
Moira and AFS in Theory and Practice: A Survey of
Security Awareness in Actual Practices of the MIT

Community

Ray Hua Wu

Abstract— The Massachusetts Institute of Technology
(MIT) is infamous for the lack of security in its electronic
infrastructure, often patching vulnerabilities at a glacial
pace and frequently relying on the delicate cover of
security by obscurity and wishful thinking that a system
will happen to not have holes. By focusing on Moira
and AFS in particular, as well as their interaction with
each other, we note how thin its veil of security really
is, and furthermore examine to what extent its usage by
members of the MIT community demonstrates general
community awareness of proper usage of MIT’s services.

I. INTRODUCTION

Moira is a database management system for the
retrieval and modification of information regarding
mailing lists, printers, and several other electronic
services in a Kerberos-authenticated system. Its
majority use case among members of the MIT
community is the management of mailing lists,
for which multiple in-browser and command line
interfaces exist.

Moira mailing lists could have several properties
set. They could be private, indicating that only
owners of the list can add members to the list,
or public, indicating that anyone with credentials
to WebMoira could add themselves (but not oth-
ers, unless they also own the list). They could
be visible, indicating that anyone can view the
properties and membership of the list, or hidden,
indicating that only the owners can see the list’s
properties and membership (in particular, not even
members of the list that aren’t owners can see
the list’s properties and membership). They could
also be set to be groups upon which ACLs can
be set for directories of AFS. There are also some
other properties that this paper will not touch on.
In the cases of all Moira lists, any user with
Kerberos credentials can remove themselves from
a list they’re on, regardless of whether it’s public

or private or whether it’s visible or hidden. This
is a good idea: everyone should have the right to
unsubscribe themselves from a mailing list when
they see fit, and not have to deal with the traffic
of a mailing list just because someone else added
them. We’ll later investigate how available this
option really is in practicality.

Another feature of Moira lists is that one could
add not only users but ’strings’ to the lists. This
allows people to place e-mail addresses outside of
the MIT domain onto a Moira list. Note, however,
that in these cases such people will be unable to re-
move themselves from the Moira list. Particularly
problematic is that ’strings’ without a specified
domain are assumed to be @mit.edu, which we
will touch on later.

One means of managing Moira lists is Web-
Moira1. The WebMoira interface allows a user,
given provided Kerberos credentials, to make mail-
ing lists, to view the membership and properties of
mailing lists they own and for which they’re on (in
the latter case, as long as the list is not hidden),
and to add and remove themselves or others from
lists provided they have the permissions to do so,
as well as to alter the properties of lists that they
own. To facilitate ease of use, WebMoira imple-
ments several user-friendly features, like provid-
ing autocompletion suggestions for queries made
for list lookups and for list or user additions.
In previous work, Scott Robinson demonstrated
that the autocompletion feature for adding to a
list membership was insufficiently cleansed, and
showed an XSS vulnerability2. Despite this reve-
lation occurring over a year ago, the vulnerability
is still not patched.

1http://groups.mit.edu/webmoira/
2http://css.csail.mit.edu/6.858/2017/projects/srobin.pdf



The command line utility blanche provides
many of the list management capabilities that Web-
Moira provides, plus a few more. One of these is
the specification of a MemACL for a list: to give a
user or list permissions to alter the membership of
a list but not to manage its properties. As we will
see later, the blanche utility both does not have
certain problems WebMoira has and also exhibits
some problems WebMoira does not.

Curiously, neither WebMoira nor blanche
gives the general MIT community member a func-
tional means to delete a mailing list. In order to do
so, one must resort to other Moira interfaces, like
qy and moira. The former, qy, is infamous for
being deplorably badly documented and to seem
like utter incantational magic, and has already been
known to contain vulnerabilities3.

AFS (the Andrew File System) is MIT’s file
system of choice, on which files in Athena, MIT’s
computing environment, are stored. A key distinc-
tion of AFS from the typical UNIX filesystem is
that read and write permission bits of individual
files are ignored and overridden with directory
access privileges. AFS’s fs command suite in-
cludes the command fs la, which can be used to
display the permissions of a directory. The various
permissions that can be granted are l (lookup
permissions: practically permissions to list and
to see permissions), r (reading permissions), i
(inserting permissions), d (deleting permissions),
w (writing permissions), k (locking permissions),
and a (administrative permissions). These permis-
sions can be granted for individual users or many
users treated as a group. As hinted above, a key
interaction between Moira lists and AFS is that
Moira lists can be made to also be AFS groups,
and thus be on an ACL for a particular directory in
AFS. The fs command suite also includes fs sa,
which allows for changing the ACL on a directory
for a particular group or individual user. AFS,
interestingly, also has a web interface4.

