
Wireless Networks 8, 521–534, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

SPINS: Security Protocols for Sensor Networks

ADRIAN PERRIG, ROBERT SZEWCZYK, J.D. TYGAR, VICTOR WEN and DAVID E. CULLER
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 387 Soda Hall, Berkeley, CA 94720, USA

Abstract. Wireless sensor networks will be widely deployed in the near future. While much research has focused on making these networks
feasible and useful, security has received little attention. We present a suite of security protocols optimized for sensor networks: SPINS.
SPINS has two secure building blocks: SNEP and µTESLA. SNEP includes: data confidentiality, two-party data authentication, and
evidence of data freshness. µTESLA provides authenticated broadcast for severely resource-constrained environments. We implemented
the above protocols, and show that they are practical even on minimal hardware: the performance of the protocol suite easily matches the
data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.

Keywords: secure communication protocols, sensor networks, mobile ad hoc networks, MANET, authentication of wireless communica-
tion, secrecy and confidentiality, cryptography

1. Introduction

We envision a future where thousands to millions of small
sensors form self-organizing wireless networks. How can we
provide security for these sensor networks? Security is not
easy; compared with conventional desktop computers, severe
challenges exist – these sensors will have limited processing
power, storage, bandwidth, and energy.

We need to surmount these challenges, because security is
so important. Sensor networks will expand to fill all aspects
of our lives. Here are some typical applications:

• Emergency response information: sensor networks will
collect information about the status of buildings, people,
and transportation pathways. Sensor information must be
collected and passed on in meaningful, secure ways to
emergency response personnel.

• Energy management: in 2001 power blackouts plagued
California. Energy distribution will be better managed
when we begin to use remote sensors. For example, the
power load that can be carried on an electrical line depends
on ambient temperature and the immediate temperature
on the wire. If these were monitored by remote sensors
and the remote sensors received information about desired
load and current load, it would be possible to distribute
load better. This would avoid circumstances where Cali-
fornians cannot receive electricity while surplus electricity
exists in other parts of the country.

• Medical monitoring: we envision a future where individu-
als with some types of medical conditions receive constant
monitoring through sensors that monitor health conditions.
For some types of medical conditions, remote sensors may
apply remedies (such as instant release of emergency med-
ication to the bloodstream).

• Logistics and inventory management: commerce in Amer-
ica is based on moving goods, including commodities
from locations where surpluses exist to locations where

needs exist. Using remote sensors can substantially im-
prove these mechanisms. These mechanisms will vary
in scale – ranging from worldwide distribution of goods
through transportation and pipeline networks to inventory
management within a single retail store.

• Battlefield management: remote sensors can help elimi-
nate some of the confusion associated with combat. They
can allow accurate collection of information about current
battlefield conditions as well as giving appropriate infor-
mation to soldiers, weapons, and vehicles in the battlefield.

At UC Berkeley, we think these systems are important, and
we are starting a major initiative to explore the use of wireless
sensor networks. (More information on this new initiative,
CITRIS, can be found at www.citris.berkeley.edu.)
Serious security and privacy questions arise if third parties
can read or tamper with sensor data. We envision wireless
sensor networks being widely used – including for emergency
and life-critical systems – and here the questions of security
are foremost.

This article presents a set of Security Protocols for Sensor
Networks, SPINS. The chief contributions of this article are:

• Exploring the challenges for security in sensor networks.

• Designing and developing µTESLA (the “micro” version
of TESLA), providing authenticated streaming broadcast.

• Designing and developing SNEP (Secure Network En-
cryption Protocol) providing data confidentiality, two-
party data authentication, and data freshness, with low
overhead.

• Designing and developing an authenticated routing proto-
col using our building blocks.

1.1. Sensor hardware

At UC Berkeley, we are building prototype networks of small
sensor devices under the SmartDust program [45], one of the
components of CITRIS. We have deployed these in one of

522 PERRIG ET AL.

Table 1
Characteristics of prototype SmartDust nodes.

