
1

6.858 Final Project: Distributed Authentication on the
Ethereum Blockchain

Michael Shumikhin, Sarah Wooders, and Ryan Senanayake

Abstract— We introduce KeyChain, a trust-
less authentication system which stores user-
name to public-key mappings on the Ethereum
blockchain. Keychain includes ann account re-
covery feature, where users set up a “web of
trust”, where users can authenticate other users
via the mapping and recover their accounts if
k of n members of their web of trust approve.
We implement a prototype of Keychain using
an Android app to control a user’s account
and store keys, a Node.js app as an example
application to authenticate with KeyChain, and
the Ethereum blockchain to record name/key
mappings and the user’s web of trust.

I. INTRODUCTION

The current state of digital authentication
requires significant trust in 3rd parties. Users
need to trust websites to store their pass-
words safely. Websites need to trust users to
choose secure unique passwords, which the
majority of users will not do. And even for
the minority of users who do, their account
can still be compromised by trusting recovery
emails, computers with malware, companies,
etc. KeyChain aims to improve upon current
authentication systems with the following fea-
tures:

• Trust-less authentication Users do not
need to trust KeyChain or any websites
they authenticate with.

• No passwords: Confirmation on a trusted
device provides access.

• One account: One KeyChain account al-
lows for access to all website accounts

• Safer recovery: Users can recover for-
gotten private keys or revoke access for
compromised keys without compromis-
ing their security by relying on recovery
emails or security questions.

Recoverability is a crucial aspect of a useable
authentication system. If it is too difficult for
a user to recover from losing or forgetting a

secret, there will be no adoption of a system
even if it is more secure. This is an issue with
public-private key encryption, which offers no
ability to recover from a lost private key file.

Below is outlined a comparison of our sys-
tem with a few different methods of authenti-
cation:

A. Website stores hash of password

A User has to trust the website to store
their password correctly, which often is not
the case and results in key compromise. Web-
sites also trust that users will choose unique,
high-entropy passwords, which for the large
majority of users is not the case. Additionally,
many sites will provide a forgot your password
option, which relies on security questions or
a recovery email, both of which may be even
less secure than the password.

B. Sign in with Google, Facebook, etc

This requires trusting the company behind
the authentication platform, which may not be
a big deal for the majority of users, but it
does mean that there will likely never be one
solution that everyone uses. For example, Ap-
ple would probably not like the idea of trust-
ing Google for their authentication system.
Additionally, these systems still rely on the
user picking a unique, high-entropy password.
Best practices also dictate that a user make
these hard to remember passwords different.
While it is easier for a user to make one good
password, it is often easier for a user to make a
memorable username which may be protected
with public key cryptography.

C. Providing public key to website

While this is a much more secure system, if
you lose your private key it is not possible to
recover. Furthermore, this is not a prevalent



2

means of authenticating to a website as it
requires a separate challenge and response
client on the device to respond to authenti-
cation requests from the website. Allowing
multiple private keys to authenticate a public
user/record provides significantly more flexi-
bility.

D. Secret Sharing

Secret sharing allows for a private key to
be distributed in pieces to form a web-of-
trust like recovery mechanism. This could be
used in conjunction with providing a public
key to the website to allow for recovery from
losing a private key. A significant disadvantage
of this system, however, is that if a private
key becomes compromised, there is no way to
change the private key. Therefore, an attacker
would still have full access to the account.

E. NameCoin

Namecoin allows users to claim identifiers,
associate public keys with those identifiers.
Namecoin allows users to purchase ownership
of any number of unclaimed names for a
set fixed fee per name. KeyChain addresses
several usability and adoption shortcomings in
Namecoin. The primary usability limitation is
that if users ever lose the private key used to
register an identifier , they will permanently
lose control over that identifier. With Key-
Chain’s web of trust, recovery is possible and
built into the system. Similarly, if a key is
compromised, an identifier can be permanently
and irrevocably hijacked. In keychain this is
avoided by allowing any associated key (prior
to web of trust recovery) to revoke the set of
associated keys for an identifier. Thus, Key-
Chain requires significantly less key manage-
ment effort and are not excessively burdened
by responsibility. As any Ethereum address
can participate in the KeyChain authentication
system and since Ethereum is significantly
more utilized than Namecoin, we believe Key-
chain is more amenable to adoption.

