
Static Detection of Security Vulnerabilities
in Scripting Languages

Yichen Xie Alex Aiken
Computer Science Department

Stanford University
Stanford, CA 94305

{yxie,aiken}@cs.stanford.edu

ABSTRACT
We present a static analysis algorithm for detecting security
vulnerabilities in PHP, a popular server-side scripting lan-
guage for building web applications. Our analysis employs
a novel three-tier architecture to capture information at de-
creasing levels of granularity at the intrablock, intraproce-
dural, and interprocedural level. This architecture enables
us to handle dynamic features unique to scripting languages
such as dynamic typing and code inclusion, which have not
been adequately addressed by previous techniques.

We demonstrate the effectiveness of our approach by run-
ning our tool on six popular open source PHP code bases
and finding 105 previously unknown security vulnerabilities,
most of which we believe are remotely exploitable.

1. INTRODUCTION
Web-based applications have experienced exponential growth

during the past few years and have become the de facto stan-
dard for delivering online services ranging from discussion
forums to security sensitive areas such as banking and retail-
ing. As such, security vulnerabilities in these applications
represent an increasing threat to both the providers and
the users of such services. During the second half of 2004,
Symantec cataloged 670 vulnerabilities affecting web appli-
cations, an 81% increase over the same period in 2003 [16].
This trend is likely to continue for the foreseeable future.

According to the same report, these vulnerabilities are
typically caused by programming errors in input validation
and improper handling of submitted requests [16]. Since
vulnerabilities are usually deeply embedded in the program
logic, traditional network-level defense (e.g., firewalls) does
not offer adequate protection against such attacks. Test-
ing is also largely ineffective because attackers typically use
the least expected input to exploit these vulnerabilities and
compromise the system.

A natural alternative is to find these errors using static
analysis, but it is widely believed that scripting languages
are too difficult to analyze statically. The main message
of this paper is that this folk wisdom is false: we show by
example that a static analysis, suitably designed to address
the unique aspects of scripting languages, can identify many
serious security vulnerabilities in scripts. Given the impor-
tance of scripting in real world applications, we believe there
is an opportunity for static analysis to have a significant im-
pact in this new domain.

In this paper, we apply static analysis to finding secu-
rity vulnerabilities in PHP, a server-side scripting language

that has become one of the most widely adopted platforms
for developing web applications1. Our goal is a bug detec-
tion tool that automatically finds serious vulnerabilities with
high confidence. This work, however, does not aim to verify
the absence of bugs.

This paper makes the following contributions:

• We present an interprocedural static analysis algorithm
for PHP. A language as dynamic as PHP presents
unique challenges for static analysis: language con-
structs (e.g., include) that allow dynamic inclusion of
program code, variables whose types change during ex-
ecution, operations with semantics that depend on the
runtime types of the operands (e.g., <), pervasive use
of hash tables and regular expression matching are just
some features that must be modeled well to produce
useful results.

To faithfully model program behavior in such a lan-
guage, we use a unique three-tier analysis that cap-
tures information at decreasing levels of granularity
at the intrablock, intraprocedural, and interprocedu-
ral levels. For example, we use symbolic execution to
model dynamic features inside basic blocks and use
block summaries to hide that complexity from intra-
and inter-procedural analysis. We believe the same
techniques can be easily applied to other scripting lan-
guages (e.g., Perl). To the best of our knowledge, this
paper is the first to recognize and model complex pro-
gram features that are specific to scripting languages.

• We show how to use our static analysis algorithm to
find SQL injection vulnerabilities. Once configured,
the analysis is fully automatic. Although we focus on
SQL injections in this work, we believe that, with small
modifications, the same techniques can be applied to
detecting other vulnerabilities such as cross site script-
ing (XSS) and code injection in web applications.

• We experimentally validate our approach by imple-
menting the analysis algorithm and running it on six
popular web applications written in PHP. Our tool
found 105 previously unknown security vulnerabilities.
We further investigated two reported vulnerabilities in
PHP-fusion, a mature, widely deployed content man-
agement system, and constructed exploits for both that
allow an attacker to control or damage the system.

1Installed on over 23 million Internet domains [13], and is
ranked fourth on the TIOBE programming community in-
dex [17].



The rest of the paper is organized as follows. We start
with a brief introduction to PHP and show examples of
SQL vulnerabilities in web application code (Section 2). We
then describe our analysis algorithm in detail and show how
we use it to find SQL injection vulnerabilities (Section 3).
Section 4 describes the implementation and experimental
results and show two case studies of exploitable vulnerabil-
ities in PHP-fusion. Section 5 discusses related work, and
Section 6 concludes.

2. BACKGROUND
This section briefly introduces the PHP language and shows

examples of SQL injection vulnerabilities in PHP.
PHP was created a decade ago by Rasmus Lerdorf as a

simple set of Perl scripts for tracking accesses to his online
resume. It has since evolved into one of the most popu-
lar server-side scripting languages for building web applica-
tions. According to a recent Security Space survey, PHP
is installed on 44.6% of Apache web servers [15], adopted
by millions of developers, and used or supported by Yahoo,
IBM, Oracle, and SAP, among others [13].

Although the PHP language has undergone two major re-
designs over the past decade, it retains a Perl-like syntax
and dynamic (interpreted) nature, which contributes to its
most cited advantage of being simple and flexible.

PHP has a suite of programming constructs and special
operations that makes web development easy. We give three
examples below:

1. Natural integration with SQL: PHP provides nearly
native support for database operations. For example,
using inline variables in strings, most SQL queries can
be concisely expressed with a simple function call

$rows=mysql query("UPDATE users SET

pass=‘$pass’ WHERE userid=‘$userid’");

Contrast this code with Java, where a database is typ-
ically accessed through prepared statements: one cre-
ates a statement template and fills in the values (along
with their types) using bind variables:

PreparedStatement s = con.prepareStatement
("UPDATE users SET pass = ?

