
Information Security IRL

MA XIMILIAN BURKHARDT / APRIL 2 2, 2019

IMPLEMENTING SECURITY AS AN ENGINEER IN 2019

UC Berkeley ➡ iSEC Partners (pentesting) ➡ Airbnb (defense)A Very Brief Intro

1. Why we need people like you!

2. What is security?

3. Making security happen

4. Places to go with your infosec career

Agenda

Source: https://resources.sei.cmu.edu/asset_files/WhitePaper/2000_019_001_496188.pdf

Some XSS History
19 YE ARS AG O

https://resources.sei.cmu.edu/asset_files/WhitePaper/2000_019_001_496188.pdf

Source: https://twitter.com/WHHackersBR/status/1118393568656334850 (not necessarily reputable)

Some XSS History
LAST WEEK

https://twitter.com/WHHackersBR/status/1118393568656334850

Source: https://security.googleblog.com/2016/09/reshaping-web-defenses-with-strict.html

•Google has one of the best security teams out there

•From 2015-2016 they paid out $1.2 million for XSS bugs via bug bounties

What’s the Deal?

https://security.googleblog.com/2016/09/reshaping-web-defenses-with-strict.html

Security isn’t scaling.
But everything else is.

The old guidance used to be: pentest everything, make sure skilled humans look at it
There aren’t enough skilled humans
How many of you have interviewed / interned at Equifax, Experian, or Transunion? And yet we trust these companies with all of our data

•Containerization / Kubernetes is bringing new problems (and opportunities)

•Blockchain?

•Some crazy dark magic too: Spectre, Meltdown, Rowhammer

It’s Not Just Old Problems
WE KEEP THING S INTERESTING

•There’s huge opportunities for changing how the industry does security

•We get to work at the bleeding edge

So Why Get Involved?
IT’ S NOT ALL FIRES

We just need innovators and fresh thinking
ML and security is one of the hotter topics right now
Anything is on the table if it can change the paradigm

•Different tech stacks

•Different threat models

•Different budgets

•Different company cultures

Security is Creative

One-size-fits-all doesn’t work
You can take security principles you learn here and end up implementing them in vastly different ways, depending on what your environment needs
Creativity is necessary both on the attacking side and the defending one. Usually, the most creative wins.

Today I’m going to talk about a creative approach to network security that I think has major promise for changing the game. But first, let’s try to lay
the groundwork of what we mean by “security.”

WHAT IS SECURITY?

Describes a really wide range of work and problems

“A system is secure if it behaves
precisely in the manner intended —

and does nothing more”
— Ivan Arce

… which is not very helpful.

•It’s a strategy to address risks to your system

•All about defining what the threats are and responding appropriately

What is Security?
AN ATTEMPT AT MORE USABLE DEFINITIONS

•Be threat-agnostic

- Build protection close to the assets

- Assume some defenses will fail

•Put in specific defenses against single points of failure

•Self-assess constantly

- Human review is still really useful!

- Bug bounties are great at this too

How to Mitigate Risk
IN THE BROADEST P OSSIBLE TERMS

You can go get a Ph.D in this, and we’re not going to spend a ton of time on risk models

threat-agnostic: you don’t know what’s coming at you

•What’s the hangup?

•“In theory, there’s no difference between theory and practice. In practice, there is.”

•Modern information systems are built on growth, and if security opposes growth, it won’t happen.

So How Is This So Difficult?
HONESTLY

This risk analysis methodology has been around for a long time. So why hasn’t it led to more effective security programs?

MAKING SECURITY HAPPEN

As complexity and size grows,
security tends to focus on the
most immediate threats:
external attackers.

Focus on the perimeter leads to
strong outward-facing
defenses, but defense-in-depth
suffers.

Natural Evolution of
a Network

HARD SHELL

S OFT CENTER

Segmentation remains a good idea
Lots of internal services demand complex connectivity

Case in Point: Target
OUR FAVORITE RETAIL BRE ACH

Source: https://www.zdnet.com/article/anatomy-of-the-target-data-breach-missed-opportunities-and-lessons-learned/

ATTACKER

REFRIGERATION

VEND OR

TARGET VEND OR

P ORTAL

TARGET INTERNAL

SERVERS

P OINT-OF-SALE

SYSTEMS

P
R

IV
IL

E
G

E
 L

E
V

E
L

S

https://www.zdnet.com/article/anatomy-of-the-target-data-breach-missed-opportunities-and-lessons-learned/

My Personal Favorite
AN UNNAMED SILICON VALLEY COMPANY

ATTACKER

CORP ORATE WIFI
LUNCH MENU

SERVER

SHARED VM

IMAGE STORE

D OMAIN

CONTROLLER

P
R

IV
IL

E
G

E
 L

E
V

E
L

S

Turns out it’s hard to add
segmentation.