CPU 8-bit, 4 MHz
Storage 8 Kbytes instruction flash

512 bytes RAM
512 bytes EEPROM

Communication 916 MHz radio
Bandwidth 10 Kbps
Operating system TinyOS
OS code space 3500 bytes
Available code space 4500 bytes

our EECS buildings, Cory Hall. We are currently using these
for a very simple application – heating and air-conditioning
control in the building. However, the same mechanisms that
we describe in this paper can be modified to support sensor
that handle emergency system such as fire, earthquake, and
hazardous material response.

By design, these sensors are inexpensive, low-power de-
vices. As a result, they have limited computational and com-
munication resources. The sensors form a self-organizing
wireless network and form a multihop routing topology. Typi-
cal applications may periodically transmit sensor readings for
processing.

Our current prototype consists of nodes, small battery
powered devices, that communicate with a more powerful
base station, which in turn is connected to an outside net-
work. Table 1 summarizes the performance characteristics of
these devices. At 4 MHz, they are slow and underpowered
(the CPU has good support for bit and byte level I/O opera-
tions, but lacks support for many arithmetic and some logic
operations). They are only 8-bit processors (note that accord-
ing to [53], 80% of all microprocessors shipped in 2000 were
4 bit or 8 bit devices). Communication is slow at 10 Kbps.

The operating system is particularly interesting for these
devices. We use TinyOS [23]. This small, event-driven oper-
ating system consumes almost half of 8 Kbytes of instruction
flash memory, leaving just 4500 bytes for security and the ap-
plication.

It is hard to imagine how significantly more powerful de-
vices could be used without consuming large amounts of
power. The energy source on our devices is a small battery,
so we are stuck with relatively limited computational devices.
Wireless communication is the most energy-consuming func-
tion performed by these devices, so we need to minimize com-
munications overhead. The limited energy supplies create
tensions for security: on the one hand, security needs to limit
its consumption of processor power; on the other hand, lim-
ited power supply limits the lifetime of keys (battery replace-
ment is designed to reinitialize devices and zero out keys).1

1.2. Is security on sensors possible?

These constraints make it impractical to use most current
secure algorithms, since they were designed for powerful
processors. For example, the working memory of a sensor

1 Base stations differ from nodes in having longer-lived energy supplies and
additional communications connections to outside networks.

node is not sufficient to even hold the variables for asymmet-
ric cryptographic algorithms (e.g., RSA [48] with 1024 bits),
let alone perform operations with them.

A particular challenge is broadcasting authenticated data
to the entire sensor network. Current proposals for au-
thenticated broadcast are impractical for sensor networks.
Most proposals rely on asymmetric digital signatures for the
authentication, which are impractical for multiple reasons
(e.g., long signatures with high communication overhead of
50–1000 bytes per packet, very high overhead to create
and verify the signature). Furthermore, previously proposed
purely symmetric solutions for broadcast authentication are
impractical: Gennaro and Rohatgi’s initial work required over
1 Kbyte of authentication information per packet [17], and
Rohatgi’s improved k-time signature scheme requires over
300 bytes per packet [49]. Some of the authors of this arti-
cle have also proposed the authenticated streaming broadcast
TESLA protocol [43]. TESLA works well on regular desktop
workstations, but uses too much communication and memory
on our resource-starved sensor nodes. This article extends and
adapts TESLA to make it practical for broadcast authentica-
tion for sensor networks. We call our new protocol µTESLA.

We have implemented all of these primitives. Our mea-
surements show that adding security to a highly resource-
constrained sensor network is feasible.

Given the severe hardware and energy constraints, we must
be careful in the choice of cryptographic primitives and the
security protocols in the sensor networks.

2. System assumptions

Before we outline the security requirements and present our
security infrastructure, we need to define the system architec-
ture and the trust requirements. The goal of this work is to
propose a general security infrastructure that is applicable to
a variety of sensor networks.

2.1. Communication architecture

Generally, the sensor nodes communicate over a wireless net-
work, so broadcast is the fundamental communication primi-
tive. The baseline protocols account for this property: on one
hand they affect the trust assumptions, and on the other they
minimize energy usage.