WHERE userid = ?");
s.setString(1, pass); s.setInt(2, userid);
int rows = s.executeUpdate();

2. Dynamic types and implicit casting to and from
strings: PHP, like other scripting languages, has ex-
tensive support for string operations and automatic
conversions between strings and other types. These
features are handy for web applications because strings
serve as the common medium between the browser, the
web server, and the database backend. For example,
we can convert a number into a string without an ex-
plicit cast:

if ($userid < 0) exit;
$query = "SELECT * from users

WHERE userid = ‘$userid’";

3. Variable scoping and the environment: PHP
has a number of mechanisms that minimize redun-
dancy when accessing values from the execution en-
vironment. For example, HTTP get and post requests

are automatically imported into the global name space
as hash tables $ GET and $ POST. To access the “name”
field of a submitted form, one can simply use variable
$ GET[‘name’] directly in the program.

If this still sounds like too much typing, PHP pro-
vides an extract operation that automatically imports
all key-value pairs of a hash table into the current
scope. In the example above, one can use
extract( GET, EXTR OVERWRITE) to import data sub-
mitted using the HTTP get method. To access the
“name” field, one now simply types $name, which is
preferred by some to $ GET[‘name’].

However, these conveniences come with security implica-
tions:

1. SQL injection made easy: bind variables in Java
have the benefit of assuring the programmer that any
data passed into a SQL query remains data. The same
cannot be said for the PHP example where malformed
data from a malicious attacker may change the mean-
ing of a SQL statement and cause unintended opera-
tions to the database. These are commonly called SQL
injection attacks.

In the example above (case 1), suppose $userid is con-
trolled by the attacker and has value

’ OR ‘1’ = ‘1

The query string becomes

UPDATE users SET pass=‘. . .’
WHERE userid=‘’ OR ‘1’=‘1’

which has the effect of updating the password for all
users in the database.

2. Unexpected conversions: Consider the following
code:

if ($userid == 0) echo $userid;

One would expect that if the program prints anything,
it should be “0”. Unfortunately, PHP implicitly casts
string values into numbers before comparing them with
an integer. Non-numerical values (e.g. “abc”) convert
to 0 without complaint, so the code above can print
anything other than a non-zero number. We can imag-
ine a potential SQL injection vulnerability if $userid is
subsequently used to construct a SQL query as in the
previous case.

3. Uninitialized variables under user control: In
PHP, uninitialized variable defaults to null. Some pro-
grams rely on this fact for correct behavior; consider
the following code:

1 extract($ GET, EXTR OVERWRITE);
2 for ($i=0;$i<=7;$i++)
3 $new pass .= chr(rand(97, 122));
4 mysql query("UPDATE . . . $new_pass . . .");

This program generates a random password and in-
serts it into the database. However, due to the extract
operation on line 1, a malicious user can introduce an
arbitrary initial value for $new pass by adding an un-
expected new pass field into the submitted HTTP form
data.



CFG := build control flow graph(AST);
foreach (basic block b in CFG)

summaries[b] := simulate block(b);
return make function summary(CFG, summaries);

Figure 1: Pseudo-code for the analysis of a function.

3. ANALYSIS
Given a PHP source file, our tool carries out static analysis

in the following steps:

• We parse the PHP source into abstract syntax trees
(ASTs). Our parser is based on the standard open-
source implementation of PHP 5.0.5 [12]. Each PHP
source file contains a main section (referred to as the
main function hereon although it is not part of any
function definition) and zero or more user-defined func-
tions. We store the user-defined functions in the en-
vironment, and start the analysis from the main func-
tion.

• For each function in the program, the analysis per-
forms a standard conversion from the abstract syn-
tax tree (AST) of the function body into a control
flow graph (CFG). The nodes of the CFG are maxi-
mal basic blocks: single entry, single exit sequences of
statements. The edges of the CFG are the jump rela-
tionships between blocks. For conditional jumps, the
corresponding CFG edge is labeled with the branch
predicate.

• Each basic block is simulated using symbolic execu-
tion. The goal is to understand the collective effects
of statements in a block on the global state of the pro-
gram, and summarize their effects into a concise block
summary (which describes, among other things, the
set of variables that must be sanitized before entering
the block). We describe the simulation algorithm in
Section 3.1.

• After computing a summary for each basic block, we
use a standard reachability analysis to combine block
summaries into a function summary. The function
summary describes the pre- and post-conditions of a
function (e.g., the set of sanitized input variables after
calling the current function). We discuss this step in
Section 3.2.

• During the analysis of a function, we might encounter
calls to other user-defined functions. We discuss mod-
eling function calls, and the order in which functions
are analyzed, in Section 3.3.

3.1 Simulating Basic Blocks

3.1.1 Outline
Figure 2 gives pseudo-code outlining the symbolic simulation
process. Recall each basic block contains a linear sequence
of statements with no jumps or jump targets in the mid-
dle. The simulation starts in an initial state, which maps
each variable x to a symbolic initial value x0. It processes
each statement in the block in order, updating the simulator
state to reflect the effect of that statement. The simulation
continues until it encounters any of the following:

function simulate block(BasicBlock b) : BlockSummary
{

state := init simulation state();
foreach (Statement s in b) {

state := simulate(s, state);
if (state.has returned | | state.has exited)

break;
}
summary := make block summary(state);
return summary;
}

Figure 2: Pseudo-code for intra-block simulation.

