SECURITY IN KEYKOS

S.A. RAJUNAS, N. HARDY, A.C. BOMBERGER, W.S. FRANTZ, C.R. LANDAU

Key Logic, Cupertino, California

ABSTRACT

KeyKOS™** is a capability-based system which was
designed to meet the performance, reliability, and
security goals of the commercial computer service
marketplace. KeyKOS's architecture combines
several unique featurss to achieve simple and
effective protection mechanisms with a very small
amount of privileged code. Particular emphasis is
placed here on the protection mechanisms which
support security; while some general description of the
system is included, a.more com‘PIete description of the
architecture is given elsewhere

NTROD 10N

KeyKOS consists of a kernel and supplementary code.

The KeyKQS kernel is currently implemented in
software, but in concept it is an extension of the
machine architecture and as such couid be
implemented in firmware and/or hardware. The
present implementation runs on IBM and Amdahl
hardware. Any virtualizable architecture< with a large
virtual address space and demand paging would be a
suitable target. KeyKOS might also be ported to other
architectures.

KeyKOS is not a traditional operating system; it bears
some resemblance to a control program (it manages
resources). In the current implementation, the kernel
is written in assembler, is unswappable, and runs in
supervisor mode with real addresses. The kernel and
supplementary code present a different architecture to
the programmer from that provided by the bare
hardware. KeyKOS supports cMs3, and currently
most software development is done using CMS as the
development environment. KeyKOS provides an
excelient run time environment for transaction-based
applications, and KeyKOS has been running in
support of commercial applications since 1983.

** Patent Pending.

CH2292-1/86/0000/0078%01.00 © 1986 IEEE

78

KeyKOS is a message-passing system. KeyKOS is
also an object-oriented system, where certain primitive
objects are supported by the kernel and application
designers can build their own objects out of
system-defined objects. These user-defined objects
are much larger than Smalitalk? objects.

Like all capability systems, KeyKOS must prevent the
forging of capabilities. This is accomplished not by
relying on tagged memory but rather by storing
capabilities separate from data.

DEFINITION

Capabilities in KeyKOS are called keys, and the
reader may substitute "capability” anywhere the term
"key" is used. However, in KeyKOS there are many
different types of keys (see Table 1). Keys carry
several ditferent types of authority, not merely
read-only and read/write, and designate objects of all
types.

Some of the terminology used in KeyKOS is unique,
and the unfamiliar terms have been cited as a source
of confusion by individuals first learning about the
system. There have been suggestions that we should
use "more standard terminology,” but each system
uses its own terminology. Capabilities are "access
descriptors” in the Intel 4325, and "pointers” in
System/386. (See Levy” for a survey of implemented
capability systems). It has also been suggested that
we use the terminology popularized by, say, Hydra8,
certainly the most published system. But KeyKOS is
not a copy of Hydra. KeyKOS has different basic
design concepts, described by different terms; the
terms are different because the concepts are different.

The convention used in this paper is that KeyKOS
terms are printed in bold type when they are first
defined.

Objects
The basic entities in KeyKOS are keys, pages, and

nodes. Keys are capabilities, and designate pages,
nodes, other primitive objects implemented by the

kernel, or compound constructs made up of pages and
nodes. Pages consist of 4096 bytes, may contain
code or data, but cannot contain keys. Pages may be
regarded as permanent storage; KeyKOS implements
a single level store. A node consists of 16 slots (may
be thought of as capability registers), which contain
keys, but not code or data. Nodes are also permanent
storage.

The three fundamental objects in KeyKOS are
domains, meters, and segments. Domains are
roughly analogous to processes, meters represent
resources (such as CPU time), and segments define
ranges of virtual addresses.