We will investigate how these systems are prac-
tically used by the MIT community, and note
how common it is for them to be used in clearly
insecure ways. Afterwards, we will discuss means

3Specifically, the ’geml’ operation can be used to bypass the
hidden property and view the contents of a hidden sub-list.

4https://stuff.mit.edu/afs/

of addressing the levels and forms of misuse of
these systems in practice.

II. MOIRA SYSTEMS

A. Practical Assumptions of List Management Ca-
pability in the General MIT Community

Although there exists an entire palette of dif-
ferent tools with which to interface with Moira
lists, from WebMoira, to blanche, to qy, to
the moira command itself, the vast majority of
members of the MIT community are unfamiliar
with most of the capabilities of these tools. It is
perennially evident in several public mailing lists
of the MIT community that a significant number
of people are not even acquainted with WebMoira,
given the frequency of e-mails requesting addition
to or removal from the list. As this is the only
tool that is not a command line interface, any
user unfamiliar with the command line cannot be
assumed to be able to use the other options, and
most that are familiar with the command line can
only be reasonably assumed to be familiar with
blanche.

B. Availability Attacks

The set of characters a Moira list’s name is per-
mitted to contain is not the same set as characters
permitted by the listmaker tool. Beyond the list-
maker permitted character set, $ and ’ can be used
in Moira list names, although they will have to be
arrived at via renaming an already-made list (an
operation not supported by WebMoira). WebMoira
fails upon a request to resolve a name containing
either of these characters, redirecting the user back
to the WebMoira home page. This means that a
community member could add someone with only
WebMoira capabilities to a list they can’t remove
themselves from by simply including a $ in the
list’s name.

In fact, because the blanche utility is writ-
ten with suboptimal argument parsing, and thus
attempts to read any first argument to blanche
starting with a hyphen (-) as an option, one could
craft a list name beginning with - and containing
a $ somewhere in it, and create a list that can’t be
operated on with either WebMoira or blanche,
excluding the vast majority of the MIT population
from effective list management.



On an even more fundamental level, though,
causing a user or group of users on a list to
receive mail they don’t desire and have a hard
time unsubscribing themselves is as easy as adding
them to the list as a string rather than a user,
because of the @mit.edu default assumption.

A malicious user could also not just target a
particular user for mailing list inconvenience, but
also everyone using Moira lists. Since mutating op-
erations on the membership of Moira lists require
the updating of all addresses anywhere recursively
within the sublists of a list, the time to complete
an operation in Moira scales with the depth of
a Moira list; these operations can cause such a
slowdown that Moira lists with 4096 sub-lists are
actually hard-prevented from being added to an-
other list. Attempting to add a Moira list with too
many sublists, like list-of-lists-of-lists@mit.edu, to
another list gets the user a Moira internal
consistency error. Nevertheless, lists with
nearly this number of sublists can still cause hours
of Moira operation backup, creating significantly
noticeable inconvenience for anyone else trying
to update their list at the time. This has, in fact,
occurred inadvertently in the past.

Ironically, the fact that a hard cap to the sub-list
capacity of a Moira list presents an extremely the-
oretical and nearly completely impractical means
to prevent another user from adding a list one owns
to a different list, which comes with the effect
of thwarting hidden list content attacks based on
unchecked recursive list query. In fact, one could
even still modify the list sub-structure of sub-lists,
as the check for number of sub-lists only happens
upon a list being added to another list, not changes
to its internal structure. Hence, a list can actually
have more than 4096 sub-lists, as long as one
performs the list additions in the correct order.
This is a property of Moira lists just waiting to
go wrong.

It is also possible to cause a mailing list to
effectively send mail to more than 4096 different
lists without strategic ordering of list additions,
because once again, lists can be added as strings
rather than as the lists themselves. In fact, it is
completely possible to create a mailing list loop
simply by adding a list A to list B, and then adding
list B itself as a string to list A, bypassing the

check that prevents a list from being added to itself
or any of its sub-lists.

C. Permission Sets on Lists

Moira performs no checking to reason if the set
of properties a user desires a list to have makes any
sense from a security perspective whatsoever. One
actually fairly well-known problematic combina-
tion is for a list to be both public and owned by
itself. We will discuss this combination here and
being both public and a group in the next section,
on AFS.

When a user specifies that a list is both public
and owned by itself (often simply referred to as
”self-owned”), the user claims they want anyone to
be able to add themselves to the list, but also that
anyone on the list has full permissions to modifi-
cations to the list; in other words, anyone has full
permissions to do what they want to a list, and
they obtain this by simply adding themselves. This
allows arbitrary hijacking of a list from someone
who manages to discover it.

