You have 120 minutes to answer the questions in this quiz. In order to receive credit you must answer each question as precisely as possible.

Some questions are harder than others, and some questions earn more points than others. You may want to skim them all through first, and attack them in the order that allows you to make the most progress.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Write your name and submission website email address on this cover sheet.

This is an open book, open notes, open laptop exam.

NO INTERNET ACCESS OR OTHER COMMUNICATION.

This quiz is printed double-sided.

Please do not write in the boxes below:

<table>
<thead>
<tr>
<th>I (xx/11)</th>
<th>II (xx/10)</th>
<th>III (xx/8)</th>
<th>IV (xx/12)</th>
<th>V (xx/12)</th>
<th>VI (xx/12)</th>
<th>VII (xx/12)</th>
<th>VIII (xx/3)</th>
<th>Total (xx/80)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name:

Submission website email address:

You can answer the feedback questions on the back of the quiz before the official start time.
I Multiple-choice questions

1. [3 points]: Based on Mark Silis, Garry Zacheiss, and Jessica Murray’s guest lecture, which of the following statements are true?
 (Circle True or False for each choice; we subtract points for incorrect answers.)
 A. True / False The one DDoS attack on MIT in the last year flooded a network link.
 B. True / False Email forwarding through MIT resulted in much email being marked as spam, because after forwarding the DKIM signature failed for many messages.
 C. True / False Chinese hackers stole military maritime secrets through a breach at MIT.

2. [4 points]: Based on Max Burkhardt’s guest lecture, which of the following statements are true?
 (Circle True or False for each choice; we subtract points for incorrect answers.)
 A. True / False Security solutions scale well with the growth of the Internet/Web.
 B. True / False Mutual TLS authenticates the server to the client and the client to the server.
 C. True / False Network segmentation limits the services a compromised machine can talk to.
 D. True / False The global map of which services talk to each other changes so slowly that the map can be maintained manually.
3. [4 points]: Based on the Tor readings and Nick Mathewson’s guest lecture on Tor, which of the following statements are true?

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Tor sacrifices some security properties that are desirable in an anonymous communication system.

B. True / False An attacker who can observe all traffic going into entry points and coming out of exit points can learn the IP address of the machine that opened a TCP connection over TOR.

C. True / False Tor traffic has grown so much that the directory server and protocol of Section 6.3 in the paper may become impractical, because the complete list of relays is too large.

D. True / False If an attacker compromises one relay in the middle of a circuit (i.e., not the first relay), then the attacker can learn the IP address of the machine that originated the TCP connection that is running over the circuit.
II Symbolic/concolic execution

Ben implements concolic_force_branch (that explores the other side of branch b) for Lab 3 the following way:

```python
def concolic_force_branch(b, branch_conds, branch_callers):
    constraint = const_bool(True)

    cond_list = [ x for i, x in enumerate(branch_conds) if i != b]
    for branch in cond_list:
        constraint = sym_and(constraint, branch)

    constraint = sym_and(constraint, sym_not(branch_conds[b]))

    return constraint
```

4. [5 points]: Would Ben’s implementation exhaust all possible control flow decisions in the program? Why/Why not? If not, please correct the code above.
Consider the following snippet, similar to the code in check-symex-int.py:

```python
def f(x):
    if x == 0:
        return 3
    elif x == 1:
        return 6
    elif x == 2:
        return 8
    elif x == 3:
        return 7
    return -1

def test_f():
    i = fuzzy.mk_int('i')
    v = f(i)
    return v

f_results = fuzzy.concolic_execs(test_f)
```

With a correct implementation of the concolic execution system, `f_results` contains `[3, 6, 8, 7, -1]`, all possible results of executing the function `f`.

Suppose `f` were replaced with a functionally equivalent implementation `g` as follows:

```python
def g(x):
    if 0 <= x < 4:
        return [3, 6, 8, 7][x]
    return -1
```

With this implementation, the concolic execution system from Lab 3 only finds the results `[3, -1]`.