A domain is a fundamental object which obeys some
code (program) and holds some keys that the code
can reference. lt is important to note that "process” is
not a technical term in KeyKOS. While someone new
to KeyKOS may analyze a KeyKOS scenario by
envisioning processes, there are no such entities in
the implementation. The closest concept to "process”
in KeyKOS is the domain. We include what is
commonly meant by "process”, along with address
space and access rights, in the concept of domain. A
domain is not just a privilege state, as it is in some
systems. In KeyKOS one cannot speak of a process
moving from domain to domain; the closest analogy is
a thread of control passing from one domain to
another.

Programmers may create their own objects from one
or more domains. Each domain contains algorithms,
data, state information, and access rights. In the
current implementation, a domain is three nodes (the
root node, the registers node, and the keys node), and
the keys found in the slots of the root node have
special interpretations (see KeyKOS Principles of
Operation9 for details). The slots in the root node
contain keys which designate the domain's address
segment, the domain's keeper and its meter
(described below), status information (domains may
be available, running, or waiting), most of the

PSW, etc. The registers node contains the general
purpose registers and the floating point registers. The
keys node contains keys accessible to the program in
the domain. The keys in the domain's root node in
general are not accessible to the program the domain
obeys, any more than a process header or task control
block is accessible to the process ortaskin a
conventional operating system. They are data
structures maintained on behalf of the domain or
process or task by the operating system. The
difference is that in KeyKOS, the domain could be
given a key to any root node (including its own), and it
could affect only that node for which it had akey. Ina
conventional system, the program would have to be
privileged to access its own process header and it
would have not merely that privilege but alf privileges
(the pervasive privilege problem).

79

In KeyKOS terminology, keys in the domain’s root
node are said to be elements of the domain. Keys in
the keys node are said to be held by the domain, and
their use is determined entirely by the program
obeyed by the domain. In fact, a program in a domain
does not actually handle any keys (it can only address
the contents of pages); it refers to the keys it holds by
their slot numbers in the keys node and the kernel

.interprets the requests for access.

Meters are nodes which represent resources that may
be consumed by a domain. As a domain uses CPU
time (currently the only metered resource) the meter
counts down. When it reaches zero, the domain stops,
but no information is destroyed and the domain may
be restarted by adding more resources. There is a
primordial meter from which all meters are descended,
and in the hierarchy of meters, meters lower in the tree
(inferior) depend on meters higher in the tree
(superior), so any use of CPU time is measured and
constrained not only by the immediate meter but also
by its superiors.

KeyKOS uses the concept of the single-level store.

No user written code needs any concept of secondary
storage. Also, all access to data is immediate. A
domain’s address space is implemented by a segment
key; a segment consists of other segments or pages.
One domain cannot access data in another domain --
it can only access data on pages in its own address
space. Pages can be shared, and even shared with
different authority, but only if prearranged. Either the
domains' address spaces must have been built with
shared pages or the domains were set up to be able to
exchange page keys and insert them in their address
spaces.

Because of the single-level store, KeyKOS has no
"files," but domains serve a similar role. Domains are
as long-lived as files in traditional systems; they
continue to exist until deliberately deleted. Record
collections are domains which perform the
specialized function of relating symbolic names to
keys. Some record collections function as directories;
others serve to emulate the functionality of IBM file
access methods.

Invocati

The basic operation in KeyKOS is key invocation.
There are three ways to invoke a key: FORK, CALL,
and RETURN (the traditional meanings apply).
Control is passed either to the kernel (if it was a key
the kernel implements) or to another domain via the
kernel (if it was a gate key). The KeyKOS equivalent
to interprocess communication is a gate key
invocation between domains which passes a
message consisting of up to four keys, a byte string,
and a parameter word.

The key invocation mechanism unifies message
passing and procedure call functionality. An argument
has been mads 10 that operating systems tall into
either the message passing category (characterized
by a small, static number of processes with explicit
communication paths) or the procedure call category
(characterized by a large, rapidly changing number of
small processes with process synchronization based
on shared data) and that these categories are duals of
each other. However, KeyKOS has characteristics of
both. Since keys can be passed within messages,
communication channels can change dynamically.
Domains are composed of only three nodes, and they
exist in large numbers. Segments may be as small as
one (possibly shared) code page, and optionally one
page of private address space. The key invocation
which transfers control from one domain to another,
while also passing a message, is relatively cheap.
The cost is approximately 200 IBM 370 instructions,
which is not excessive when one considers that this
completely changes not only the executing code but
also the address space, the access rights, the
operating system environment (see the discussion
below on keepers), and the resource utilization policy.