A typical SmartDust sensor network forms around one or
more base stations, which interface the sensor network to the
outside network. The sensor nodes establish a routing forest,
with a base station at the root of every tree. Periodic trans-
mission of beacons allows nodes to create a routing topol-
ogy. Each node can forward a message towards a base sta-
tion, recognize packets addressed to it, and handle message
broadcasts. The base station accesses individual nodes using
source routing. We assume that the base station has capabili-
ties similar to the network nodes, except that it has sufficient
battery power to surpass the lifetime of all sensor nodes, suf-
ficient memory to store cryptographic keys, and means for
communicating with outside networks.

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 523

We do have an advantage with sensor networks, because
most communication involves the base station and is not be-
tween two local nodes. The communication patterns within
our network fall into three categories:

• Node to base station communication, e.g., sensor readings.

• Base station to node communication, e.g., specific re-
quests.

• Base station to all nodes, e.g., routing beacons, queries or
reprogramming of the entire network.

Our security goal is to address these communication pat-
terns, though we also show how to adapt our baseline pro-
tocols to other communication patterns, i.e. node to node or
node broadcast.

2.2. Trust requirements

Generally, the sensor networks may be deployed in untrusted
locations. While it may be possible to guarantee the integrity
of the each node through dedicated secure microcontrollers
(e.g., [1] or [13]), we feel that such an architecture is too
restrictive and does not generalize to the majority of sensor
networks. Instead, we assume that individual sensors are un-
trusted. Our goal is to design the SPINS key setup so a com-
promise of a node does not spread to other nodes.

Basic wireless communication is not secure. Because it
is broadcast, any adversary can eavesdrop on traffic, inject
new messages, and replay old messages. Hence, our proto-
cols do not place any trust assumptions on the communica-
tion infrastructure, except that messages are delivered to the
destination with non-zero probability.

Since the base station is the gateway for the nodes to com-
municate with the outside world, compromising the base sta-
tion can render the entire sensor network useless. Thus the
base stations are a necessary part of our trusted computing
base. Our trust setup reflects this and so all sensor nodes inti-
mately trust the base station: at creation time, each node gets
a master secret key X which it shares with the base station.
All other keys are derived from this key, as we show in sec-
tion 6.

Finally, each node trusts itself. This assumption seems
necessary to make any forward progress. In particular, we
trust the local clock to be accurate, i.e. to have small drift.
This is necessary for the authenticated broadcast protocol we
describe in section 5.

2.3. Design guidelines

With the limited computation resources available on our plat-
form, we cannot afford to use asymmetric cryptography and
so we use symmetric cryptographic primitives to construct the
SPINS protocols. Due to the limited program store, we con-
struct all cryptographic primitives (i.e. encryption, message
authentication code (MAC), hash, random number generator)
out of a single block cipher for code reuse. To reduce com-
munication overhead we exploit common state between the
communicating parties.

3. Requirements for sensor network security

This section formalizes the security properties required by
sensor networks, and shows how they are directly applicable
in a typical sensor network.

3.1. Data confidentiality

A sensor network should not leak sensor readings to neigh-
boring networks. In many applications (e.g., key distribution)
nodes communicate highly sensitive data. The standard ap-
proach for keeping sensitive data secret is to encrypt the data
with a secret key that only intended receivers possess, hence
achieving confidentiality. Given the observed communication
patterns, we set up secure channels between nodes and base
stations and later bootstrap other secure channels as neces-
sary.

3.2. Data authentication

Message authentication is important for many applications in
sensor networks (including administrative tasks such as net-
work reprogramming or controlling sensor node duty cycle).
Since an adversary can easily inject messages, the receiver
needs to ensure that data used in any decision-making process
originates from a trusted source. Informally, data authentica-
tion allows a receiver to verify that the data really was sent by
the claimed sender. Informally, data authentication allows a
receiver to verify that the data really was sent by the claimed
sender.