Type (τ ) ::= str | bool | int | ⊥
Const (c) ::= string | k | true | false | null
L-val (lv) ::= x | Arg#i | l[e]
Expr (e) ::= c | lv | e binop e | unop e | (τ )e

Stmt (S) ::= lv ← e | lv ← f(e1, . . . , en)
| return e | exit | include e

binop ∈ {+,−, concat, ==, ! =, <, >, . . .}
unop ∈ {−,¬}

Figure 3: Language Definition

1. the end of the block;

2. a return statement. In this case, the current block is
marked as a “return” block, and the simulator evalu-
ates and records the return value;

3. an exit statement. In this case the current block is
marked as an “exit” block;

4. a call to a user-defined function that exits the pro-
gram. This condition is automatically determined us-
ing the function summary of the callee (see Sections 3.2
and 3.3).

Note that in the last case, execution of the program has
effectively terminated and therefore we remove any ensuing
statements and outgoing CFG edges from the current block.

After a basic block is simulated, we use information con-
tained in the final state of the simulator to summarize the
effect of the block into a block summary, which we store for
use during the intraprocedural analysis (see Section 3.2).
The state itself is discarded after simulation.

The following subsections describe the simulation process
in detail. We start with a definition of the subset of PHP
that we currently model (§3.1.2) and discuss the represen-
tation of the simulation state and program values (§3.1.3,
§3.1.4) during symbolic execution. Using the value represen-
tation, we describe how the analyzer simulates expressions
(§3.1.5) and statements (§3.1.6). Finally, we describe how
we represent and infer block summaries (§3.1.7).

3.1.2 Language
Figure 3 gives the definition of a small imperative lan-

guage that captures a subset of PHP constructs that we be-
lieve is relevant to SQL injection vulnerabilities. Like PHP,
the language is dynamically typed. We model three basic
types of PHP values: strings, booleans and integers. In
addition, we introduce a special ⊥ type to describe objects



Value Representation

Loc (l) ::= x | l[string] | l[⊥]
Init-Values (o) ::= l0

Segment (β) ::= string | contains(σ)
String (s) ::= [β1, . . . , βn]

Boolean (b) ::= true | false | untaint(σ0, σ1)
Loc-set(σ) ::= {l1, . . . , ln}
Integer (i) ::= k
Value (v) ::= s | b | i | o | ⊥

Simulation State

State (Γ) : Loc→ Value

(a) Value representation and simulation state.

Locations

Γ ` x
Lv
⇒ x

var
Γ ` Arg#n

Lv
⇒ Arg#n

arg

Γ ` e
E
⇒ l0

Γ ` e′
E
⇒ v′ v′′ = cast(v′, str)

Γ ` e[e′]
Lv
⇒



l[α] if v′′ = [“α”]
l[⊥] otherwise

dim

(b) L-values.

Expressions

Type casts:

cast(k, bool) =



true if k 6= 0
false otherwise

cast(true, str) = [“1”]

cast(false, str) = []

cast(v = [β1, . . . , βn], bool)

=

(

true if (v 6= [“0”]) ∧
W

n

i=1
¬is empty(βi)

false if (v = [“0”]) ∨
V

n

i=1
is empty(βi)

⊥ otherwise
. . .

Evaluation Rules:

Γ ` lv
Lv
⇒ l

Γ ` lv
E
⇒ Γ(l)

L-val

Γ ` e1

E
⇒ v1 cast(v1, str) = [β1, . . . , βn]

Γ ` e2

E
⇒ v2 cast(v2, str) = [βn+1, . . . , βm]

Γ ` e1 concat e2

E
⇒ [β0, . . . , βm]

concat

Γ ` e
E
⇒ v cast(v, bool) = v′

Γ ` ¬e
E
⇒

8

>

<

>

:

true if v′ = false
false if v′ = true
untaint(σ1, σ0) if v′ = untaint(σ0, σ1)
⊥ otherwise

not

(c) Expressions.

Figure 4: Intrablock simulation algorithm.

whose static types are undetermined (e.g. input parameters,
etc).2

Expressions can be constants, l-values, unary and binary
operations, and type casts. The definition of l-values is worth
mentioning because in addition to variables and function
parameters, we include a named subscript operation to give
limited support to the array and hash table accesses that
are used extensively in PHP programs.

A statement can be an assignment, function call, return,
exit, or include. The first four types of statement require no
further explanation. The include statement is a commonly
used feature unique to scripting languages, which allows pro-
grammers to dynamically insert code into the program. In
our language, include evaluates its string argument, and ex-
ecutes the program file designated by the string as if it is in-
serted at that program point (e.g., it shares the same scope).
We describe how we simulate such behavior in Section 3.1.6.

3.1.3 State
Figure 4(a) gives the definition of values and states during

simulation. The simulation state maps memory locations
to their value representations, where a memory location is
either a program variable (e.g. x), or an entry in a hash
table accessed via another location (e.g. x[key]).

On entry to the function, each location l is implicitly ini-
tialized to a symbolic initial value l0, which makes up the
initial state of the simulation. The values we represent in the
state can be classified into three categories based on type:

Strings: Strings are the most fundamental type in many
scripting languages, and precision in modeling strings di-
rectly determines the analysis precision. Strings are typi-
cally constructed through concatenation. For example, user
inputs (via HTTP get and post methods) are often concate-
nated with a pre-constructed skeleton to form a SQL query.
Similarly, results from the query can be concatenated with
HTML templates to form output. Modeling concatenation
well enables an analysis to better understand information
flow in a script. Thus, our representation of a string is
based on the concept of concatenation: string values are
represented as an ordered concatenation of string segments,
which can be one of the following: a string constant, the
initial value of a memory location on entry to the current
block (l0), or a string that contains initial values of zero or
more elements from a set of memory locations (contains(σ)).
We use the last representation to model return values from
function calls, which may non-deterministically contain a
combination of global variables and input parameters. For
example, in

1 function f($a, $b) {
2 if (. . .) return $a;
3 else return $b;
4 }
5 $ret = f($x.$y, $z);

we represent the return value on line 5 as contains({x, y, z})
to model the fact that it may contain any element in the set
as a sub-string.