II. THREAT MODEL

Our primary goal is to provide robust
username-based authentication without expos-
ing private keys or relying on 3rd parties.
We assume that users store their keys on a

trusted device and that private keys are only
exposed for the signing of challenge-response
and at least n-k of designated recovery users
are trustworthy. We assume the attacker can
compromise the website, the network, and
fewer than k recovery users for a given user.

We develop Keychain system based on a
mobile app for the user-facing side, similar to
the DUO mobile app.

III. APPROACH

A. Authentication

We build a prototype for Keychain with
three main components: A mobile app for
account management and key storage, a smart
contract for interfacing with data stored on
the blockchain, and a dummy webapp which
contains a KeyChain authentication form. A
new user will create a KeyChain account by
downloading the KeyChain android app and
making an account, which will generate keys
to be stored on their mobile device. Key-
chain is based off Elliptic Curve cryptogra-
phy, making the assumption that users will
have an Elliptic Curve private key securely
stored on their physical devices (e.g. phone or
computer). Users can then authenticate with
a web application by clicking “Login with
KeyChain” on the website, which will redirect
them to a QR code page. The user scans
the QR code from their mobile device, which
provides them with a nonce and callback
URL to the webapp. The callback URL is
called from the mobile device to send data
containing the user’s public key, the signed
nonce, and keychain ID to the webapp. The
webapp verifies the keychain ID to public key
mapping with the Ethereum blockchain as well
as that the nonce was signed by the public key.
Once this is verified, the web server provides
an access token to the client’s browser. An
overview of the system can be seen in Figure
1.

B. Web of Trust

Whoever is trusted by k out of n members
(where k is chosen by the user) of the web
of trust is defined to be the correct user of an
account. Our system does not account for a
malicious web of trust. When the user creates
an account, they designate an initial web of



3

Fig. 1. The user downloads the Keychain mobile app
to register an account, create a web of trust, change their
keys, or revoke their account. The authentication process
is as follows: 1.) A user requests to log into a webapp,
and is shown a QR code. 2.) The user scans the QR
code with their mobile app. 3.) The mobile app sends
the signed nonce and Keychain ID to the web server. 4.)
The web server verifies the public key to Keychain ID.
5.) If verified, access token provided to client.

trust as well as a starting public key. Once this
is formed, the user no longer has the power to
change their web of trust. The web of trust
should be able to elect a new web of trust
(though this is not in the current smart contract
implementation).

Once this trust anchor is established, the
web of trust can at any time vote to wipe
the user’s account and start fresh with a new
public key. Any user with a public key that
was added since the last web of trust vote
also has the power to force a web of trust
vote by freezing the account (see section 5.5
to see how this helps mitigate the effects of a
compromised key). Note that even a public key
that was removed and therefore does not have
login access can still force a vote. A public
key with current login privileges is allowed to
add or remove other public keys to allow for
the user to add other devices or delete a public
key when they lose a device.

IV. IMPLEMENTATION

We provide the details for the three main
components of Keychain. We implement the
mobile app as an Android app, our smart
contract using Solidity for the Ethereum
blockchain, and a dummy webapp using
Node.js.

A. Android App

The Android is the primary method for
account management. Users create their Key-
chain account using the Android app. Users
can import an existing Ethereum wallet key
file into the app (this file is always transmitted
encrypted by a user-known password. A future
implementation would also allow the user to
generate a new key pair within the app so
it does not leave the device. Importing an
Ethereum wallet provides the convenience that
this wallet is already funded and therefore can
pay for the transaction fees on the network.
We experimented with methods that did not
require the user to pay transaction fees, how-
ever, we think that this is important to prevent
name-squatting. We think that this problem
will be less severe in Keychain than in Name-
coin as the meaning of identifiers don’t have
intrinsic value unlike domain names.

