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Abstract

Intrusion detection systems often rely on hard checks of incoming re-
quests to identify whether traffic is safe or malicious. Various machine
learning approaches have been developed to mine large-scale network logs
and help to identify anomalous traffic patterns. In this paper, we apply
several machine learning approaches to real data from the MIT network.
We describe how these methods could be useful both in future research
and for improving network monitoring systems.

1 Introduction

When enforcing the security policy on a network, the ability to identify at-
tacks and irregularities is crucial. Traditional intrusion detection systems rely
on “signature-based” methods, in which features of traffic are compared against
features of known attacks to determine if the traffic is malicious [1]. Unfortu-
nately, these methods fall short as they are not able to protect against zero-day
exploits until the attacks are detected and the master lists are updated.

Instead, researchers have turned to various methods from data mining and
machine learning to automatically detect intrusions (anomalies) in network traf-
fic. In one perspective, supervised anomaly detection, the algorithms are given a
training set of normal data (no intrusions) and then later are given some traffic
data and determine whether its patterns are “normal” or not. These algorithms
typically work by learning a generative distribution of normal data, and then
test whether new data would have been likely to come from that distribution.
However, it is generally hard to find a training set of data that is large enough
to contain a sufficient number of normal patterns but no malicious traffic.

It is also possible that the training set contains both normal data and labeled
intrusions, such that the algorithm can identify particular types of intrusions
after training. One such widely-studied dataset is the DARPA KDD 99 intrusion
dataset (see [2]). Unfortunately, however, while this data has been the basis of
much research in this area for nearly 20 years, the dataset has a variety of
issues, limiting its usefulness as a training set for anomaly detection (e.g. [2],
[3]). Moreover, it is likely that network traffic patterns and types of attacks
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have changed since the dataset was collected in 1998. Though, there is still
very little other network data that is both publicly available and has a sufficient
number of features to train anomaly detection algorithms, often a result of
privacy concerns with exposing real traffic. It is also extremely difficult and
expensive to manually curate labels of which data points are normal and which
correspond to network misuse.

The problem of unsupervised anomaly detection resolves some of the previous
problems by positing that a dataset contains mostly normal traffic but also
a small amount of anomaly (i.e. malicious) traffic. [1], [4], and [5] contain
examples of approaches that have been proposed to identify anomalous traffic
under this assumption. These approaches are much easier to apply to real data
that is difficult to label.

The goal of this project was to explore various unsupervised techniques to
identify interesting patterns in real-world network data on an MIT subnetwork.
Because we1 had limited time (1 week) to explore this data, we chose to inves-
tigate it from a few broad angles that we believe inspire future work. First, we
explore geographic patterns in the data. Then, we run an unsupervised anomaly
detection algorithm and show that clustering reveals various usage patterns. Fi-
nally, we investigate time series patterns and discuss ways we might be able to
use this data to predict spikes in traffic. While we unfortunately did not have
time to explore each of these directions fully, we hope that our preliminary
analysis exposes this data in neat ways.

In Section 2, we describe our dataset. Section 3 discusses our evaluation
of geographical patterns in the data. In Section 4, we apply an unsupervised
anomaly detection algorithm on our data and show some of the trends it dis-
covered. Section 5 discusses opportunities for network traffic forecasting using
this dataset. In Section 6, we describe several directions for future work.

Code written for this project is available in a repository at: https://

github.mit.edu/bcarter/6858NetworkLogAnalysis, as well as in the pro-
vided 6.858 git repository.

2 Dataset

We obtained a dataset of real network traffic on an MIT subnetwork through
connection logs stored in the Bro IDS.2 We wrote a script that parses connection
logs and anonymizes IP addresses to preserve privacy. We hashed IP addresses
(both origin and destination) and also extracted country information using a
free IP geolocation library.3 MIT IS&T used this script to process connection
logs collected in Bro.

As an aside, we realize in hindsight that anonymizing IP data using a simple
hash is insecure. Since the IPv4 address space only includes about 4 billion
unique addresses, it would be possible to brute-force the IP corresponding to each

1“we” is used as a matter of convention. Note that all work was completed individually.
2https://www.bro.org
3http://dev.maxmind.com/geoip/geoip2/geolite2/
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hash. While we did not attempt to exploit this “vulnerability” in practice, we
found that we could compute 1 billion IP hashes in Python in about 90 seconds,
meaning that it would take around 6 minutes to find the IP corresponding to a
particular hash.