The string representation described above has the follow-
ing benefits:

2In general, in a dynamically typed language, a more precise
static approximation in this case would be a sum (aka. soft
typing) [1, 19]. We have not found it necessary to use type
sums in this work.



First, we get automatic constant folding for strings within
the current block, which is often useful for resolving hash
keys and distinguishing between hash references (e.g., in
$key = “key”; return $hash[$key];).

Second, we can track how the contents of one input vari-
able flow into another by finding occurrences of initial values
of the former in the final representation of the latter. For
example, in: $a = $a . $b, the final representation of $a is
[a0, b0]. We know that if either $a or $b contains unsanitized
user input on entry to the current block, so does $a upon
exit.

Finally, interprocedural dataflow is possible by tracking
function return values based on function summaries using
contains(σ). We describe this aspect in more detail in Sec-
tion 3.3.

Booleans: In PHP, a common way to perform input valida-
tion is to call a function that returns true or false depending
on whether the input is well-formed or not. For example,
the following code sanitizes $userid:

$ok = is numeric($userid);
if (!$ok) exit;

The value of Boolean variable $ok after the call is unde-
termined, but it is correlated with the validity of $userid.
This motivates untaint(σ0, σ1) as a representation for such
Booleans: σ0 (resp. σ1) represents the set of validated l-
values when the Boolean is false (resp. true). In the example
above, $ok has representation untaint({}, {userid}).

Besides untaint, representation for Booleans also include
constants (true and false) and unknown (⊥).

Integers: Integer operations are relatively less emphasized
in our simulation. We track integer constants and binary
and unary operations between them. We also support type
casts from integers to Boolean and string values.

3.1.4 Locations and L-values
In the language definition in Figure 3, hash references may

be aliased through assignments and l-values may contain
hash accesses with non-constant keys. The same l-value may
refer to different memory locations depending on the value
of both the host and the key, and therefore, l-values are not
suitable as memory locations in the simulation state.

Figure 4(b) gives the rules we use to resolve l-values into
memory locations. The var and arg rules map each program
variable and function argument to a memory location iden-
tified by its name, and the dim rule resolves hash accesses
by first evaluating the hash table to a location and then
appending the key to form the location for the hash entry.

These rules are designed to work in the presence of simple
aliases. Consider the following program:

1 $hash = $ POST;
2 $key = ’userid’;
3 $userid = $hash[$key];

The program first creates an alias ($hash) to hash table
$ POST and then accesses the userid entry using that alias.
On entry to the block, the initial state maps every location
to its initial value:

Γ = {hash⇒ hash0, key⇒ key0, POST⇒ POST0,
POST[userid]⇒ POST[userid]0}

According to the var rule, each variable maps to its own
unique location. After the first two assignments, the state
is:

Γ = {hash⇒ POST0, key⇒ [‘userid’], . . .}

We use the dim rule to resolve $hash[$key] on line 3: $hash
evaluates to POST0, and $key evaluates to constant string
’userid’. Therefore, the l-value $hash[$key] evaluates to loca-
tion POST[userid], and thus the analysis assigns the desired
value POST[userid]0 to $userid.

3.1.5 Expressions
We perform abstract evaluation of expressions based on

the value representation described above. Because PHP is
a dynamically typed language, operands are automatically
cast into appropriate types for binary and unary operations
in an expression. Figure 4(c) gives a representative subset
of cast rules that simulates cast operations in PHP. For ex-
ample, Boolean value true, when used in a string context,
evaluates to “1”. false, on the other hand, is converted to
the empty string instead of “0”. In cases where exact repre-
sentation is not possible, the result of the cast is unknown
(⊥).

Figure 4(c) also gives three representative rules for eval-
uating expressions. The first rule handles l-values, and the
result is obtained by first resolving the l-value into a memory
location, and then looking up the location in the evaluation
context (recall that Γ(l) = l0 on entry to the block).

The second rule models string concatenation. We first
cast the value of both operands into string values, and the
result is the concatenation of both.

The final rule handles Boolean negation. The interesting
case involves untaint values. Recall that untaint(σ0, σ1) de-
notes an unknown Boolean value that is false (resp. true) if
l-values in the set σ0 (resp. σ1) are sanitized. Given this
definition, the negation of untaint(σ0, σ1) is untaint(σ1, σ0).

The analysis of an expression is ⊥ if we cannot determine
a more precise representation, which is a potential source of
false negatives.

3.1.6 Statements
We model assignments, function calls, return, exit, and

include statements in the program. The assignment rule
resolves the left-hand side into a memory location l, and
evaluates the right-hand side into a value v. The updated
simulation state after the assignment maps l to the new
value v:

Γ ` lv
Lv
⇒ l Γ ` e

E
⇒ v

Γ ` lv ← e
S
⇒ Γ[l 7→ v]

assignment

Function calls are similar. The return value of a function call
f(e1, . . . , en) is modeled using either contains(σ) (if f returns
a string) or untaint(σ0, σ1) (if f returns a Boolean) depend-
ing on the inferred summary for f . We defer discussion of
the function summaries and the return value representation
to Sections 3.2 and 3.3. For the purpose of this section, we
use the uninterpreted value f(v1, . . . , vn) as a place holder
for the actual representation of the return value:

Γ ` lv
Lv
⇒ l Γ ` e1

E
⇒ v1 . . . Γ ` en

E
⇒ vn

Γ ` lv ← f(e1, . . . , en)
S
⇒ Γ[l 7→ f(v1, . . . , vn)]

fun

In addition to the return value, certain functions have
pre- and post-conditions depending on the operation they
perform. Pre- and post-conditions are inferred and stored
in the callee’s summary, which we describe in detail in Sec-
tions 3.2 and 3.3. Here we show two examples to illustrate
their effects:



1 function validate($x) {
2 if (!is numeric($x)) exit;
3 return;
4 }
5 function my query($q) {
6 global $db;
7 mysql db query($db, $q);
8 }
9 validate($a.$b);

10 my query("SELECT . . . WHERE a = ’$a’ AND c = ’$c’");
The validate function tests whether the argument is a num-
ber (thus safe) and aborts if it is not. Therefore, line 9 sani-
tizes both $a and $b. We record this fact by first inspecting
the value representation of the actual parameter (in this case
[a0, b0]), and remembering the set of non-constant segments
that are sanitized.