Certain manifestations of social forces make it
easy to unwittingly create public self-owned lists.
When a list was originally owned by one user,
but that user has graduated and is about to lose
their Athena account, it takes only a moment
of not wanting to deal with finding specifically
who to will a list to and to just make the list
self-owned for its ongoing users to figure out
themselves, while not remembering that the list
has been made public, for this result to manifest.
A simple alert upon detecting this combination
of properties could prevent several cases of this;
Moira does already perform some level of sanity
checking, for instance to automatically populate a
list upon creation with the list’s creator if the list
was created to be self-owned and private; the idea
of sanity checking could simply be expanded.

Finding public self-owned lists is not difficult;
for those that do not wish to write a script to
recursively make a combination of blanche, qy
geml, qy glom, and qy gaus queries, there’s
always Zixiao Wang’s subscribe service5, which
will friendlily cater a randomized platter of public
lists for sampling to you.

5https://garywang.scripts.mit.edu/subscribe/



D. When is a MemACL a good idea?

In giving a user or a list MemACL permissions
to a Moira list, one provides them rights to add or
remove everyone. Although it is quite reasonable
to provide the rights to add anyone to a list while
not providing rights to change the list’s properties,
it is awkward that there does not exist an option
to provide just the add and not the remove per-
missions. In particular, in the event of a public list
MemACLed to itself, although this situation is far
better than a public list owned by itself, anyone
could time removing a member of a list such that
they would not receive a crucial e-mail when the
expected time of arrival of the e-mail can be well
predicted in advance.

III. AFS IN PRACTICE AT MIT

A. Permissions in User Lockers

Across Athena’s users, there are several different
permission sets of home directories represented.
One notable distinction is between users with
system:anyuser permissions on their home
directory set to l (listing permissions only) and
users with system:anyuser permissions on
their home directory set to rl (reading and listing
permissions).

It is very possible that users that chose the
latter are in fact aware of the ramifications of their
choice, and have taken the necessary precautions
to make such a choice a reasonable idea, that is,
either automatically cleaning up sensitive dotfiles
in the home directory or setting up symbolic links
to direct data that would be written in the home
directory elsewhere. In a quick survey of users
with system:anyuser rl home directories,
though, this does not appear to be the norm.
Numerous users with such home directories do not
redirect their .bash history, and in some even
worse cases, do not redirect their .my.cnf, which
stores their sql.mit.edu password in plaintext.
Some users that use zephyr do not redirect their
.zephyr.subs, which means that secret classes
they’re subscribed to are not secret at all if the only
source of secrecy is a communal agreement to not
share the class name, and encrypted secret classes
can still be discovered, allowing an adversary to
subscribe there and analyze traffic patterns at the
encrypted class. If .crypt-table is also in the

user’s home directory, then an adversary can even
know the location where keys for the crypt classes
are stored. And because new directories that are
made inherit the permissions of the directory it
was made in, if such a user did not remember
to edit permissions of new directories made to
store crypt keys, the new directories would take
the default value of system:anyuser rl and
all crypt keys they store are accessible to anybody.
Because of the existence of the pts ex command
and its capability to lookup by ID number, system-
atically finding all users with lenient permissions
in their lockers is a matter of finding the highest
pts id before the massive gap for root instances
and iterating lookups for ID numbers up to this
determined number.

What is arguably particularly problematic about
this situation is that one’s default Athena setup
provides some incentives for users to make their
home directory universally readable, in that one
could set a ˜/.plan file that other users could
read via running finger on them, in a sense
providing an option to personalize their Athena
presentation. (In addition, due to the high preva-
lence of system:anyuser rl home directo-
ries in older accounts, it seems it may be the case
that users may have had their home directories
universally readable by default when they received
their Athena accounts. If this has indeed been
the case, it is a good step that the decision was
made to discontinue this default, but it also means
many old users are likely even less aware of
the implications of this permissions set.) In fact,
the finger command, among the other means
via which it can be argued to be multitudinously
privacy-insensitive, is an excellent litmus test for
whether someone’s home directory likely exhibits
exposure of sensitive information.

B. Permissions in Activity and Class Lockers
Many student organizations and classes at MIT

choose to utilize an Athena locker, and several
add ACLs to their locker for various lists of
people, so that they could directly contribute to
the contents of the locker. As Moira lists support
also being an AFS group, many organizations and
classes provide permissions to people on certain
Moira lists. Unfortunately, in several instances, the
organization and class both decide to make the



associated Moira list public and provide the list
generous permissions to the locker. In particular,
15 classes, 2 of which are in the Department
of Electrical Engineering and Computer Science
(course 6), provide at least rl permissions to a
public Moira list, and in the vast majority of these
cases (including both course 6 classes), the permis-
sions given are rlidwka, the entire complement
of capabilities. That is, any member of the MIT
community who uncovers this could change the
contents of the activity of class locker to their
will; there are zero electronically-enforced barriers
stopping them.