It is important to realize that keys are inscrutable. One
may think one holds a key directly to a domain, but
there may actually be an additional level of indirection
transparent to the user. A domain which holds a gate
key (see Table 1 for the types of keys and their
authority) has, in general, no way to know anything
about the object designated by that key. And once the
key has been invoked, control has been passed. The
domain which receives control and begins executing
has no way of knowing who called it, has no authority
over the caller, and does not inherit the authority
possessed by the caller. The only authority it acquires
is keys passed to it (if any). To access the services of
another object a domain commonly invokes the key to
that object with a CALL, and the kernel automatically
generates a resume key to the CALLer. While the
CALLed domain may copy the resume key, upon
invocation of the resume key any duplicates of the
resume key become invalid (by action of the kernel).

Exception Handling

Exception handling is performed by keepers. The
kernel provides no fixed exception handling policy, so
the policy can be tailored to the application. There are
domain, meter, and segment keepers, and many
different policies may be supported simultaneously.
The domain keeper (designated by the domain's root
node) is implicitly invoked on domain faults, such as
overflow, underflow, divide check, supervisor call
{SVC). The domain keeper may be used to emulate
the interface of a traditional operating system. The
meter keeper, which is designated by the meter (which
in turn is designated by the domain's root node), is

80

implicitly invoked when the resource counter goes to
zero. The segment keeper is implicitly invoked on
memory faults. Memory faults occur on encountering
invalid addresses and write protection violation, not
page faults (which are handled by the kernel). The
segment keeper receives, when CALLed, a node key
to the segment so it can fetch from and store into slots
containing memory keys (segment or page keys). The
kernel builds a domain's page tables based on the
segment key. Setup or modification of the address
space requires a node key (a particular type of
authority described below) to the segment.

In the case of the segment keeper getting a node key
to the faulting segment, and in the case of the domain
keeper getting a domain key, rights amplification has
taken place.

Summary ot Terms

In summary, there are nine basic concepts in KeyKOS.
The most basic are data (actually includes instructions
and data), pages, keys, and nodes. The fundamental
objects are domains, meters, and segments. The
basic operation upon keys is invocation, and the
exception handling is performed by keepers.

THE PERCEIVED PROBLEM

By now it can readily be seen that KeyKOS is a true
capability-based system, wherein possession of a key
guarantees access. It can also be seen that KeyKOS
has a unique design, although the benefits may not
yet be apparent. To illustrate further the distinction
between KeyKOS and other capability-based systems,
we will examine the problem of implementing access
control policies on capability-based systems.

Capability-based systems readily lend themselves to
discretionary access control. They also combine the
right to access an object with the right to grant access
to that object. Non-discretionary access control policy
dictates that access cannot be granted across certain
boundaries. Therefore, it has been concluded by
many that capability-based systems are unable to
support non-discretionary access control.

The access control issues commonly cited as
problems in capability systems are propagation
(access ==> grant access), review, revocation, and
migration. These issues are relevant to the problem of
enforcing an access control policy, and particularly a
non-discretionary access control policy. For example,
DoD non-discretionary access control policy requires
that an individual be cleared for the appropriate
security level before he access data classified at that
level, that there must be records kept of who can
access what data, that access be revocable, that
output be accurately labelled, etc.