The second function my query uses the argument as a
database query string. To prevent SQL injection attacks,
we require that any user input be sanitized before it be-
comes part of the first parameter. Again, we enforce this
requirement by inspecting the value representation of the
actual parameter. We record any unsanitized non-constant
segments (in this case $c, since $a is sanitized on line 9) and
require they be sanitized as part of the pre-condition for the
current block.

Sequences of assignments and function calls are simulated
by using the output environment of the previous statement
as the input environment of the current statement:

Γ ` s1

S
⇒ Γ′ Γ′ ` s2

S
⇒ Γ′′

Γ ` (s1; s2)
S
⇒ Γ′′

seq

The final simulation state is the output state of the final
statement.

The return and exit statements terminate control flow3

and require special treatment. For a return, we evaluate the
return value and use it in calculating the function summary.
In case of an exit statement, we mark the current block as
an exit block.

Finally, include statements are a commonly used feature
unique to scripting languages allowing programmers to dy-
namically insert code and function definitions from another
script. In PHP, the included code inherits the variable scope
at the point of the include statement. It may introduce new
variables and function definitions, and change or sanitize
existing variables before the next statement in the block is
executed.

We process include statements by first parsing the included
file, and adding any new function definitions to the environ-
ment. We then splice the control flow graph of the main
function at the current program point by a) removing the
include statement, b) breaking the current basic block into
two at that point, c) linking the first half of the current
block to the start of the main function, and all return blocks
(those containing a return statement) in the included CFG
to the second half, and d) replacing the return statements in
the included script with assignments to reflect the fact that
control flow resumes in the current script.

3.1.7 Block summary

3So do function calls that exits the program, in which case
we remove any ensuing statements and outgoing edges from
the current CFG block. See Section 3.3.

The final step for the symbolic simulator is to character-
ize the behavior of a CFG block into a concise summary. A
block summary is represented as a six-tuple 〈E ,D,F , T ,R,U〉:

• Error set (E): the set of input variables that must be
sanitized before entering the current block. These are
accumulated during simulation of function calls that
require sanitized input.

• Definitions (D): the set of memory locations de-
fined in the current block. For example, in

$a = $a.$b; $c = 123;

we have D = {a, c}.

• Value flow (F): the set of pairs of locations (l1, l2)
where the string value of l1 on entry becomes a sub-
string of l2 on exit. In the example above, F = {(a, a), (b, a)}.

• Termination predicate (T ): true if the current block
contains an exit statement, or if it calls a function that
causes the program to terminate.

• Return value (R): records the representation for the
return value if any, undefined otherwise. Note that if
the current block has no successors, either R has a
value or T is true.

• Untaint set (U): for each successor of the current
CFG block, we compute the set of locations that are
sanitized if execution continues onto that block. San-
itization can occur via function calls, casting to safe
types (e.g., int, etc), regular expression matching, and
other tests. The untaint set for different successors
might differ depending on the value of branch predi-
cates. We show an example below.

validate($a);
$b = (int) $c;
if (is numeric($d))

. . .

As mentioned earlier, validate exits if $a is unsafe.
Casting to integer also returns a safe result. There-
fore, the untaint set is {a, b, d} for the true branch,
and {a, b} for the false branch.

3.2 Intraprocedural Analysis
Based on block summaries computed in the previous step,

the intraprocedural analysis computes the following sum-
mary 〈E ,R,S,X〉 for each function:

1. Error set (E): the set of memory locations (vari-
ables, parameters, and hash accesses) whose value may
flow into a database query, and therefore must be san-
itized before invoking the current function. For the
main function, the error set must not include any user-
defined variables (e.g. $ GET[‘...’] or $ POST[‘...’])—
the analysis emits an error message for each such vio-
lation.

We compute E by a backwards reachability analysis
that propagates the error set of each block (using the
E ,D,F , and U components in the block summaries) to
the start block of the function.



2. Return set (R): the set of parameters or global
variables whose value may be a substring of the re-
turn value of the function. R is only computed for
functions that may return string values. For exam-
ple, in the following code, the return set includes both
function arguments and the global variable $table (i.e.
R = {table, Arg#1, Arg#2}).

function make query($user, $pass) {
global $table;
return "SELECT * from $table ".
"where user = $user and pass = $pass";

}

We compute the function return set by using a forward
reachability analysis that expresses each return value
(recorded in the block summaries as R) as a set of
function parameters and global variables.

3. Sanitized values (S): the set of parameters or global
variables that are sanitized on function exit. We com-
pute the set by using a forward reachability analysis
to determine the set of sanitized inputs at each return
block, and we take the intersection of those sets to
arrive at the final result.

If the current function returns a Boolean value as its
result, we distinguish the sanitized value set when the
result is true versus when it is false (mirroring the
untaint representation for Boolean values above). The
following example motivates this distinction:

function is valid($x) {
if (is numeric($x)) return true;
return false;
}

The parameter is sanitized if the function returns true,
and the return value is likely to be used by the caller
to determine the validity of user input. In the example
above,

S = (false⇒ {}, true⇒ {Arg#1})

For comparison, the validate function defined previ-
ously has S = (∗ ⇒ {Arg#1}). In the next section, we
describe how we make use of this information in the
caller.

4. Program Exit (X ): a Boolean which indicates whether
the current function terminates program execution on
all paths. Note that control flow can leave a function
either by returning to the caller or by terminating the
program. We compute the exit predicate by enumer-
ating over all CFG blocks that have no successors, and
identify them as either return blocks or exit blocks (the
T and R component in the block summary). If there
are no return blocks in the CFG, the current function
is an exit function.