Once the user creates an account, they are
prompted to add other users to their “web of
trust”. Once they are logged in, they can vote
for a reset of another account’s public key
via the web of trust. They can also authorize
new public keys for use on different devices.
All of these interactions are transmitted to an
Ethereum node run by Infura, which sends
transactions to interact with the smart contract.
The most heavily component of the Android
app is the QR scanner that will send the
response to the callback URL. We had a
difficult time replicating the Ethereum elliptic-
curve cryptography operations on Android and
had an even harder time making sure that
our node.js library was accepting the same
encoding of the signature as Android was
creating. However, we were able to do this by
using cryptography operations provided by a
third-party library and sending the components
of a signature separately to the web server.

B. Ethereum Smart Contracts

We implement a smart contract in Solidity
to store a trusted mapping from user ids to
a set of authorized public keys and manage
accounts and keys. We include the following
methods:

Do_add_key(bytes32 user, address
new_key);

Do_add_key(bytes32 user, address
new_key);



4

Fig. 2. Users can register and account, add members
of their web of trust, and revoke their account using the
Keychain Android app.

Do_recover_address(bytes32 user,
bytes32 recovery_user, address
new_address);

Do_recover(bytes32 username,
address new_address);

Do_revoke(bytes32 username);

New users are added to KeyChain us-
ing the Create_username method. The
Do_add_key function is used to associate
more keys with a username. The trustless
storage/computation offered on the ethereum
blockchain is able to make updates to this
state. A user-id can map to many public-
private key pairs and likewise a public-private
key pair can map to many user-ids. This
provides a user with a significant amount of
flexibility to silo user-ids by device, public-
key pair, and 3rd party service.

Recovery users are stored as an immutable
array of user-ids whose constituent public keys
can designate a new public key for a com-
promised user-id. If any of a user’s private
keys are compromised then members of the
user’s recovery group can designate a new
recovery public key for the user by calling
the Do_recover_address function with
a new recovery address. Once a pre-specified
k of n majority of recovery users have des-
ignated a recovery public key, the contract
re-assigns the user-id to public key map-
pings to the new key after anyone runs the
Do_recover function. The contract is able
to revoke the set of key pairs associated with
any key currently associated to a user-id using
the Do_revoke function.

C. Node.js Front End

We create a dummy website that uses
Keychain authentication. We use the web3

library for Javascript to interface with an
ethereum node run on Infura. This node
allows us to interface with the Solidity
contract. Users authenticate with the webapp
by clicking "Log in with Keychain", which
directs them to a QR code image contains
a nonce and callback URL for sending data
back to the web server. On receiving this
QR image, the browser receives a signed
token by the website that authorizes it for
use of this nonce. The web server ensures
that it gives unique nonces to each request.
The mobile app scans this image and then
signs {nonce,KeychainID}. The mobile
app then sends this signed message as
well as the public key used to sign to the
callback URL. Once the web server receives
this request, it verifies that the nonce was
signed by the public key. Then, it verifies
the Keychain ID and public key by calling
Query_user_keys(bytes32 username)
from the Solidity contract. Once verified, the
client can send its signed token and exchange
it for a typical authorization token for that
user’s account.

V. EVALUATION

KeyChain is built to be secure without re-
lying on trusting any centralized entity. We
outline some of the threats that we are most
worried about in this section.

A. Compromised Website

A typical threat that affects passwords con-
sists of an attacker who has gained access to
a website that the user has an account with.
Depending on how the password is stored, the
attacker may be able to recover the user’s pass-
word and have access to all accounts that share
the same password. This relies on trusting
the website to store your password correctly.
Ideally users would use different passwords
on each website, but realistically this does not
happen.

In KeyChain, the attacker can only recover
the user’s KeyChain id. With this information,
the attacker can only discover the user’s public
key, which does not compromise any other
accounts owned by the user. In addition, we
assure some level of confidentiality as an
attacker is only able to associate this account



5

with other sites that make the uncommon
choice to make the user’s KeyChain ID public.

B. Phishing

Among the most common and costly attacks
today, phishing is a persistent problem for
most services. Certificates, spam filters, and
anti-phishing images/codes have been able to
protect many users, but inherently visiting a
compromised or similar-looking website al-
lows for a MITM attack to the real website that
the user intends to authenticate with. As the
website has a trusted mapping between users
and public keys, this allows for a secure chan-
nel to be created with the user that cannot be
MITM’d. This will not work with the Android
app, but would work with a browser extension
(not included in current implementation) that
can decrypt the received token for the browser.