Table I: Types of keys implemented within the kernel.

key object
type designated
node node
fetch node
sense node
domain node
gate node

segment node

mefer node
page page
data integer
range pages or
nodes

device device

misc utilities

type of authority

store into or fetch from any
slot in a node

fetch from any slot in a node

fetch from any slot in a node,
but attenuate the rights of the
key thus fetched

view the node as a domain
root; allow fetch and store
into some slots, and fetch
from some others

view the node as a domain
root and cause transfer of
control to the program in that
domain when invoked

no authority to store into or
fetch from the slots in the
node, only authority to
access the pages designated
via the keys in those slots

authority to consume the
resources defined by the
contents of the slots of the
node, but not to change the
contents of the slots

authority to access the data
in a page; may be read-only
or read-write

no authority, but immediately
holds a non-negative integer.

authority to manage a group
of pages or nodes

authority to access physical
device

authority to invoke certain
kernel objects

81

To understand how KeyKOS controls access, first
consider the problem of restricting access in capability
systems in general. Various mechanisms have been
proposed, and some actually implemented, to restrict
the flow of capabilities. There have been ideas like
having uncopiabie objects and/or uncopiable
capabilities. Conditional capabilities and even
temporary capabilities have been proposed. But none
of the complicated mechanisms proposed for or
implemented on capabilities are convenient to use or
even convincingly adeqguate to restrict the flow of
capabilities in the desired manner while still enabling
programmers to get work done. The desired goal is
not complete isolation (even if it could be achieved); it
is controlled sharing.

A common misconception is that capability systems
could be "fixed" by merely adding a security field to
each and every capability and checking this field upon
access to the object. This is a poor idea for a number
of reasons. Capability systems practice decentralized
control; presenting a capability guarantees access.
Violating this principle by introducing centralized
checking degrades performance and confuses the
conceptual clarity of the policy/mechanism dichotomy.
It can be argued that at some lower level of realization
(interpretation) capabilities pass through some
centralized mechanism; but it can be readily seen that
this is not the level at which policy should be
implemented, since the items to which access is to be
controlled do not exist in any recognizable form at the
low level of abstraction where capabilities are
realized.

Since the KeyKOS kernel is designed as an extension
to the machine architecture, it is clear that policy does
not belong in the kernel, although the kernel must be
trusted to function correctly. As described in the next
section, the totality of protection mechanisms
responsible for enforcing a security policy in KeyKOS
(the trusted computing base 1) consists of the kernel
and some domain code. The code concerned with
actually implementing security policy does not reside
in the kernel; it resides in domains. The mechanisms
which support that policy are part of the kernel. Thus
KeyKOS is a suitable base on which to implement a
wide variety of access control policies, including DoD
policy.

Historically, people wanted to implement policy within
the lowest level of mechanism in the system. It was
the only level they trusted to work reliably.
Unfortunately, the protected objects do not exist at that
level of abstraction. It seems a better approach to get
access control out of the kernel, and implement it at a
higher level. The approach used in KeyKOS is to
allow keys to be freely copied and passed but to
provide an encapsulation mechanism to restrict the
flow of keys.

SUPPLEMENTARY CODE

The code in KeyKOS whose correct functioning is
critical to implementing a security policy consists of the
kernel (25,000 lines of assembler code) plus 25,000
lines of domain code. The code in domains includes
the official space bank, the factory creator, the
receptionist (which performs authentication), the local
user directory (a record collection) and the domain
creator creator. (Domain creator creator is an
unfortunate term, but it accurately describes the
functionality and is no worse that Smalltalk’s class
class.) The kernel has been described; this section
concentrates on the portion of the trusted computing
base which resides in domains and discusses how it
contributes to the overall security of the system.

Space Banks

Space resources (pages and nodes) come from
space banks. Each user has a gate key to an official
space bank. Official space banks are guaranteed to
obey certain principles (and trusted to do so), such as
only giving a page or node out once, and returning
promptly either the desired keys to newly created
pages or nodes or else returning an error code
indicating that there is insufficient storage. Pages and
nodes may be recycled by returning them to the space
bank from which they were received. Space banks,
like meters, are all descended from primordial space
banks which own all the storage in the system, and
like meters, may have descendants. There is no
common view of how much total storage exists in the
system, or how much is still unused. As in a virtual
machine environment, the user's view is limited to his
resources. And as is typical in KeyKOS, in situations
where more authority is required, it can be granted
selectively.