5. [5 points]: Explain why the concolic execution system as implemented in Lab 3 fails to find the rest of the possible results.
III TCP hijacking

As described in the paper A Look Back at “Security Problems in the TCP/IP Protocol Suite”, an attacker on machine X can pretend to be a trusted machine T while connecting with TCP/IP to machine S. The attack is as follows and relies on guessing the initial sequence number ISN_x:

A. X → S: SYN(ISN_x), SRC=T
B. S → T: SYN(ISN_s), ACK(ISN_x)
C. X → S: ACK(ISN_s), SRC=T
D. X → S: ACK(ISN_x), SRC=T, data

6. [4 points]: The attacker must suppress message B; why? (Briefly explain your answer.)

7. [4 points]: Assume that the attacker has no control of the network between T and S. How can the attacker suppress message B? (Briefly explain your answer.)
IV Secure handshake

Ben uses the following protocol to set up a secure channel over the Internet from a client (C) to a server (S):

A. C → S: make a connection with S
B. C ← S: PK_t, Sign(SK_S, {PK_t})
C. C → S: Encrypt(PK_t, {K, SN})
D. C → S: c_1 = Encrypt(K, {msg_1, SN}), t = MAC(K, c_1)
E. C → S: c_2 = Encrypt(K, {msg_2, SN + 1}), t = MAC(K, c_2)
F. ...

PK_S / SK_S are the server’s permanent public/private key pair. The client knows PK_S. The server creates a fresh public/private key pair PK_t / SK_t using a secure random number generator just before step B. The client creates a fresh symmetric key K using a secure random number generator just before step C. The client generates a random initial sequence number SN with a secure random number generator just before step C.

The ciphers and random-numbers are strong and correctly implemented. The adversary does not know SK_S.

Immediately after processing message C, S deletes SK_t from memory. When C and S are done communicating and close the secure channel, they also delete the shared symmetric key K.

Steps D and E provide authenticated encryption: an adversary cannot determine the contents of the message, or construct another valid message, without knowing the shared key K. The MAC must match in order for S to accept a message. S will reject a message if it doesn’t have the expected next sequence number, so that the attacker cannot replay messages D and E.

8. [4 points]: Suppose an adversary A can guess SN. Can the adversary hijack an on-going conversation between C and S? That is, can A insert a message in step F that S will accept? (Explain your answer briefly.)
9. **[4 points]**: Can S establish the identity of C? That is, if C sets up a new secure channel to S, can S establish that it is the same C as in the earlier secure channel? Explain your answer briefly.

10. **[4 points]**: Does the protocol provide forward secrecy? That is, if the attacker learns SK_3 after the connection has finished and the attacker has a recording of all the encrypted messages sent, is it difficult for the attacker to learn the content of those messages? (Briefly explain your answer.)
V Web security

Ben Bitdiddle did not do lab 4, and decides to use the 6.858 Zoobar application without modifications to launch his own bank: Ben’s Bucks. Ben knows from skimming the 6.858 notes that the same-origin policy protects web sites from each other, so when Alyssa asks him about the security of his bank, Ben reassures her that it is completely safe. Alyssa, having done lab 4, finds this hard to believe given all the issues she knows about in Zoobar.

11. [2 points]: Briefly explain one JavaScript-based attack that Alyssa can perform against Ben’s bank that the same-origin policy does not protect against.

Following his discussion with Alyssa, Ben realizes that his bank may have some security shortcomings. He carefully walks through his code and ensures that he never emits unsanitized user-controlled input, and that every transfer request requires a unique token embedded into the transfer form. Afterwards, he tells Alyssa that the site is now 100% secure.

Alyssa has been paying close attention to web security research over the past few years, and is still not convinced. She decides to try a “clickjacking” attack; she loads the transfer page from Ben’s bank in an iframe on a page she controls, makes it transparent, and then adds a button that says “Free apples” directly underneath the “Transfer” button on the form. This way, when a victim clicks the “Free apples” button, their browser will instead interpret it as a click of the “Transfer” button.