In the two-party communication case, data authentication
can be achieved through a purely symmetric mechanism: The
sender and the receiver share a secret key to compute a mes-
sage authentication code (MAC) of all communicated data.
When a message with a correct MAC arrives, the receiver
knows that it must have been sent by the sender.

This style of authentication cannot be applied to a broad-
cast setting, without placing much stronger trust assumptions
on the network nodes. If one sender wants to send authentic
data to mutually untrusted receivers, using a symmetric MAC
is insecure: any one of the receivers knows the MAC key, and
hence, could impersonate the sender and forge messages to
other receivers. Hence, we need an asymmetric mechanism
to achieve authenticated broadcast. One of our contributions
is to construct authenticated broadcast from symmetric primi-
tives only, and introduce asymmetry with delayed key disclo-
sure and one-way function key chains.

3.3. Data integrity

In communication, data integrity ensures the receiver that the
received data is not altered in transit by an adversary. In
SPINS, we achieve data integrity through data authentication,
which is a stronger property.

3.4. Data freshness

Sensor networks send measurements over time, so it is not
enough to guarantee confidentiality and authentication; we

524 PERRIG ET AL.

also must ensure each message is fresh. Informally, data fresh-
ness implies that the data is recent, and it ensures that no
adversary replayed old messages. We identify two types of
freshness: weak freshness, which provides partial message
ordering, but carries no delay information, and strong fresh-
ness, which provides a total order on a request–response pair,
and allows for delay estimation. Weak freshness is useful
for sensor measurements, while strong freshness is useful for
time synchronization within the network.

4. Notation

We use the following notation to describe security protocols
and cryptographic operations in this article:

• A,B are principals, such as communicating nodes.

• NA is a nonce generated by A (a nonce is an unpredictable
bit string, usually used to achieve freshness).

• XAB denotes the master secret (symmetric) key which
is shared between A and B. No direction information is
stored in this key, so we have XAB = XBA.

• KAB and KBA denote the secret encryption keys shared
between A and B. A and B derive the encryption key from
the master secret key XAB based on the direction of the
communication: KAB = FXAB

(1) and KBA = FXAB
(3),

where F is a Pseudo-Random Function (PRF) [18].2

We describe the details of key derivation in further detail
in section 6.

• K ′
AB and K ′

BA denote the secret MAC keys shared be-
tween A and B. A and B derive the encryption key from
the master secret key XAB based on the direction of the
communication: K ′

AB = FXAB
(2) and K ′

BA = FXAB
(4),

where F is a pseudo-random function.

• {M}KAB is the encryption of message M with the encryp-
tion key KAB .

• {M}〈KAB,IV 〉 denotes the encryption of message M , with
key KAB , and the initialization vector IV which is used in
encryption modes such as cipher-block chaining (CBC),
output feedback mode (OFB), or counter mode (CTR) [3,
14,29].

• MAC(K ′
AB,M) denotes the computation of the message

authentication code (MAC) of message M , with MAC
key K ′

AB .

By a secure channel, we mean a channel that offers confi-
dentiality, data authentication, integrity, and freshness.

5. SPINS security building blocks

To achieve the security requirements we established in sec-
tion 3 we design two security building blocks: SNEP and
µTESLA. SNEP provides data confidentiality, two-party data

2 To uniquely define KAB and KBA, the identifiers A and B of XAB are
lexicographically sorted.

authentication, integrity, and freshness. µTESLA provides
authentication for data broadcast. We bootstrap the security
for both mechanisms with a shared secret key between each
node and the base station (see section 2). We demonstrate in
section 8 how we can extend the trust to node-to-node inter-
actions from the node-to-base-station trust.

5.1. SNEP: Data confidentiality, authentication, integrity,
and freshness

SNEP provides a number of unique advantages. First, it has
low communication overhead; it only adds 8 bytes per mes-
sage. Second, like many cryptographic protocols it uses a
counter, but we avoid transmitting the counter value by keep-
ing state at both end points. Third, SNEP achieves semantic
security, a strong security property which prevents eavesdrop-
pers from inferring the message content from the encrypted
message (see discussion below). Finally, the same simple and
efficient protocol also gives us data authentication, replay pro-
tection, and weak message freshness.

