continue to

operate even when

they’re not connected.

Secure Boot does not use

certificates, so you don’t

need to keep them

connected just to keep

them running.

+
Azure Sphere addresses

network firewall

permissions during

application

development—so

applications won’t modify

firewalls at runtime.

+
Azure Sphere chips

ground resource access

control mechanisms in

silicon. Every resource

that is accessible from

software is capable of

silicon-based lockdown.

+
User accounts on devices

introduce new attack

surfaces. The Azure Sphere

operating system does not

have user accounts, logins,

or their associated

passwords.

+
Azure Sphere chips

contain two different

cores. Separating

execution domains into

different physical cores

is the best way to

guarantee that one core

cannot interfere with

another.

Make it harder to build botnets out of

zero-day vulnerabilities.

Network firewalls, which name valid cloud

targets, are programmed by application

manifests.

The manifests are created during application

development—so applications can’t modify

firewalls at runtime.

Divide code into

user-mode and

kernel-mode code.

Ensure all software is

updatable.

Make software

update-fault tolerant.

Isolate applications

to make update

easier.

Do not allow the

system to dynamically

change code

execution.

Defend against

downgrade attacks.

+
Because Azure Sphere

uses a Cortex-A for its

Linux-kernel-based

operating system, it

supports virtualized

address spaces, an

isolated kernel, and

hardware-isolated

applications.

+
With Azure Sphere, every

piece of software,

including the bootloader,

can be updated remotely.

+
Azure Sphere uses several

techniques to ensure that

software updates succeed

and are fault-tolerant.

+
Azure Sphere helps

reconcile dependencies

between OS and

applications—so it’s

easier to update

applications more

frequently.

+
Dynamic code execution at

runtime introduces attack

surfaces that are difficult

to secure. Azure Sphere

disables these attack

surfaces, so that attackers

cannot exploit them.

+
Azure Sphere is built so

that it can stop

trusting—and running—

all previous versions of

the operating system.

Make software update-fault tolerant.

Azure Sphere keeps Last Known Good images

for failback, uses a separate TCB for update

and recovery code, and uses on-device

erasure coding to correct local storage

corruption.

19. Use tools and

processes to

make software

more secure.

Example techniques we use to make
software development more secure

Use tools and processes

to make software more secure

+
Writing software is difficult. It will always

have unknown bugs.

Our goal with Azure Sphere is that

customers do not need to reinvent security

features for their own IoT products.

Automated common
vulnerabilities and exposures
(CVE) checks

Azure Sphere’s build system checks for
CVEs in the operating system build
process, so you don’t need to manually
check whether a CVE is filed.

Software fuzz testing

Azure Sphere integrates several different
fuzz testing tools into its software
development processes to look for and
find bugs in data processing and parsing
before the software ships to customers.

Static analysis

Azure Sphere runs several types of
static analysis tools, so you can more
easily see code patterns that may
indicate vulnerabilities.

Red team exercises

Azure Sphere regularly hosts red team
exercises against both the operating
system and the Azure Sphere Security
Service.

Part IV. The Proof

What does one of our

red team exercises

look like?

2020 Azure Sphere Security Research Challenge

Enable researchers to find high

impact security vulnerabilities

70 of the most talented individual

researchers & security vendors

from over 21 countries

Three-month security challenge with the world’s best researchers and red teams

Validate our security promise

with the best in their field

McAfee, Cisco Talos, FireEye, Avira,

ESET, F-Secure, Zscaler, etc.

Bounties of up to $100k for

ability to execute code on Secure

World & Pluton

June 1 to August 31, 2020

Dev kits, kernel source code, direct line

to OS Security Team, weekly office

hours, email support

Learnings from the challenge and 70 hackers

How we mitigated:

What it takes to defend against the best

• McAfee ATR put together attack chain with half a dozen

vulnerabilities (source)

• 0-day in Linux Kernel found by McAfee ATR & Cisco Talos

• Even after getting kernel root access, hackers were still

unable to compromise Secure World and Pluton

Submission breakdown:

Total submissions:

Led to improvements:

Non-issues:

40

30

10

Total bounty awards:

Largest: $48,000

Smallest: $3,300

$374,300 Fixed in less than a week:

Pivot point was in cloud infrastructure. One fix in our

cloud, rendered full attack chain unable to execute

Fixed remaining issues in less than 30 days:

• Potential vulnerabilities each fixed with next

Azure Sphere OS release after disclosure

• Linux Kernel updated publicly

https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-prisoner-of-azure-kaban.pdf

Became expert in product

Analyzed all publicly available

documentation

Leveraged two-year old YouTube

talk from team member

Used tools such as IDA Pro and

DNSpy to understand system

Code reversing (C/C++), reading

ARM assembly, decompiler output

Divide and conquer: Split into two

teams to pursue different paths

Attacked every possible surface

Network stack

Rogue application for sandbox escape

Weaknesses in signature verification

Target communication between

development board and host-pc

Drivers handling GPIO, SPI, I2C, etc.

Communication between cores

WiFi core/module

What persistent hacking really looks like (source)

The attacker’s approach:

Went as deep as possible

Used recovery mechanism to look

at recovery file

Analyzed .bin files and image

manifest

Imported raw blobs (security

monitor, Pluton, etc.) into IDA Pro

Built rogue applications

Packaged a custom application

with Unbridled Libc

Got familiar with Userland

Looked at the ASXIPFS code

Patched ASXIPFS archive to add a

Symlink

https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-prisoner-of-azure-kaban.pdf

https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-prisoner-of-azure-kaban.pdf
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-prisoner-of-azure-kaban.pdf

Let’s secure the future.

@galen_hunt

/in/galenh