It tends to be the situation in these lockers that
the OldFiles directory, intended for use as a
backup (though even still only processed once a
night), also has rlidwka permissions as well,
thus allowing any attacker to modify data in the
backup as easily as they could modify the original
file. Though IS&T also offers a ”backup from
tape” option in the event OldFiles fails, they
guarantee no less than a week to process such a
request, so effects could be drastic for well-timed
attacks.

Finding Moira lists that are also groups with bad
permissions is even easier than finding users with
lenient permissions on their home directory: as any
MIT community member can create an AFS group
at any time, and these group IDs are assigned
sequentially, one can simply make an AFS group,
note its ID, and iterate through the group IDs less
than this maximum.

Among such Moira lists for activities, there exist
multiple that are in fact all three of public, self-
owned, and an AFS group: any arbitrary member
of the MIT community has the full power to imme-
diately upon discovery hijack the access control list
and obtain full permissions to the activity including
removing control from the current owners, and the
only thing in their way is obscurity, which is taken
away as easily as the above-mentioned iteration.

IV. PROPOSED SOLUTIONS

Several of these issues are greatly due to the
obscurity of information about systems involved.
Many of them could be greatly palliated by warn-
ings that make users more aware of the implica-
tions of what they have just tried to do. If Moira’s

systems are unwilling to plainly disallow making a
public list self-owned or a group, it could at least
provide a warning to the user that such a change is
about to be effected, as these are states of mailing
lists one could easily bring about unintentionally.

Athena home directories should simply not
come with a ˜/.plan. Very few people use it
for a productive purpose anymore, and it tempts
people to make their home directories universally
readable so that witticisms can be viewed upon
finger.

In some of these cases, there is a feature that
really just does nothing except for causing issues.
Strings added to a Moira list without a domain just
simply shouldn’t be defaulted to @mit.edu. There
is no good use case for this.

The biggest overarching theme of all, though,
is that MIT’s electronic systems should stop being
so dependent on security by obscurity. Many of
its systems are very complex and for which there
are convoluted paths of least resistance around
security safeguards, in which case the lack of
documentation contributes to lack of clarity and
issues and does not stop the actually determined
adversary. Systems should be explicit with warning
upon dangerous states, as it may very likely be the
case a user that effected such a state had actually
no intention of doing so.

V. CONCLUSIONS

MIT’s electronic infrastructure is full of secu-
rity issues, but a possibly even greater problem
is a lack of understanding in the general MIT
community of proper usage of Athena’s tools.
Users, organizations, and classes alike configure
their permissions poorly enough that in the worst
cases any member of the MIT community could
hijack control of their entire set of files on Athena.

Unfortunately, MIT’s services and the docu-
mentation provided with them often use terms or
present ideas in such a way that most users would
not suspect dangerous security issues with casual
usage. What’s more, such documentation often
specifically tries to avoid mentioning the security-
sensitive cases, in order to effect a sense of security
by obscurity. This ends up both not being effective
and not warning users about potential pitfalls.
Certain utilities available in Athena in fact guide



users towards making security mistakes. In order
for the state of security in MIT’s computer systems
to become less embarrassing, an important step is
to equip utilities with warnings to users that an
action they are taking is potentially dangerous, and
to not include ”features” that incentivize dangerous
usage, particularly those that add absolutely no
value in the modern day.



Figure 1: The Athena blanche command fails to correctly parse Moira lists
whose names start with a hyphen, even when the hyphen is escaped.



Figure 2: This list, -$’@mit.edu, is a valid Moira list, but because it averts usage
with blanche by starting with a hyphen and averts usage with WebMoira by con-
taining a dollar sign and an apostrophe, operating with it (for instance removing
oneself from it) is outside the capability of most of the MIT community.

Figure 3: Attempting to add list-of-lists-of-lists@mit.edu to a list results in a
moira internal consistency error.

Figure 4: The fact that list-of-lists-of-lists@mit.edu is saturated with lists does
not prevent it from being added to list-of-lists-of-lists-of-lists@mit.edu as a
STRING.



Figure 5: WebMoira is perfectly happy to allow a user to add a list somewhere
in its sub-list structure, so long as it is added as a STRING. Without a domain,
the STRING some-chicken will default to resolving @mit.edu.

Figure 6: A segment of the output of an exhaustive iterative query of users,
using the lookup-by-id capabilities of pts ex.



Figure 7: A segment of the output of an exhaustive iterative query of groups,
using the lookup-by-id capabilities of pts ex.



Figure 8: A public self-owned list with rlidwka permissions to the Athena locker
of a course 6 class, as well as its backup directory.



Figure 9: A user who has made sure to simlink out the .zephyr.subs file, but
left their .bash history viewable by anyone.

Figure 10: A user who has made sure to simlink out the .bash history file, but
left their .crypt-table and their .zephyr.subs viewable by anyone.



Figure 11: A user who clearly did not intend to leak a part of their zephyr
subscriptions.