Data confidentiality is one of the most basic security prim-
itives and it is used in almost every security protocol. A sim-
ple form of confidentiality can be achieved through encryp-
tion, but pure encryption is not sufficient. Another important
security property is semantic security, which ensures that an
eavesdropper has no information about the plaintext, even if
it sees multiple encryptions of the same plaintext [19]. For
example, even if an attacker has an encryption of a 0 bit and
an encryption of a 1 bit, it will not help it distinguish whether
a new encryption is an encryption of 0 or 1. A basic tech-
nique to achieve this is randomization: Before encrypting the
message with a chaining encryption function (i.e. DES-CBC),
the sender precedes the message with a random bit string.
This prevents the attacker from inferring the plaintext of en-
crypted messages if it knows plaintext–ciphertext pairs en-
crypted with the same key.

Sending the randomized data over a wireless channel,
however, requires more energy. So we construct another cryp-
tographic mechanism that achieves semantic security with no
additional transmission overhead. We use two counters shared
by the parties (one for each direction of communication) for
the block cipher in counter mode (CTR) (as we discuss in
section 6). A traditional approach to manage the counters
is to send the counter along with each message. But since
we are using sensors and the communicating parties share the
counter and increment it after each block, the sender can save
energy by sending the message without the counter. At the
end of this section we describe a counter exchange protocol,
which the communicating parties use to synchronize (or re-
synchronize) their counter values. To achieve two-party au-
thentication and data integrity, we use a message authentica-
tion code (MAC).

A good security design practice is not to reuse the same
cryptographic key for different cryptographic primitives; this
prevents any potential interaction between the primitives that
might introduce a weakness. Therefore we derive indepen-
dent keys for our encryption and MAC operations. The two

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 525

communicating parties A and B share a master secret key
XAB , and they derive independent keys using the pseudo-
random function F : encryption keys KAB = FX (1) and
KBA = FX (3) for each direction of communication, and
MAC keys K ′

AB = FX (2) and K ′
BA = FX (4) for each di-

rection of communication. Section 6 gives more details on
key derivation.

The combination of these mechanisms form our Sensor
Network Encryption Protocol SNEP. The encrypted data has
the following format: E = {D}〈K,C〉, where D is the data,
the encryption key is K , and the counter is C. The MAC is
M = MAC(K ′, C||E). The complete message that A sends to
B is

A → B: {D}〈KAB,CA〉, MAC
(
K ′

ABCA || {D}〈KAB,CA〉
)
. (1)

SNEP offers the following nice properties:

• Semantic security. Since the counter value is incremented
after each message, the same message is encrypted dif-
ferently each time. The counter value is sufficiently long
enough to never repeat within the lifetime of the node.

• Data authentication. If the MAC verifies correctly, a re-
ceiver knows that the message originated from the claimed
sender.

• Replay protection. The counter value in the MAC prevents
replay of old messages. Note that if the counter were not
present in the MAC, an adversary could easily replay mes-
sages.

• Weak freshness. If the message verifies correctly, a re-
ceiver knows that the message must have been sent af-
ter the previous message it received correctly (that had a
lower counter value). This enforces a message ordering
and yields weak freshness.

• Low communication overhead. The counter state is kept
at each end point and does not need to be sent in each
message.3

Plain SNEP provides weak data freshness only, because it
only enforces a sending order on the messages within node B,
but no absolute assurance to node A that a message was cre-
ated by B in response to an event in node A.