Data Integrity

An optional type of storage is storage that is replicated
on different disk drives. This type of storage has been
found to be extremely useful for support of commercial
applications, where reliability is important. The failure
of a single disk or disk controller (if the storage were
not replicated) would result in the failure of some
domains.

Another type of failure that may occur is system crash.
Since KeyKOS supports a single-level store, a crash
could cause complete amnesia if it were not for the
checkpoint/restart facility. All of the system’s state
(outside of the kernel) is in pages and nodes, which
are written to disk. If the pages and nodes in memory
have been modified, thus becoming inconsistent with
the old versions on disk, they are recorded in the
system's checkpoint area on disk when a periodic
snapshot is taken (currently the interval is five

82

minutes). User code running in domains is unaware
of checkpoints, and the domains restart smoothly from
the last checkpoint after a crash. So far this
functionality has been found sufficient for the existing
commercial applications, but in the future some
applications might also want journaling. A journaling
facility has been implemented but is not currently used
by any commercial application.

i t tori
Each user may have one or more domain creators,
which he created using the official domain creator
creator. Once a domain has been created, one can
install code, data, and keys, and then the user has an
object (domain) of his own creation for his own use (or
anyone else's, should he be given a gate key to that
domain). But to handle the problem of mutually
suspicious users, another mechanism, trusted to be
tamperproof, is required. That mechanism is the
factory, and factories are analogous to domain
creators except that the objects (domains) that they
produce are sealed, which means that the the
algorithms are already installed and modification of an
object created by a factory requires the mutual
consent of the owner of the object and the owner of
the factory. In current practice, object creation is done
almost entirely by use of factories (which themselves
invoke domain creators) rather than by directly using
domain creators.

There is one additional new mechanism in KeyKOS
that is security relevant: sensory keys. In other
capability systems, a capability to a complex,
user-defined object containing data and capabilities
allows one the authority to access and modify the
object. In KeyKOS one can imagine a tree of nodes:
each node contains keys to data (pages) or other
nodes. In an attempt to create what would be
effectively a "read-only" key to the compound object,
the sense key was developed. Even though the fetch
key already existed, it was too strong: one could fetch
a node key from a slot in a node in the tree structure
and use that to modify a node lower in the tree. A
sense key performs much like a fetch key, but the
result of invocation is always the weakest (sensory)
version of the key being fetched. The sensory version
of a node, segment, sense or fetch key to a node is the
sense key to that node; the sensory version of a page
key is the read-only key to that page, etc. Sensory
versions of keys are the most primitive rights
attenuation mechanism in KeyKOS.

NE LUTION

By now it has become apparent that in KeyKOS
nothing is shared unless explicitly made so, that
access and communication can only be accomplished
via keys and that tree structures built of nodes are

common. It can easily be seen that isolation can be
achieved in KeyKOS -- simply divide the universe into
separate groups of keys at sysgen, and allow no keys
to point between groups. No matter how many new
objects and keys are created, or how many levels are
added to the trees, there will be no keys that point
between the groups.

However, it has already been pointed out that
controlied sharing, not isolation, is the goal of access
control mechanisms in KeyKOS. It is useful to be able
to implement appropriate and restricted sharing
between compartments, which means, for example,
allowing users in one compartment the ability to read
information in another compartment. The gaps in the
firewalls between compartments are called holes,

and they are implemented as part of the functionality
of factories. Factories are sources of objects of known
discretion (no Trojan horses). The measure of
discretion is the set of holes permitted in an object
produced by that factory. A hole is a non-sensory key
which designates some object outside the
compartment. Compartments are produced by
factories, and all of the objects which are descendants
of a particular factory have no less discretion (no
additional holes). Holes reference domain code (not
kerne! code) which must be trusted. This code is in
the domain, outside of the factory product, and
referenced via the hole.