12. [5 points]: Assuming the fields of the transfer form have already been filled out, would Alyssa’s clickjacking attack indeed perform an unauthorized transfer? Briefly explain how the same-origin policy prevents this attack, or why it does not.
Alyssa tells Ben that he really ought to set the `SameSite: strict` option on the Zoobar session cookie. When this option is set, modern browsers will not include cookies set by origin X when making requests generated by pages that are not themselves from origin X.

13. [5 points]: Assuming all his users use modern browsers, briefly describe an attack that is no longer possible against Ben’s bank, and why the header prevents it.
VI Side channels

Consider the Spectre example implementation shown in Appendix A of the paper “Spectre attacks: exploiting speculative execution” by Kocher et al. The attack assumes that the victim_function function exists in the address space of the victim. The attack measures accesses to array2 to determine the secret secret.

14. [3 points]: If Intel turned off speculative execution on their processors would this attack still work? (Briefly explain your answer.)

15. [3 points]: If the attacker cannot cause array2 to be evicted from the processor cache (i.e., there is no instruction to flush the cache and the attacker cannot evict the cache indirectly), is the Spectre attack still possible? (Briefly explain your answer)

16. [3 points]: Ben runs a memory-intensive program on one core and the example program of appendix A on another core. The two cores use a single shared cache. How will this impact the program’s ability to identify the secret? (Briefly explain your answer.)
Ben finds a code fragment similar to the `victim_function`:

```c
void function1(size_t x) {
    if (x < array1_size) {
        temp &= array1[x] * 512;
    }
}
```

Ben also modifies the measurement code to flush and measure `array1`.

17. [3 points]: Can Ben learn the secret? (Briefly explain your answer.)
VII Untrusted Version Server

Alice is designing a new internet “Version Server” to help people keep the software on their computers up to date. The idea is that software vendors would register the latest version number of each software package with the server. Peoples’ computers would periodically run an “update client” that would ask the server for the latest version of each installed package, and tell the user which needed to be upgraded. The larger goal is to help people avoid running old software versions that have known bugs and vulnerabilities.

Alice is inspired by the 6.858 guest lectures about Keybase and Key Transparency and the “SoK: Secure Messaging” paper’s Trust Management section. She would like her design to make it difficult for the Version Server to get away with maliciously providing incorrect answers.

For these questions, assume that the cryptographic primitives are used correctly, that the cryptographic algorithms cannot be broken, and that attackers cannot learn anyone else’s private key.

Design D1. Here is Alice’s first design, D1. Note that a real implementation might not follow the design faithfully, and might even be malicious. Alice’s design specifies that the Version Server should keep a database of version records, one for each package identifier. Each version record is created by the package’s vendor, and contains the following information:

```c
struct VersionRecord {
    id: PackageId;     // Contains vendor ID
    version: int;      // Increased by one for a new release
    sig: Signature;    // signature over id and version, signed by vendor
}
```

A package ID contains the vendor ID so that clients know which public key to use to verify a version record. The version numbers for a package are increasing integers.

The D1 design provides two RPC calls:

- **put(packageID, versionRecord)**. A vendor calls put(packageID, versionRecord) whenever the vendor releases a new version or creates a new package. The server should validate the request: it should check that the versionRecord is correctly signed, and that its version number is higher than that packageID’s version number already in the database (if any). If both are true, the server should update its database entry for the packageID.

- **get(packageID)**. A user’s update client calls get(packageID) on each installed package. The RPC return value is a version record. The update client ignores the return value if it is not signed by the package’s vendor.

Each user’s computer knows the correct public key of the vendor of each installed package. The Version Server knows the public keys of all vendors.
18. [3 points]: Which of the following deceptions could a malicious server carry out without detection, given the above design?

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False Cause a client to think a package ID isn’t registered at all.
B. True / False Cause a client to think version \(X + 1 \) is the latest, when actually the highest version submitted by the vendor is \(X \).
C. True / False Cause a client to think version \(X - 1 \) is the latest, when actually the highest version submitted by the vendor is \(X \).