Easy to preach, hard to do.

Software engineers don’t like configuring firewalls
Actually, most people don’t like configuring firewalls

•Earlier this year, Airbnb had:

- ~2500 services

- ~20000 network nodes

- ~1100 engineers

- Hundreds of deploys per day

•Developer productivity is a big concern

Change is hard

It’s difficult to change defensive architecture when you already have a network at scale!

How do you switch to a secure
internal network?

And not halt all development or start over?

Spot the ninja

People talk about being a security ninja, but the real trick is to apply that to defense and offense.

•Don’t build security around the development process; unify security development and software
development processes

•“Agile Security”, “DevSecOps”, “SecDevOps”

•Let’s integrate network security with software engineering!

Defensive Theory

This isn’t a new idea, but it’s most commonly applied to application-layer security projects
There’s a saying that goes around saying that it’s better for developers to be lazy. This is even more true for security engineers — you won’t out-
work the attackers, so you need something that scales.

•Solution needs to stay out of the way of engineers

•Security should be there by default, and it should be hard to have an insecure configuration

•Should be as agnostic as possible to how a network service is hosted or what protocols it uses

Requirements for Sneaky Network Security

Use mutual TLS in service discovery
for authentication & confidentiality

Discover access lists automatically
for zero-config security

TLS in Service Discovery Proxies
Implement TLS invisibly with
proxies deployed as part of your
service mesh

Identity Bound to Nodes
Create certs for nodes in the
network based on a strong
concept of identity

Generated Authorization Map
Automatically generate
authorization rules by analyzing
service dependencies

Pillars of the Approach

NODE 1

AUTHZ LO GIC

ID-NODE-1

NODE 2

AUTHZ LO GIC

ID-NODE-2
TLS

NODE 3

AUTHZ LO GIC

ID-NODE-2
TLS

PILLAR 1: TLS

NODE 1

AUTHZ LO GIC

ID-NODE-1

NODE 2

AUTHZ LO GIC

ID-NODE-2
TLS

NODE 3

AUTHZ LO GIC

ID-NODE-2
TLS

•“Traditional” TLS has the client verifying the identity of the server

•The protocol is flexible enough to support two-way verification

•Allows for strong two-way authentication based on signed key material

Mutual TLS

•System for one node in a network to discover other nodes, based on identity or function

•Can be problematic for security if done wrong: it’s a map of the network

•Airbnb uses the SmartStack framework, so we used that

Service Discovery

https://bit.ly/smart-stack

An open source service
discovery system that uses
Zookeeper to share service data
and HAProxy to route traffic.

SmartStack is decentralized,
and nodes can publish or
consume as they please.
Security was not originally a
design factor!

SmartStack

NODE 1

HAPROXY

SERVICE A

NODE 2

SERVICE B

ZO OKEEPER

P
U

B
L

IC
A

T
IO

N

D
IS

C
O

V
E

R
Y

https://bit.ly/smart-stack

The client sends requests to its
local reverse proxy, which sends
them to an appropriate
backend.

Connecting to a
Service
THE OLD WAY

NODE

OUTBOUND PROXY

SERVICE A

NODE

SERVICE B

HTTP TRAFFIC

We insert a new reverse proxy
in front of the receiving service
that can catch mutual TLS
connections and forward to the
underlying service.

The Secure Shim
“MAGICALLY” INSERTING TLS

NODE

OUTBOUND PROXY

SERVICE A

HTTP TRAFFIC
HTTP S TRAFFIC

NODE

INBOUND PROXY

SERVICE B

•The sending and receiving services do not change — traffic looks about the same to them

•The two service discovery proxies can handle authorization, so security only has to build these controls
once

•Having proxies surround your service communications is generally useful (universal metrics, tracing, etc.)

Key Benefits to this Approach

Do the Opposite of What the NSA Wants

Since the inbound proxy does
the authentication, all clients
must be forced to use it.

In our network, we dealt with
this by binding underlying
services to localhost.

Proxy Exclusivity

LEGITIMATE
CLIENT

NODE

SERVICE

INBOUND PROXY

AUTHORIZED
UNAUTHORIZED!

ATTACKER

Binding to localhost may not work for your network, especially if you have multiple privilege levels on a single machine. In that case, firewalls or use of
local domain sockets may be necessary.

PILLAR 2: IDENTITY BINDING

`

NODE 1

AUTHZ LO GIC

ID-NODE-1

NODE 2

AUTHZ LO GIC

ID-NODE-2

NODE 3

AUTHZ LO GIC

ID-NODE-2
TLSTLS

•What if we think about segmentation on the service level, not the subnet level?

•Allow the payment config page to call the payment backend service — but don’t allow the Slack bot to!