C. Altering the KeyChain ID to public key
mapping

If an attacker was able to alter this mapping,
they could substitute their own public key and
proceed to take control of a user’s account. In
a centralized service, we would worry a lot
about mechanisms for user’s to check the in-
tegrity of this central database, but we can rely
on the immutability property of blockchains
to protect this mapping. As long as our smart
contracts are implemented correctly, changing
this mapping would require a cryptographic
attack on a user’s public keys.

D. Brute-force attacks

We use the same cryptography scheme as
Ethereum and so if a cryptographic attack
was possible on our public keys, then every
wallet on Ethereum could be compromised by
the same attack. We maintain the same brute-
force resistance as any other Ethereum key-
pair based on the secp256k1 elliptic curve and
KECCAK-256 hash function.

E. Physical access to a user’s device

While we are most worried about low-
cost remote attacks, KeyChain also guarantees
some security from an attacker with physical
access to a user’s device. On Android, the
private key is stored as an Ethereum wallet file

and encrypted with a password on disk. This
password is stored securely by the application
and used to decrypt the wallet once the user
has provided their fingerprint or device pin
code.

We are still worried about an attacker us-
ing the user’s device to add a new public
key to their KeyChain ID then could then
remove the victim’s public key so that that
they become locked out of their account. This
would require an attacker having possession of
a user’s device and knowing their pin, pattern,
or fingerprint to authorize the creation of a
signature. With this information an attacker
would also have access to the user’s email
accounts which they could use to change the
password on all websites that use this as a
recovery email.

We also provide the ability to recover from
this attack. Our smart contracts allow for any
public key that was ever added to an account
(even if it was removed by an attacker) to
freeze the account. This revokes all current
public keys associated with the user’s account.
Once this has occurred, the user must request
the web of trust to create a new public key.
Therefore, even if the attacker has a compro-
mised private key, they only have access to
the user’s account until the victim notices the
attack and locks their account. This is much
better than a scheme where the user directly
provides their public key to a service as in this
scheme the attacker becomes indistinguishable
from the victim and therefore has unbounded
access to their account.

F. Attacker on the network

As the response is coming from a different
device than is being logged in, extra care must
be taken to ensure that an attacker does not
authenticate herself with an existing challenge
response. As an example, a possible attack is:

1) The user attempts to login and creates a
challenge

2) The user’s browser starts polling the
server for the result of the challenge

3) An attacker starts polling for the same
challenge response

4) The user completes the challenge
5) Both the attacker and user are logged in

To prevent this attack, the NodeJS Integration
Library ensures that each random nonce is



6

only provided to one user and is given a signed
token to prove that it should be signed in
when the challenge completes. As long as this
token is transmitted over a secure channel, this
ensures that the system is no longer vulnerable
to this attack.

G. Compromised Application Code

An attacker could potentially introduce vul-
nerabilities in our application code and dis-
tribute this to users if they obtain our pub-
lishing keys for the Android and Chrome app
stores as well as our publishing account infor-
mation. Publishing keys will be kept offline
to help deter this threat. We will also be
open sourcing all of our code so that anyone
can choose to build their own versions of the
applications. Finally, our applications are only
reference implementations and anyone could
choose to make their own implementation,
which can still interact with our smart con-
tracts.

VI. CONCLUSION

Our design addresses flexible user-id recov-
ery, key revocation, phishing resistance, and is
MITM resistant. We believe that the privacy of
user-ids and associated recovery users can be
improved upon in future iterations using hash-
ing for privacy or a similar method. A weak-
ness of our design is that users/services cannot
easily transition to use KeyChain and that
transactions require Ethereum to fund which
is not easily available to end-users. Overall,
we hope our design provides advantages in
the area of user authentication compared to
current alternatives.


	Introduction
	Website stores hash of password
	Sign in with Google, Facebook, etc
	Providing public key to website
	Secret Sharing
	NameCoin

	Threat Model
	Approach
	Authentication
	Web of Trust

	Implementation
	Android App
	Ethereum Smart Contracts
	Node.js Front End

	Evaluation
	Compromised Website
	Phishing
	Altering the KeyChain ID to public key mapping
	Brute-force attacks
	Physical access to a user’s device
	Attacker on the network
	Compromised Application Code

	Conclusion