A number of KeyKOS facilities contribute to the
solution of the propagation, review, revocation, and
migration problems. The propagation problem is
addressed by sense keys, compartments, and
factories. Sense keys convey weakened authority.
Compartments restrict the flow of keys. "Holes" in
compartments allow restricted communication.
Factories create objects with measured discretion.

The problem of achieving review is solved by
providing a security administrator (not yet
implemented) supported by a database which records
the connectivity (currently only a prototype exists).
Changes in the connectivity of the system cause
changes in the database, which keeps track not only
of the current state but also history and the time the
change occurred. Revocation is handled by more
straight forward means. Access to an object can be
eliminated by destroying the object, but this is not
always desirable. A less drastic and only slightly more
expensive way to revoke access is to provide an
additional level of indirection in the access path to the
object. The intermediate object can then be
destroyed, effectively revoking access. An important
point to be kept in mind is that if exchange of keys is
permitted, the connection cannot be severed. In
general, if you need to be sure the connection can be
revoked, key exchange cannot be allowed, although
in some cases an extra level of indirection to monitor
the exchange is sufficient control. Finally, migration is

83

a non-problem in KeyKOS. Keys and data reside in
separate spaces, there is no intermingling. And since
KeyKOS is a single-level store system, with
system-wide checkpoints, no keys ever migrate
outside the system.

KEY ACHIEVE NFINEMENT
KeyKOS was designed to handle the mutually
suspicious user problem, and does so without
resorting to "memoryless” processes12. Domains
have retained state between invocations, although
communication can be restricted. In a KeyKOS
system there is no concept of "file" or even "temporary
file." Consider the traditional scenario, wherein the
owner of a proprietary algorithm wants to make his
algorithm available for others to use but not to copy,
and the owner of proprietary data wants to use the
algorithm to process but not to copy his data. The
algorithm owner can build a factory which will produce
objects (domains) which obey his algorithm; then he
can provide the key to this factory to those interested
in the service. The data owner who receives the
factory key can pass that key to a factory of his own for
a discretion check which assures that the product of
the factory has no keys back to the algorithm owner (it
actually can only verify that the keys present are
benign, e.g. acceptable miscellaneous keys, sensory
keys, or that they are not). If the factory passes the
test, the data owner can have an object created from
space provided by his space bank (and thus owned by
him). He gets back a key to his object, which he can
then use without fear of a Trojan horse.

To examine the factory certification in somewhat more
detail, consider the situation when the user wishes the
objects produced by the factory to have no holes. He
passes the factory key to a factory of his own. Say the
suspect factory, which produces Trojan horse objects,
contains a key to its owner's space bank, from which
the factory products would get the storage to make
copies of the user's data. The suspect factory will not
be certified, because the user's factory will note the
presence of a key which is not permissible.

In KeyKOS, where domains are generally isolated
unless specifically allowed to communicate, the
problem of achieving total or selective confinement
reduces to control of communication. And since there
is no arbitrary mixing of keys and data, a factory
passed a key to another factory for the purpose of
verifying its discretion knows exactly where to look to
find keys: in the keys node.

In approaching the problem of access control, the
point is not how an access control policy is encoded in
a system (even though some people argue that it can
only be done at the level of the most basic
mechanisms in the system); the point is that the

access control policy is unavoidably enforced as
encoded.