We realize that privacy-preservation is extremely important when analyzing
real network data so we propose several fixes for this issue. First, in newer
version of Python (3.3+), it seems that the default hash function is random-
ized per-session, so just having a database of hashed IPs would be harder to
reverse. It is also important to keep in mind that the IPv4 address space is con-
strained, and so there may be ways to cleverly reverse engineer the seed of the
hash. Another way to increase privacy would be to salt the hashes (per unique
IP) and then discard the salts after anonymizing the data. In practice, a daily
connection log contained about 1-2 million entries, so it would be easy to main-
tain a mapping of salts for each IP. Lastly, we could map each unique IP to
some other randomly chosen IP in the IPv4 address space such that observing
an anonymized IP gives us no information about the original IP (it could have
come from anywhere in the address space, uniformly at random). Overall, we
note that even minor tasks like anonymizing logging data prior to analysis can
be challenging in practice, and even harder to reason about guarantees.

In total, we obtained traffic data spanning from February 3rd to April 12th,
2017. The data includes almost 42 million log entries. For most of our analysis
tasks, we work with a subset of the data from early March (chosen arbitrarily)
due to performance constraints.

We extracted the following features directly from the connection logs: hashed
origin IP, origin IP country, origin request bytes, response bytes, protocol (e.g.
tcp, udp), service (e.g. http, ssh, telnet, ftp), and connection status indicator4.
Then, we compute a variety of time-based features for each entry. In [6], the
authors perform feature selection for the 41 features available in the KDD 99
intrusion dataset and show which are most statistically significant. We chose to
compute a variety of the more prominent features. Using a two-second window
before each request, we compute: the number of times the same origin attempted
a connection, the portion of connections using the same service as the request,
the portion of connections using other services, the portion of connections con-
tacting the same destination machine (e.g. to indicate DoS attacks), the portion
of connections contacting the same destination machine on the same service, the
portion of connections contacting the same destination machine but on differ-
ent services, the portion of connections using the same service but on different
hosts, and the portion of connections with a “S0” flag (indicating connection
attempt seen, no reply).

3 Geographical Patterns

In this section, we explore several geographical trends in our traffic data.

4http://ryesecurity.blogspot.com/2012/04/solving-network-forensic-challenges_

27.html contains a description of the possible conn_state values in Bro IDS.
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3.1 Country Prediction

We first thought it would be interesting to investigate whether there are any ge-
ographical patterns underlying the traffic data. Figure 1 shows the distribution
of traffic originating from different countries (note the log scale).

Figure 1: Heatmap of originating traffic by country. Note that intensities are
computed on a log scale.

To test whether trends differ by country, we trained a classifier to predict the
country based on the other features in each log entry using one day’s worth of log
entries (about 1.4 million total). We used a random forest classifier5 (both due to
performance concerns and presence of categorical features) and performed 5-fold
cross validation (splitting the data into five “folds,” and training on each set of
four while testing on the unseen fifth). We found that the mean accuracy (that
the country is predicted correctly) of the classifier is about 42% (though it had
notably high variance—the 95% confidence interval is 42 ± 9%). In comparison,
the baseline accuracy if we were to always guess the most common country (the
U.S.) is about 39%.6 Note that we did not tune the model hyperparameters
for performance, and we would expect that tuning would yield a sightly better
model. Still, we were surprised that the classifier was able to predict correctly
a fair bit above baseline, especially given it is selecting from a set of almost 200
countries. We suspect that with larger amounts of training data the variance
of our accuracy would decrease and the model could predict consistently above
baseline. This result suggests that usage patterns may differ geographically
(though the effect is minor).

While this conclusion may not be directly relevant from a security perspec-
tive, it does suggest that it might be useful to distinguish by country when
monitoring network traffic. Traditional network monitoring (as described in

5in Python, using the scikit-learn machine learning library
6A more sophisticated evaluation metric would utilize the predicted distribution over all

countries for each point in the test set, rather than just the most probable one, though using
this metric seemed irrelevant for this project.
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Section 1) often looks for specific usage patterns to identify threats, so this
finding suggests that incorporating geographical IP data based on the origin
country might be helpful. We did not have time to explore exactly how the
trends differ by country, though this would certainly make for interesting future
work.

3.2 Same Origin Countries

We next analyze the particular data points that have very high same origin
counts (the same host had made many requests to MIT in the previous two
seconds). Looking at the distribution of same origin counts in general, we find
that the median number of same host requests in the preceding two seconds is
zero, with mean 10.2. The 90th percentile is 25, and the 98th percentile is 112.
The maximum is 998.

We look at the distribution of origin country for requests that had ≥ 112
same host requests in the previous two seconds, given in Figure 2. The top
country in this distribution is China, whereas the most popular country is the
U.S. when not filtering for high same-origin traffic.

The top five countries (in order) in the high-origin distribution are: China,
U.S., Netherlands, Seychelles, Czech Republic. (The top five countries without
filtering are: U.S., China, Russia, Taiwan, Vietnam.)