Segmentation

LOAD BALANCERS

DATABASE SUBNET

APP SERVER SUBNET

PAYMENTS

CALENDAR

USER AUTH

CATALOG

IMAGES

A node in the network should only be able to talk to what it needs to

We’ve got proxies that understand TLS
on both sides of our service
communication, and TLS is great at
verifying identities.

We just need to strongly identify each
node in terms of a TLS certificate.

PUTTING IT TO GETHER

•Need to find an identity that:

- Is sufficiently varied (more zones are better)

- Can’t be changed by a node (otherwise nodes can move between zones)

- Can be detected automatically

- Can be represented in an X.509 SubjectAlternativeName

Identifying Nodes

Most modern networks have some “role” concept that works well for this

1. Give everything an identity, and distribute certificates that allow nodes to prove it

2. Build a map of what identities should be able to access what services

3. Distribute that map to relevant service discovery proxies, and tell them to enforce it

Building Authorization into our Service Discovery

PILLAR 3: AUTHORIZ ATION MAP

`

NODE 1

AUTHZ LO GIC

ID-NODE-1

NODE 2

AUTHZ LO GIC

ID-NODE-2

NODE 3

AUTHZ LO GIC

ID-NODE-2
TLSTLS

•How do you find out what needs to talk to what?

- Make a configurable list

- Infer it from existing code

•We assume that if you can merge peer-reviewed code to our config management, you’re authorized to
make changes.

Building a Trustworthy Map

CHEF/ROLES/SERVICE1.RB:

name 'service1'

default_attributes({
 'haproxy' => {
 'enabled_services' => [
 'production-db',
 'production-cache',
 'monitoring-service',
],
 },
})

Our Chef repo already had
dependency information to
make service discovery work.

We can parse this continually
and update the map we use for
authentication.

Inferring the Map

We built a service called
Arachne, which processes Chef
code and Kubernetes
definitions to determine what
service dependencies are
allowed. It distributes this to
nodes via AWS S3.

Arachne
COMPUTING THE WEB

CHEF REP O KUBERNETES ARTIFACTS

AMAZON S3

The barriers you put in place to
changing the map depend on how you
think about the risk of insider threats.

IT’ S ALL ABOUT THE THRE AT MODEL

We trust our engineers a lot and let their changes to service config affect access control
Depending on your structure, you may want more controls
The only requirement is that you can reasonably efficiently generate allow-lists for your services

X-Forwarded-Client-Cert:
 Hash=aaf555637e540420d816ef68d048444e9dea
 9a8dfaca1de2a9ac57557a2a4db4;
 Subject=“CN=ClientService,OU=Security,
 O=Airbnb,L=San Francisco,ST=California,C=US”

Our receiving proxy can inject
headers into HTTP streams,
allowing us to signal
authorization information to
application code.

Services can now implement
highly detailed access control
lists based on caller identity,
without implementing any
authentication logic
themselves.

Fine-grained
Authorization

•You constantly need to synchronize the an allow-list to your nodes. Caching allows you to use less
bandwidth at the expense of greater update latency.

•If TLS has a problem, you have even more problems than you used to

•Adding additional reverse proxies can introduce complexity in traffic flow & signaling

•You need to be able to run software on the nodes receiving traffic, which may not be possible for some
vendor software or hosted services

•You’ll need to implement certificate revocation, which is usually tricky

Downsides
THERE’ S NO FREE LUNCH

ROLLING IT OUT

•We used the Envoy proxy to handle incoming TLS connections on the server side

•We gave each node an identifying certificate with a SAN based on its AWS IAM role

•Arachne is a continually running Ruby script inspecting our Chef repo and Kubernetes artifacts

•“Webfiles” (the authorization map) are uploaded to and downloaded from S3

•Average time between topology change and Webfile update: about 4 minutes (usually long before
changes are actually deployed)

The Technical Details
WHAT WE MADE THESE COMP ONENTS OUT OF

•We relied heavily on caching the output of our map generator

•Incidents in our map generator don’t affect production traffic, unless there’s a topology change

Availability Considerations

1. Compute authorization map and verify correctness

2. Give everything an identifying certificate

3. Install the receiving proxy everywhere and start listening

4. Configure some services to start using the system

5. Cut everything over

6. Bind services to localhost so the secure proxy must be used

The Plan

NODE 1

AUTHZ LO GIC

ID-NODE-1

NODE 2

AUTHZ LO GIC

ID-NODE-2
TLS

NODE 3

AUTHZ LO GIC

ID-NODE-2
TLS

•We went from 14.8% TLS internally to 70.1% in one night

•We ensured there were non-security benefits, getting wider organizational support

•We could disable the system selectively when services had problems with it

Things That Went Well

And internal use of TLS continued to grow quickly after Day 0.
Non-Security benefits:
- Easier configuration
- Performance
- More metrics available

•Routing traffic through an inbound proxy can lead to unexpected application behavior

- All traffic is suddenly from 127.0.0.1

- Can interfere with stateful things like websockets

•The testing process focused more on inbound effects of the switch, rather than outbound

- Well-tested: what if all my clients start using TLS?