Design D2. Alice thinks she can do better, and creates a second design, D2. In this design, the Version Server should arrange all received version records in a log. The log should be a sequence of log records with the following fields in each log record:

```plaintext
struct LogRecord {
    versionR: VersionRecord; // version record (as in D1)
    hash: Hash; // the cryptographic hash of the previous log record
    sig: Signature; // signature over versionR and hash, signed by Version Server
}
```

The first (oldest) log record contains zeros instead of a cryptographic hash. The Version Server should maintain a single log containing all submitted version records for all packages. The most recent log record is called the tail.

The design supports two RPCs:

- **put(packageID, versionRecord)**. When the Version Server receives `put(packageID, versionRecord)`, it validates the version record (as in D1), creates a new log record with the version record and the hash of the previous tail, signs it, and adds it to the log as the new tail.

- **fetch()**. The `fetch()` RPC returns the entire log – all of the log records.

The server should process incoming RPCs one at a time, completing each before starting the next one.

When a user’s update client needs to check installed packages, it calls `fetch()`. The client checks the log that `fetch()` yields as follows:

A. It checks that the log records form a proper log: that there is some total order of log records for which each log record in the order is pointed to by the hash in its successor.

B. The client checks that every log record is correctly signed by the Version Server. All clients know the Version Server’s public key.
C. The client checks that the version record in each log record is correctly signed by the relevant vendor.

D. The client checks that the hash in the earliest log record is zero.

The update client rejects the `fetch()` result if any of these checks fail.

If the server correctly follows Alice’s design, then (in the absence of `put()`s) all clients will see the same log from `fetch()`, reflecting the sequence of `put()`s processed by the server. In the presence of `put()`s, later fetches may see a longer log, so a more accurate statement is that for any two logs seen by clients or stored on the server, the shorter log will be a prefix of the longer log: they will be identical up to the length of the shorter of the two logs. If this prefix property doesn’t hold, then the server is not following Alice’s design, and therefore may be malicious.

Consider the following sequence of events:

- SecureChat v2 (version 2) is released, and its vendor calls `put` to add its version record to the Version Server’s log.
- After fixing a bug, the vendor calls `put` to add the version record for SecureChat v3.
- Other vendors call `put`.
- A vendor releases the brand-new game Angry Turtles v1 and calls `put()` for it.

Bob’s update client calls `fetch()`, and the resulting log contains a record for SecureChat v3 and, later in the log, Angry Turtles v1. The `fetch()` results pass all the client checks explained above.

However, when Alice calls `fetch()`, the server maliciously omits the SecureChat v3 record, though it does include SecureChat v2. The server includes Angry Turtles v1; everyone has heard of this game, and Alice would be suspicious if `fetch()` omitted it. The `fetch()` results pass all the client checks explained above.

19. **[5 points]**: Bob and Alice both see a log record for Angry Turtles v1 in their `fetch` results. Are these log records identical, or different? Briefly explain.
Alice would like a fast “cross-validation” technique to help detect if the Version Server is hiding version records; she wants to do this without the expense of sending complete logs between clients. Every once in a while, Alice sends Bob h_a, the cryptographic hash of the tail log record from Alice’s most recent call to `fetch()`. After Bob receives Alice’s h_a, Bob calls `fetch()`. Bob computes the cryptographic hash h_b of the tail log record he got from his `fetch()`. Both `fetch()` results pass all the client checks explained above. Note that Bob does not have a copy of Alice’s log. Bob and Alice are entirely trustworthy.

20. [4 points]: Which of the following are true?

(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False If $h_a \neq h_b$, the server must be intentionally hiding version records from either Alice or Bob.

B. True / False If $h_a = h_b$, then the Version Server cannot be hiding version records from Alice.

C. True / False If $h_a = h_b$, then Alice’s and Bob’s `fetch()`s must have returned identical logs.

D. True / False If Bob’s `fetch()` result doesn’t contain a record that hashes to h_a, then Alice’s log is not a prefix of Bob’s.
We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

21. [2 points]: Are there any papers in the second part of the semester that you think we should definitely remove next year? If not, feel free to say that.

22. [1 points]: Are there topics that we didn’t cover this semester that you think 6.858 should cover in future years?

End of Quiz