We speculate that this result occurs because high-traffic bots often are either
located or use VPNs in foreign countries for better anonymity and to circumvent
various legal restrictions. We also note that the relative number of countries
sending high-traffic requests is quite small, though this may also be caused by
only looking at a single day’s worth of traffic. In the future, we would check
whether similar patterns exist in data from multiple days.

Figure 2: Heatmap of originating traffic by country for hosts with ≥ 112 requests
in previous two seconds. Note that intensities are computed on a log scale.
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4 Unsupervised Anomaly Detection

We next turned to explore unsupervised anomaly detection using isolation forests
[5], a method developed while using network traffic data. We assume that
about 1% of the data is anomalous (which seems roughly reasonable—about 99
requests are normal for every abnormal one) and specify this “contamination
value” as a parameter in the algorithm.7 After training, we are given an “nor-
mality score” for each datapoint and can identify which points (including future
points) are anomalies.

We trained an isolation forest8 using one day of logging data (more would
likely be helpful, but training times would increase). We then wanted to identify
if there were any particular trends among the anomalous points. First, we vi-
sualized the anomaly point space by performing dimensionality reduction using
t-SNE [7] on a random subset of the anomaly points to produce two-dimensional
embeddings, as shown in Figure 3. We see that there is some inherent structure
to these points, so to investigate each one further, we ran standard K-Means
clustering on the embeddings.9

Figure 3: Subsample of anomalous data points as detected by isolation for-
est. Dimensionality reduction was done using t-SNE. The colored clusters were
identified after dimensionality reduction using standard K-Means.

We explore the log entries corresponding to points near the cluster centroids.
Interestingly, we find that the green cluster contains DNS traffic from a vari-

7We briefly explored other values of this parameter but found 1% to perform best.
8using the scikit-learn implementation
9Note that normally clustering is performed prior to any dimensionality reduction, though

in this case, we noticed that there are clusters of points in the low-dimensional space, and we
just wanted to investigate them further for the purpose of exploration.
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ety of foreign countries (e.g. China, Romania, Hong Kong, United Kingdom)
whose hosts were sending about 100 requests per second to MIT. We suspect
that this traffic is not malicious, but rather these are DNS servers forwarding
DNS requests to a server at MIT. However, since we do not have access to the
destination IP (due to the anonymization), we are not able to verify whether
this is the case.

The dark blue cluster contains many ssh requests from the same host (located
in the U.S.) which was sending hundreds of requests within the past two seconds.
The request and responses across the different requests from this host contain
roughly the same number of bytes. If this is malicious, we might speculate that
the host is trying to brute-force an ssh login. Though, it might also be that the
user has an active ssh session which is sending many updates in real-time. The
yellow cluster contains a very similar traffic pattern.

The orange cluster is a series of tcp traffic from a host in Lithuania sending
about 15 requests per second. We can see based on the connection state in the
log that these requests are rejected (we are not sure why), though this seems to
be some sort of malicious traffic. The purple cluster contains a similar traffic
pattern but mainly comprised of requests from a host in Singapore.

We see that this method is able to pick out a variety of “anomalous” traffic
patterns in our data. Because we are dealing with unsupervised learning, we are
unable to say whether this model is detecting potential attacks since we do not
have a labeled set of known attacks in the data. We believe that in the future,
with sufficient training data, it would be possible to use this method in real-
time in conjunction with other intrusion detection systems. For any incoming
request, it is quick to extract the input features and use the trained model to
predict how anomalous the request is. This approach is advantageous because
it might improve detection of zero-day vulnerabilities before other monitoring
systems discovered the new traffic pattern. There could be an issue with false-
positives (as we found with some of the clusters discussed above), but if this
anomaly score is combined with other features from existing intrusion detection
systems, we could mitigate this concern (e.g. if the other systems are confident
the request is safe, and this method is not overly confident it is anomalous, we
don’t trigger an alert). Furthermore, we believe that using more training data
as well as properly tuning the contamination parameter would lower the number
of false-positives.

We also compare the geographic origin of inlier and outlier traffic based on
this model. Figure 4 shows the relative distributions of origin for inliers (left)
and outliers (right). Note that while it appears that the outlier origin countries
are much sparser, there are many fewer outlier points than there are inliers.
Because of this effect, we aren’t able to make any conclusive statements about
whether these distributions are dissimilar.
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Figure 4: Heatmap of traffic origin for inliers (left) and outliers (right) as de-
termined by the isolation forest model. Note that intensities are computed on
a log scale.