The dataflow algorithms used in deriving these facts are
fairly standard fix-point computations. We omit the details
for brevity.

3.3 Interprocedural Analysis
This section describes how we conduct interprocedural

analysis using summaries computed in the previous step.
Assuming f has summary 〈E ,R,S,X〉, we process a function
call f(e1, . . . , en) during intrablock simulation as follows:

1. Pre-conditions: We use the error set (E) in the func-
tion summary to identify the set of parameters and
global variables that must be sanitized before calling
this function. We substitute actual parameters for for-
mal parameters in E and record any unsanitized non-
constant segments of strings in the error set as saniti-
zation pre-condition for the current block.

2. Exit condition: If the callee is marked as an exit
function (i.e. X is true), we remove any statements
that follow the call and delete all outgoing edges from
the current block. We further mark the current block
as an exit block.

3. Post-conditions: If the function unconditionally san-
itizes a set of input parameters and global variables,
we mark this set of values as safe in the simulation
state after substituting actual parameters for formal
parameters.

If sanitization is conditional on the return value (e.g.,
the is valid function defined above), we record the in-
tersection of its two component sets as being uncon-
ditionally sanitized (i.e., σ0 ∩ σ1 if the untaint set is
(false⇒ σ0, true⇒ σ1)).

4. Return value: If the function returns a Boolean value
and it conditionally sanitizes a set of input parameters
and global variables, we use the untaint representation
to model that correlation:

Γ ` lv
Lv
⇒ l Γ ` e1

E
⇒ v1 . . . Γ ` en

E
⇒ vn

Summary(f) = 〈E ,R,S,X〉
S = (false⇒ σ0, true⇒ σ1) σ∗ = σ0 ∩ σ1

σ′

0 = substv̄(σ0 − σ∗) σ′

1 = substv̄(σ1 − σ∗)

Γ ` lv ← f(e1, . . . , en)
S
⇒ Γ[l 7→ untaint(σ′

0, σ
′

1)]
fun-bool

In the rule above, substv̄(σ) substitutes actual param-
eters (vi) for formal parameters in σ.

If the callee returns a string value, we use the return set
component of the function summary (R) to determine
the set of input parameters and global variables that
might become a substring of the return value:

Γ ` lv
Lv
⇒ l Γ ` e1

E
⇒ v1 . . . Γ ` en

E
⇒ vn

Summary(f) = 〈E ,R,S,X〉 σ′ = substv̄(R)

Γ ` lv ← f(e1, . . . , en)
S
⇒ Γ[l 7→ contains(σ′)]

fun-str

Since we require the summary information of a function
before we can analyze its callers, the order in which func-
tions are analyzed is important. Due to the dynamic nature
of PHP (e.g., include statements), we analyze functions on
demand—a function f is analyzed and summarized when we
first encounter a call to f . The summary is then memoized
to avoid redundant analysis. Recursive function calls are
rare in PHP programs. If we encounter a cycle during the
analysis, our current implementation uses a dummy “no-op”
summary as a model for the second invocation.

4. EXPERIMENTAL RESULTS
The analysis described in Section 3 has been implemented

as two separate parts: a frontend based on the open source
PHP 5.0.5 distribution that parses the source files into ab-
stract syntax trees and a backend written in O’Caml that



reads the ASTs into memory and carries out the analysis.
This separation ensures maximum compatibility while min-
imizing dependence on the PHP implementation.

The decision to use different levels of abstraction in the
intrablock, intraprocedural, and interprocedural levels en-
abled us to fine tune the amount of information we retain
at one level independent of the algorithm used in another
and allowed us to quickly build a usable tool. The checker
is largely automatic and requires little human intervention
for use. We seed the checker with a small set of query func-
tions (e.g. mysql query) and sanitization operations (e.g.
is numeric). The checker infers the rest automatically.

Regular expression matching presents a challenge to au-
tomation. Regular expressions are used for a variety of pur-
poses including, but not limited to, input validation. Some
regular expressions match well-formed input while others de-
tect malformed input; assuming one way or the other results
in either false positives or false negatives. Our solution is to
maintain a database of previously seen regular expressions
and their effects, if any. Previously unseen regular expres-
sions are assumed by default to have no sanitization effects,
so as not to miss any errors due to incorrect judgment. To
make it easy for the user to specify the sanitization effects
of regular expressions, the checker has an interactive mode
where the user is prompted when the analysis encounters a
previously unseen regular expression and the user’s answers
are recorded for future reference. Practically, we found this
approach to be very effective and it helped us find at least
two vulnerabilities caused by overly lenient regular expres-
sions being used for sanitization.4

The checker detects errors by using information from the
summary of the main function—the checker marks all vari-
ables that are required to be sanitized on entry as poten-
tial security vulnerabilities. From the checker’s perspec-
tive, these variables are defined in the environment and used
to construct SQL queries without being sanitized. In real-
ity, however, these variables are either defined by the run-
time environment or by some language constructs that the
checker does not fully understand (e.g., the extract operation
in PHP which we describe in the case study below). The tool
emits an error message if the variable is known to be eas-
ily controlled by the user (e.g. $ GET[‘. . .’], $ POST[‘. . .’],
$ COOKIE[‘. . .’], etc). For others, the checker emits a warn-
ing.

