
Managing Teams and
Keys with Keybase

Max Krohn (https://keybase.io/max)

etc.

qmail

cvs

moinmoin
wiki

“just scp it
from my
machine”

ircd

18.26.4.239

• Federated management was better than
what we have today but was never good
enough.

• Managed apps in the cloud: maybe that ship
has sailed

• But at the very least, can we decentralize
trust and key management?

Basic Requirements
• Multi-device support

• Get new phone for Christmas, enter username and
password, and get instant access to all history

• Namable teams with mutable membership

• Authenticated invitation of new members

Threat Model
• Bad guys own any server infrastructure

• Bad guys can recover locked device

Security Goals
• Future messages are not available to a revoked device

• Forward-secrecy is opt-in per-message and can be
layered on top (outside scope)

Insufficient Solutions

redacted

redacted

One Private Key, Encrypted
With Password

• Keybase v0

• Most “browser crypto”

• What’s compelling about this idea?

• What’s wrong with this idea?

Keybase’s Approach
• Users think about “devices” not “keys”

• Each device in a user’s cloud is equally powerful. Why?

• We’ve all lost phones, laptops, slips of paper

• The more devices, the less likely you are to lose your data

• And you’re most likely to discard your oldest device

• Reuse this abstraction for teams:

• Devices are to Users as Users are to Teams

How Apps Work
• Every team has a random shared symmetric key that rotates

when:

• Users are removed from the team

• Or any team member revokes a device

• All updates to the chat channel (or git repo or file system)
are:

• Encrypted for current shared team symmetric key

• Done, right?

Encryption, Take 2
• Authenticated encryption in all cases

• Signed by the user that made the update

• To prevent Alice from putting words into Bob’s mouth

Lecture Outline
• How devices sign statements to constitute a user

• How users sign statements to constitute a team

• Lessons Learned

How to Define a User

Account Creation
• Picks a new username n

• Rolls a new Ed25519 Signing Key Pair (s,S)

• Rolls a new Curve25519 DH Key Pair (d,D)

• Rolls a new “per-user-key” Curve25519 DH Key Pair (u,U)

• Signs D with s

• Encrypts u for D

• Crucially, s and d never leave the device; encryption of u does

• Posts 3 sigchain links to the Keybase Merkle Tree under n

Link 1:
Alice=S,

σs(Alice=S)

21

Link 2:
σs(D, Hash(link1))

3

Link 3:
σs(U, Hash(link2))

New Device Addition
• New Ed25519 Key: (s',S')

• New Curve25519 Key: (d', D')

• Signs S with s' and S' with s

• Signs D' with s' as before

• Encrypts u for D'

• Posts 2 new sigchain links

43 5

Link 4:
σs(S', σs'(S), Hash(link3))

21

Link 5:
σs'(D', Hash(link4))

Revoking a Device
• Sign a statement to revoke S and D from lost/stolen/

retired device

• Rotate per-user-key to (u', U'), and re-encrypts u' for all
non-revoked devices

• Encrypts u' for u

• Lesson from experience: Watch out for hidden O(n^2)
behavior!

43 5

Link 6:
σs'(revoke(S,D), Hash(link5))

21

Link 7:
σs'(U', Hash(link6))

6 7

Proving External
Corroboration

• Alice posts a signature saying she is @theRealAlice on
Twitter

• Then posts a hash of that signature to twitter

43 521

Link 8:
σs’(twitter: @theRealAlice, Hash(link7))

6 7 8

How Does Bob Lookup
Alice? Idea #1

• He fetches her “sigchain” from the server

• Playback chain from beginning to compute:

• Signing Keys: {S'}

• DH Keys: {D'}

• Per-User-Key: U'

• Claimed external identities: { twitter: @theRealAlice }

Idea #1
• What attacks can you think of?

43 521 6 7 8

Idea #2
• Download Merkle root from server, and verify explicit

signature (i.e., don’t just trust TLS). (Why?)