5 Time series Predictions

We now discuss trends in the time series of connections to this MIT subnet based
on the network logs. We binned traffic data to count the number of connections
per minute and per second over the course of one day, shown in Figure 5. We
see in the per-minute (left) plot that traffic frequency peaks in the middle of
the day, as we expect since the U.S. sends the greatest amount of traffic to
these servers, compared to other countries. Interestingly, we note that it would
be harder to identify this pattern from the per-second plot (right), suggesting
that the amount of traffic on a per-second basis is more uniform compared to
binning on a per-minute basis. The high-traffic spikes are more concentrated
in the mid-day region in the per-second plot, such that when binning into min-
utes, we can observe that traffic mid-day is generally higher than morning and
evening/overnight.

Figure 5: Time series plots of number of requests per minute (left) and per
second (right) over one full day.

We think an interesting machine learning task on this data would consider
traffic data from the previous n timesteps (e.g. minutes) and predict the amount
of traffic at time n + 1. Such a model would be useful to help predict attacks
involving high-traffic just as they are starting to occur by predicting the im-
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pending traffic “ramp-up.” It could also be helpful for dynamic server resource
management.

We attempted to train a simplistic regression model in which feature vectors
contain the number of requests for each of the last five minutes and the target
is the number of requests for the sixth minute. We generate features using
a sliding window over the binned data. We used a standard ordinary least
squares regression model and 10-fold cross validation to find that the mean
coefficient of determination10 (R2) is 0.12 (with a 95% confidence interval of
0.12 ± 0.65). In certain cases, the model performed very well on test data,
and in others, performed very poorly. We explored using different numbers of
previous timesteps in the feature vectors (e.g. past 10 or 20 minutes rather than
past five minutes). We also used data at the second-level rather than minute-
level, thinking that perhaps binning at the minute level is too coarse and misses
second-level trends in traffic. However, we were not able to significantly improve
the accuracy of the model in these ways.

After further exploration of this time series data, we believe that the traffic
jump trends are too noisy/random to perform the task in this manner (we
might observe the same trends over the previous few minutes but then have
different results at the next minute). We believe that more sophisticated feature
engineering would improve the prediction model by looking for other underlying
trends that might be indicators for impending traffic increases and decreases.
Such features could include various moving averages taken over the previous
time points, rate of change analysis, etc. However, trying to engineer features
to improve this model could likely serve as a whole separate project on its own!

Another direction to model this time series data would be using recurrent
neural networks (RNNs), which can find underlying, perhaps non-linear, trends
in the data without explicitly specifying these functions. Much similar work
has been done using RNNs in financial forecasting and other time series, for
example, where the observed data are often noisy, non-stationary, and have
non-linear dependencies (e.g. [8], [9]). Neural networks allow for more robust
modeling compared to conventional methods. Unfortunately, we were not able
to explore using neural networks for traffic pattern modeling, though we believe
that it would be a promising future direction.

We also identified a variety of published methods on the problem of network
traffic forecasting (see [10] for a review of some common approaches). Some work
(e.g. [11]) has been done showing that neural networks seem to work well on this
problem. The authors of [11] discuss that internet network traffic contains some
statistical features (self-similarity and non-linearity) that cannot be captured by
classical models, confirming the difficulties we faced with our simplistic attempt
at traffic prediction.

10the closer R2 is to 1, the better the fit of the model
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6 Conclusions and Future Work

In this paper, we explore using machine learning methods for several tasks on
a dataset of network traffic logs from an MIT subnetwork. From this work,
we reached several conclusions. First, we note that running unsupervised al-
gorithms on real-world (noisy) data is challenging. It is particularly difficult
to evaluate results (i.e. identify attacks) without labeled data. Instead, we
show that we are able to identify various traffic patterns in the data. Second,
we found that details like privacy-preservation can be tricky. We realized that
hashing IP addresses does little to provide anonymity in network logs. Finally,
we identified several methods that could be useful components of an intrusion
detection system, such as an unsupervised anomaly detection model that can
identify zero-day threats, as well as a traffic monitoring model that can predict
future levels of traffic. While these models would take significant refinement
before they could be used practically, we believe that our exploratory results
and discussion enlighten their potential.

We describe several opportunities for future work. First, we were subject to
performance and time constraints. It would be helpful to retrain these models
with significantly more training data and also compare results across different
days to see if the traffic patterns are similar. In addition, more careful feature
engineering might help the learning tasks. We chose a subset of features used in
the KDD 99 dataset and elected to use the same two-second window for com-
puting time-based features, though other features might also be useful. Finally,
one may want to consider these problems in a semi-supervised setting, perhaps
learning about attack traffic using some labeled data (e.g. KDD 99) but then
applying it to this larger amount of unlabeled data.
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