We conducted our experiments on the latest versions of six
open source PHP code bases: e107 0.7, Utopia News Pro

1.1.4, mybloggie 2.1.3beta, DCP Portal v6.1.1, PHP
Webthings 1.4patched, and PHP fusion 6.00.204. Table 1
summarizes our findings for the first five. Our checker emit-
ted a total of 99 error messages for the first five applications,
where unsanitized user input (from $ GET, $ POST, etc)
may flow into SQL queries. We manually inspected the error
reports and believe all 99 represent real vulnerabilities. We
have notified the developers about these errors and will pub-
lish security advisories once the errors have been fixed. We
have not inspected warning messages—unsanitized variables
of unresolved origin (e.g. from database queries, configura-
tion files, etc) that are subsequently used in SQL queries

4For example, Utopia News Pro misused “[0-9]+” to vali-
date some user input. This regular expression only checks
the existence of a number, instead of ensuring that the input
is actually a number. The correct regular expression in this
case is “^[0-9]+$”.

Err Msgs Bugs (FP) Warn
e107 16 16 (0) 23
News Pro 8 8 (0) 8
myBloggie 16 16 (0) 23
DCP Portal 39 39 (0) 55
PHP Webthings 20 20 (0) 6
Total 99 99 (0) 115

Table 1: Summary of experiments. Err Msgs: num-
ber of reported errors. Bugs: number of confirmed
bugs from error reports. FP: number of false pos-
itives. Warn: number of unique warning messages
for variables of unresolved origin (uninspected).

due to the high likelihood of false positives.
PHP-fusion is different from the other five code bases be-

cause it does not directly access HTTP form data from input
hash tables such as $ GET and $ POST. Instead it uses the
extract operation to automatically import such information
into the current variable scope. We describe our findings for
PHP-fusion in the following subsection.

4.1 Case Study: Two Exploitable SQL Injec-
tion Attacks in PHP-fusion

In this section, we show two case studies of exploitable
SQL injection vulnerabilities in PHP-fusion detected by our
tool. PHP-fusion is an open-source content management
system (CMS) built on PHP and MySQL. Excluding locale
specific customization modules, it consists of over 16,000
lines of PHP code and has a wide user-base because of its
speed, customizability and rich features. Browsing through
the code, it is obvious that the author programmed with
security in mind and has taken extra care in sanitizing input
before use in query strings.

Our experiments were conducted on the then latest 6.00.204
version of the software. Unlike other code bases we have
examined, PHP-fusion uses the extract operation to import
user input into the current scope. As an example, extract($ POST, EXTR OVERWRITE)
has the effect of introducing one variable for each key in the
$ POST hash table to the current scope, and assigning the
value of $ POST[key] to that variable. This feature reduces
typing, but introduces confusion to the checker and secu-
rity vulnerabilities to the software—both of the exploits we
constructed involve use of uninitialized variables whose val-
ues can be manipulated by the user because of the extract
operation.

Since PHP-fusion does not directly read user input from
input hashes such as $ GETor $ POST, there are no di-
rect error messages generated by our tool. Instead we in-
spect warnings (recall the discussion about errors and warn-
ings above), which correspond to security sensitive variables
whose definition is unresolved by the checker (e.g., intro-
duced via the extract operation, or read from configuration
files).

We ran our checker on all top level scripts in PHP-fusion.
The tool generated 22 unique warnings, a majority of which
relate to configuration variables that are used in the con-
struction of a large number of queries5. After filtering those
out, we arrive at 7 warnings in 4 different files.

5Data base configuration variables such as $db prefix ac-
counted for 3 false positives, and information derived from
the database queries and configuration settings (e.g. locale
settings) caused the remaining 12.



We believe all but one of the 7 warnings may result in
exploitable security vulnerabilities. The lone false positive
arises from an unanticipated sanitization:

/* php-files/lostpassword.php */
if (!preg match("/^[0-9a-z]{32}$/", $account))

$error = 1;
if (!$error) { /* database access using $account */ }
if ($error) redirect("index.php");

Instead of terminating the program immediately based on
the result from preg match, the program sets the $error flag
to true and delays error handling, which is in general not a
good practice. This idiom can be handled by adding slightly
more information in the block summary.

We investigated the first two of the remaining warnings
for potential exploits, and confirmed that both are indeed
exploitable on a test installation. Unsurprisingly both er-
rors are made possible because of the extract operation. We
explain these two errors in detail below.

1) Vulnerability in script for recovering lost pass-
word. This is a remotely exploitable vulnerability that al-
lows any registered user to elevate his privileges via a care-
fully constructed URL. We show the relevant code below:

1 /* php-files/lostpassword.php */
2 for ($i=0;$i<=7;$i++)
3 $new pass .= chr(rand(97, 122));
4 . . .
5 $result = dbquery("UPDATE ".$db prefix."users
6 SET user_password=md5(’$new_pass’)

7 WHERE user_id=’".$data[’user_id’]."’");

Our tool issued a warning for $new pass, which is uninitial-
ized on entry and thus defaults to the empty string during
normal execution. The script proceeds to add seven ran-
domly generated letters to $new pass (lines 2-3), and uses
that as the new password for the user (lines 5-7). The SQL
request under normal execution takes the following form:

UPDATE users SET user password=md5(’???????’)
WHERE user id=’userid’

However, a malicious user can simply add a new pass field to
his HTTP request by appending, for example, the following
string to the URL for the password reminder site:
&new pass=abc%27%29%2cuser level=%27103%27%2cuser aim=%28%27

The extract operation described above will magically intro-
duce $new pass in the current variable scope with the fol-
lowing initial value:

abc′), user level =′ 103′, user aim = (′

The SQL request is now constructed as:
UPDATE users SET user password=md5(’abc’),

user level=’103’, user aim=(’???????’)
WHERE user id=’userid’

Here the password is set to “abc”, and the user privilege is
elevated to 103, which means “Super Administrator.” The
newly promoted user is now free to manipulate any content
on the website.

2) Vulnerability in the messaging sub-system. This
vulnerability exploits another use of potentially uninitial-
ized variable $result where message id in the messaging sub
system. We show the relevant code in Figure 5.