- Not well-tested: what if all the services I rely on start demanding TLS?

•Binding services to localhost took longer than expected

- Inconsistencies in our service configuration made this require many changes

Things That Didn’t Go So Well

There can also be issues with signaling when services go down. Since there’s now a proxy on the receiving end, clients trying to talk to a node that
has services which are down (but not yet deregistered from service discovery) will receive layer 7 error responses, not TCP errors. Clients need to
realize what’s going on, terminate the connection, and try another available node.

•In our environment, services often got faster

•95th percentile latency went down by as much as 80% in some cases

•Service discovery processes restart infrequently, so they get more benefit from TLS session caching

Performance

TLS session resumption rate usually close to 100%, meaning minimal overhead even for services that previously communicated in plaintext

Switching to deeply authenticated
networks is possible, because you can
make them invisible and fast.

IN SUMMARY

Because of authorization maps, engineers might not even notice that they changed access control rules to talk to a new service. But attackers will
find themselves unable to talk to most of the network if they land on a host with an identity that doesn’t have access to much.

Istio and Consul also implement this.

DEFENSIVE TECH
I LOVE

I believe that project was a good example of using modern tech and a little ingenuity to push security forward.
There are people throughout the industry doing cool stuff like this. Here are three projects I think really exemplify this spirit.

•Use OAuth2 for social login plus email “magic links”

•Users clearly can’t manage passwords — why let them?

•A user losing control of their email means game over even if they have a password

Sites Without Passwords

Learn more: https://www.yubico.com/solutions/fido-u2f/

•A serious proposal to dealing with phishing

- Uses web origin in challenge-response protocol

- Phishing sites can’t “proxy” a challenge for a real site

•Easy-to-use crypto

U2F Security Tokens

U2F tokens are a good example of why you shouldn’t be afraid to consider introducing a totally new type of device to defeat an attack
These problems are serious enough that corporations, governments, and individuals are willing to seriously pay for effective countermeasures

https://www.yubico.com/solutions/fido-u2f/

•They’re everywhere

- Mobile Apps

- Containerized software downloads

• Give control of devices back to the users who own them

•The face of malware on iOS and Android is fundamentally different than the old days

Sandboxes by Default

Installing an app shouldn’t mean you give full access to your microphone to some developer whose identity you have no concept of

YOUR INFOSEC CAREER

•Criminals

•Hacktivists

•Security researchers

•Pentesters

•Academics

•Defenders

•Governments

There are a lot of ways to do this
LOTS OF PEOPLE HUNT SECURITY FLAWS

Can’t recommend these

•Builds a diverse skillset

•Really fun when your exploits land

Playing Offense
PENTESTING, SECURITY RESE ARCH, RED TE AM

This is where I started out. It was a really great place to kick off my post-college journey into security.

•You’re up against hard problems

•You get to eliminate threats and bug classes, one by one

Playing Defense
BLUE TE AM, SECURITY PRODUCT ENGINEERING

I’m going to spend a bit more time on discussing your options on the defense side, because it’s what I’ve seen the most diversity in.

At Airbnb we strive to think of new ways to deal with the problems we face. We want to make an environment where engineers at every level have
the space to experiment with solutions.

Source: https://medium.com/airbnb-engineering/one-step-forward-in-data-protection-8071e2258d16

•Write the tools that implement what you’ve learned here

- Crypto toolkits

- Frameworks to eliminate common bugs

- Systems to analyze user activity for malicious indicators

Roles in Defense
S OFTWARE ENGINEER

https://medium.com/airbnb-engineering/one-step-forward-in-data-protection-8071e2258d16

•Know the game — both sides of it

•Guide the development of software to mitigate security risk from the beginning

Roles in Defense
SECURITY ENGINEER

Apply your bug-hunting skills to drive defense forward

•Don’t give the adversary a moment’s rest during their attack

•Extract valuable signals, identify events, and respond with speed

Roles in Defense
INTRUSION DETECTION ENGINEER

DFIR — Data Forensics and Incident Response

•Be more efficient with security effort

•Make your defenses stop scaling based on people

•Turn security into an engineering problem

Changing the Game
LET DEFENSE START WINNING

Regardless of whether you work on the offensive or defensive side of this, I think we can all agree that we want things to get compromised less.
Regular people shouldn’t have their credit cards stolen every month, elections should stay uninfluenced, and nobody should need to fear that the
photos on their phone will end up on the internet.

Questions?
Stay Connected

@maxb (Twitter)
max.burkhardt@airbnb.com