• Descend the Merkle tree to Alice’s leaf

• Fetch tail of her “sigchain” and confirm the returned
sigchain from #1 ends in the advertised tail

• As before

Idea #2: Additional
Bookkeeping

• Whenever Bob looks up Alice at time t1 and t2, he asserts
the new links fit at the end of the chain

• Whenever Bob looks up Alice at time t1 and Charlie at
time t2, ensures:

• The global Merkle sequence # has increased

• And that the global Merkle root points back to the
earlier root via logarithmic “skip pointers”

Demo

• https://keybase.io/_/api/1.0/merkle/path.json?
username=max&last=4000000

•https://keybase.io/max/sigchain

https://keybase.io/_/api/1.0/merkle/path.json?username=max&last=4000000
https://keybase.io/_/api/1.0/merkle/path.json?username=max&last=4000000
https://keybase.io/max/sigchain

Idea #2: What Other
Attacks?

• “Forking attack”

• https://www.blockchain.com/btc/address/1HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz

• Sprinkle roots all over the internet

• Odd/Even Attacks

https://www.blockchain.com/btc/address/1HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz

How to Define a Team

Creating a Team
• Alice creates the team “coinco” with two admins, her and Bob.

• Rolls a new team secret: t

• From t, generates team public keys:

• (st, St) for signing

• (dt, Dt) for Diffie-Hellman

• And a symmetric key for encrypted shared team data

• Encrypts t for UA and UB

Link 1:
σA(name=coinco,

admins={Alice,Bob}, keys={St,Dt})

1

Adding a User to a Team
• Alice or Bob can now add Chuck to the team:

• Admins can make membership changes

• Non-admins just get to see team secrets

• Adds a sigchain link

• Encrypts t for UC

1 2

Link 2:
σB(admins={Chuck}, Hash(link1))

Removing a User
• Admins can remove users, but must re-roll the team keys

1 2 3

Link 3:
σC(remove(Alice), keys={S’t,D’t}, Hash(link2))

When Else Are Keys
Rotated?

• When a team member “resets” their account

• When a team member revokes a device

• When a team member “leaves” a team

Revoking a Device,
Revisited

• Whenever team members revoke devices, their per-user-
keys re-roll

• Therefore all teams they are in must re-roll their keys

• This can be done lazily, just before the next time
someone chats, or writes a file for the team

Loading a Team
• Load the most recent Merkle root, and descend to the

team’s leaf

• “Play” the team chain forward and ensure:

• Tail matches what was in the Merkle Tree

• That all modifications are made by authorized admins

• All links are signed with keys that were valid for the
user at the time of their signature

A New Challenge: Cross-
Chain Ordering

• Bobs sees that Alice made a change a team at sequence
m in chain Cteam

• Sees that Alice revoked that device at sequence n in
chain Calice

• He needs proof that the first event happens before the
second

43 521 6 7 8

1 2 3

7

2

Loading Teams:
Performance

• https://keybase.io/team/keybasefriends

• 2400 members

• 5395 sigchain links

• ~12MB in transfer size

• + 8 admins, each with lengthy sigchains

https://keybase.io/team/keybasefriends

Insight: UI Doesn’t show all
2400 people

• So don’t bother to derive group membership at first

• Just load sigchain links that advertise keys

• Lazy-load membership info

• “Stubbed chain”

43 521 6 7 8

Body Body Body BodyBodyBodyBodyBody

Attacks on Teams
• In practice, server coordinates client key rotations

• Clients audit in background loops that keys are
adequately rotated

• Odd/Even Attack

• Clients probabilistically audit team chain history on the
critical path

Key Learnings &
Challenges

Key Learning: Username to
UID mapping

• UID is just the hash of the username

Key Learning: PUKs
• v1.0 was built without

• Alice’s mobile provisions a new laptop:

• for all teams Alice is in:

• Reencrypt team secret for laptop

• Rekey races Alice backgrounding the app

• Can resulting viral data loss across devices!

Key Challenges
• Immutable append-only storage

• Shipping client code on 5 platforms

• Clients must distrust the server, and sometimes just
intentionally break

• User Education / Account Resets

• Key problem: multi-device with instant access on new device

• Solution: Per-user-keys

• Users are chains of device additions/removals

• All devices are equally powerful

• Teams are chains of user additions/removals

• All admins are equally powerful

• From there, build a shared secret key for teams that rotates on
revocation or member removal.

In Sum…