Our tool warns about unsanitized use of $result where message id.
On normal input, the program initializes $result where message id
using a cascading if statement. As shown in the code, the
author is very careful about sanitizing values that are used to
construct $result where message id. However, the cascading

1 if (isset($msg view)) {
2 if (!isNum($msg view)) fallback("messages.php");
3 $result where message id="message_id=".$msg view;
4 } elseif (isset($msg reply)) {
5 if (!isNum($msg reply)) fallback("messages.php");
6 $result where message id="message_id=".$msg reply;
7 }
8 . . . /* ˜100 lines later */ . . .
9 } elseif (isset($ POST[’btn_delete’]) | |

10 isset($msg delete)) { // delete message
11 $result = dbquery("DELETE FROM ".$db prefix.
12 "messages WHERE ".$result where message id. // BUG
13 " AND ".$result where message to);

Figure 5: An exploitable vulnerability in PHP-
fusion 6.00.204.

sequence of if statements does not have a fall back branch.
And therefore, $result where message id might be uninitial-
ized on malformed input. We exploit this fact, and append

&request where message id=1=1/*
The query string submitted on line 11-13 thus becomes:

DELETE FROM messages WHERE 1=1 /* AND . . .

Whatever follows “/*” is treated as comments in MySQL
and thus ignored. The result is loss of all private messages
in the system. Due to the complex control and data flow,
this error is unlikely to be discovered via code review or
testing.

We reported both exploits to the author of PHP-fusion,
who immediately fixed these vulnerabilities and released a
new version of the software.

5. RELATED WORK

5.1 Static techniques
WebSSARI is a type qualifier based analyzer for PHP [7].

It uses a standard intraprocedural tainting analysis to find
cases where user controlled values flow into functions that re-
quire trusted input (sensitive functions). The analysis relies
on three user written “prelude” files to provide information
regarding: 1) the set of all sensitive functions–those require
sanitized input; 2) the set of all untainting operations; and
3) the set of untrusted input variables. Incomplete specifi-
cation will result in both false positives and false negatives.

The key limitation of WebSSARI is its analysis power: 1)
the analysis is intraprocedural and does not infer function
pre- and post-conditions, thus requiring extensive annota-
tions to use; 2) it does not model predicates and conditional
branches, which is a key mechanism for testing and sanitiz-
ing input variables in PHP; and 3) it uses a generic type
based algorithm which does not model dynamic features in
scripting languages like PHP. For example, dynamic typing
may introduce subtle errors that WebSSARI misses. The
include statement dynamically inserts code to the program
which may contain, induce, or prevent errors.

Livshits and Lam [8] developed a static detector for secu-
rity vulnerabilities (e.g. SQL injection, cross site scripting,
etc) in Java applications. The algorithm uses a BDD-based
context-sensitive pointer analysis [18] to find potential flow
from untrusted sources (e.g. user input) to trusting sinks
(e.g. SQL queries). One limitation of this analysis is that



it does not model control flow in the program and there-
fore may misflag sanitized input that subsequently flows
into SQL queries. Sanitization with conditional branching
is common in PHP programs, so techniques that ignore con-
trol flow are likely to cause large numbers of false positives
on such code bases.

Other tainting analysis that are proven effective on C code
include CQual [4], MECA [20], and MC [6, 2]. Collectively
they have found hundreds of previously unknown security
errors in the Linux Kernel.

Christensen et. al. [3] developed a string analysis that ap-
proximates string values in a Java program using a context
free grammar. The result is then widened into a regular
language and can be checked against a specification of ex-
pected output to determine syntactic correctness. However,
syntactic correctness does not entail safety, and therefore
it is unclear how one can adapt this work to the detection
of SQL injection vulnerabilities. Minamide [9] extended the
approach and constructed a string analyzer for PHP. It cited
SQL injection detection as a possible application. However,
the analyzer models a small set of string operations in PHP
(e.g. concatenation, string matching and replacement), and
ignores more complex features such as dynamic typing, cast-
ing, and predicates. Furthermore, the framework only seems
to model sanitization with string replacement, which repre-
sents a small subset of all sanitization in real code. There-
fore, accurately pinpointing injection attacks remains chal-
lenging.

Gould et. al. [5] combines string analysis with type check-
ing to ensure not only syntactic correctness but also type
correctness for SQL queries constructed by Java programs.
However, type correctness does not guarantee safety, which
is the focus of our analysis.

5.2 Dynamic Techniques
Scott and Sharp [14] proposed an application-level firewall

to centralize sanitization of client input. Firewall products
are also commercially available from companies such as Net-
Continuum, Imperva, Watchfire, etc. Some of these firewalls
detect and guard against previously known attack patterns,
while others maintain a white list of valid inputs. The main
limitation here is that the former is susceptible to both false
positives and false negatives, and the latter is reliant on cor-
rect specifications, which are difficult to come by.

The Perl taint mode [11] enables a set of special secu-
rity checks during execution in an unsafe environment. It
prevents the use of untrusted data (e.g. all command line
arguments, environment variables, data read from files, etc)
in operations that require trusted input (e.g. any command
that invokes a sub-shell). Nguyen-Tuong [10] proposed a
taint mode for PHP. It employs a set of heuristics to deter-
mine whether a query is safe when it contains fragments of
user input. The limitation of a heuristics based approach is
that it is susceptible to both false positives and false nega-
tives, which presents an obstacle for deployment in a pro-
duction environment.

In general, the advantage of a static analysis is that it
finds the root cause of a security vulnerability and prevents
the attack before the application is deployed.

6. CONCLUSION
We have presented a static analysis algorithm for detect-

ing security vulnerabilities in PHP. Our analysis employs a

novel three-tier architecture that enables us to handle dy-
namic features unique to scripting languages such as dy-
namic typing and code inclusion. We demonstrated the ef-
fectiveness of our approach by running our tool on six popu-
lar open source PHP code bases and finding 105 previously
unknown security vulnerabilities, most of which we believe
are remotely exploitable.
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