There are no explicit security labels within KeyKOS
because they are not necessary. While they would be
necessary in a conventional operating system with
centralized checking, they are not appropriate in a
capability system. It is the connections you need to
trust in a capability-based system, not the /abels. And
based on the trusted connections, output can be
correctly labelled with its security classification.

internal labels on objects are important in systems
where one can somehow name an object (for
example, access by knowing an address or guessing
the name of a file). If the only way you can access an
object is by its true name (capability), then the
important issue is with whom one can communicate
who possesses and could transmit the true name. So
connectivity, not labels, is the important issue, and
KeyKOS provides effective mechanisms to control
connectivity.

ver nnel

Once it has been seen that a system does not allow
direct leakage of information, the next problem is
analysis of covert leakage, since covert channels of
large bandwidth could be responsible for significant
.information leakage. Conventional covert channels
which were described as "storage channels” (shared
files, shared variables) do not exist in KeyKOS, since
nothing is shared unless explicitly made shared. The
covert channels related to the system clock
(traditionally called "timing channels") do exist to some
extent.

For example, a domain could attempt to sense how
long it took to access a shared read-only page in order
to determine whether or not the page had already
been resident in memory. Whether the time required
to bring in a page is discernible from the scheduling
interval is difficult to determine, but we will agree that it
is theoretically possible. Similarly, when a domain
invokes a gate key to another domain, if the CALLed
domain was not "prepared” (in memory and ready to
run) some time is added to the usual gate jump
overhead and domain execution time which could be
sensed by the invoker when control is returned. The
busy or not busy state of a shared service domain
could also be used as a channel. Butin all these
cases the activity of other domains tends to obscure
the signal.

There are some additional obscure signalling
scenarios involving the interaction between
interruptible instructions and program event recording,
self-modification by interruptable instructions, and an
undocumented unprivileged instruction, all of which
describe cases wherein programs do not execute

84

deterministically. Since such events can affect a
program's execution, they can be sensed.

It has been noted that the covert channels that exist in
KeyKOS seem to be consequences of the underlying
machine architecture. In particular, the system clock is
responsible for the most promising covert channels.
These channels could all be closed by virtualizing the
system clock. 1BM has already made this architectural
modification experimentally 3, but it is not available

as a product.

SUMMARY

The security achieved by KeyKOS is the result of its
basic design concepts. None of the simplicity of the
nine basic concepts has to be complicated or changed
to enforce a security policy. Any unimplemented
security policy features will be implemented in objects,
not the kernel.

REFERENCES

[1] Hardy, N. H., "KeyKOS Architecture,” Operating
Systems Review, September, 1985.

[2] Goldberg, R. P., Architecture of Virtual Machines,
Proceedings of NCC, Volume 42, AFIPS Press,
1973.

[38] Virtual Machine/System Product CMS Command
and Macro Reference, SC19-6209, IBM, 1983.

[4] Goldberg, A. and Robson, D., Smalltalk-80 The
Language and lts Implementation, Addison
Wesley, 1983.

[5] Organick, E. 1., A Programmer’'s View of the Intel
432 System, McGraw-Hill, 1983.

[6] IBM System/38 Technical Developments, IBM
GSD G580-0237-1,1980.

[7] Levy, H. M., Capability-Based Computer
Systems, Digital Press, Bedford, MA, 1984.

[8] Wulf, W. A, Levin, R., Harbison, S. P.,
HYDRA/C.mmp An Experimental Computer
System, McGraw-Hill Book Company, 1981.

[9] KeyKOS Principles of Operation, KL02, Key
Logic, 1985.

[10] Lauer, H. C. and Needham, R. M., "On the

Duality of Operating System Structures,”

Proceedings of the Second International

Symposium on Operating Systems, IRIA,

(1]

(12

[13]

October, 1978, reprinted in Operating Systems
Review, 13,2, April, 1979.

Department of Defense Trusted Computer
System Evaluation Criteria, CSC-STD-001-83,
Department of Defense Computer Security
Center, 15 August 1983.

Lampson, B. W., "A Note on the Confinement
Problem," Communications of the ACM, 16,10,
October, 1973.

Canon, M. D., Fritz, D. H., Howard, J. H., Howell,
T. D., Mitoma, M.F., and Rodriguez-Rosell, J., "A
Virtual Machine Emulator for Performance
Evaluation,” Communications of the ACM, 23,2,
February, 1980.

85