Node A achieves strong data freshness for a response from
node B through a nonce NA (which is a random number so
long that exhaustive search of all possible nonces is not fea-
sible). Node A generates NA randomly and sends it along
with a request message RA to node B. The simplest way to
achieve strong freshness is for B to return the nonce with the
response message RB in an authenticated protocol. However,
instead of returning the nonce to the sender, we can optimize
the process by using the nonce implicitly in the MAC compu-
tation. The entire SNEP protocol providing strong freshness
for B’s response is

3 If the MAC does not match, the receiver can try a fixed, small number of
counter increments to recover from message loss. If this still fails, the two
parties engage in the counter exchange protocol we describe below.

A → B: NA,RA, (2)

B → A:

{RB}〈KBA,CB 〉, MAC
(
K ′

BA,NA || CB || {RB}〈KBA,CB 〉
)
.

If the MAC verifies correctly, node A knows that node B

generated the response after it sent the request. The first mes-
sage can also use plain SNEP (as described in equation (1)) if
confidentiality and data authentication are needed.

5.2. Counter exchange protocol

To achieve small SNEP messages, we assume that the com-
municating parties A and B know each other’s counter values
CA and CB and so the counter does not need to be added
to each encrypted message. In practice, however, messages
might get lost and the shared counter state can become incon-
sistent. We now present protocols to synchronize the counter
state. To bootstrap the counter values initially, we use the fol-
lowing protocol:

A → B: CA,

B → A: CB, MAC
(
K ′

BACA || CB

)
,

A → B: MAC
(
K ′

AB,CA || CB

)
.

Note that the counter values are not secret, so we do not
need encryption. However, this protocol needs strong fresh-
ness, so both parties use their counters as a nonce (assuming
that the protocol never runs twice with the same counter val-
ues, hence incrementing the counters if necessary). Also note
that the MAC does not need to include the names of A or B,
since the MAC keys K ′

AB and K ′
BA implicitly bind the mes-

sage to the parties, and ensure the direction of the message.
If party A realizes that the counter CB of party B is not

synchronized any more, A can request the current counter of
B using a nonce NA to ensure strong freshness of the reply:

A → B: NA,

B → A: CB, MAC(K ′
BA,NA || CB).

To prevent a potential denial-of-service (DoS) attack,
where an attacker keeps sending bogus messages to lure the
nodes into performing counter synchronization, the nodes can
switch to sending the counter with each encrypted message
they send. Another approach to detect such a DoS attack is to
attach another short MAC to the message that does not depend
on the counter.

5.3. µTESLA: Authenticated broadcast

Previous proposals for authenticated broadcast are impracti-
cal for sensor networks. First, most proposals rely on asym-
metric digital signatures for authentication, which are imprac-
tical for multiple reasons, which we describe in section 1.

The recently proposed TESLA protocol provides efficient
authenticated broadcast [42,43]. However, TESLA is not de-
signed for the limited computing environments we encounter
in sensor networks for the following three reasons:

526 PERRIG ET AL.

TESLA authenticates the initial packet with a digital sig-
nature. Clearly, digital signatures are too expensive to com-
pute on our sensor nodes, since even fitting the code into the
memory is a major challenge. For the same reason as we men-
tion above, one-time signatures are a challenge to use on our
nodes.

Standard TESLA has an overhead of approximately
24 bytes per packet. For networks connecting workstations
this is usually not significant. Sensor nodes, however, send
very small messages that are around 30 bytes long. It is sim-
ply impractical to disclose the TESLA key for the previous
intervals with every packet: with 64 bit keys and MACs, the
TESLA-related part of the packet would be constitute over
50% of the packet.

Finally, the one-way key chain does not fit into the memory
of our sensor node. So, pure TESLA is not practical for a node
to broadcast authenticated data.

We design µTESLA to solve the following inadequacies
of TESLA in sensor networks:

• TESLA authenticates the initial packet with a digital sig-
nature, which is too expensive for our sensor nodes.
µTESLA uses only symmetric mechanisms.

• Disclosing a key in each packet requires too much en-
ergy for sending and receiving. µTESLA discloses the
key once per epoch.

• It is expensive to store a one-way key chain in a sen-
sor node. µTESLA restricts the number of authenticated
senders.

5.4. µTESLA overview

We give a brief overview of µTESLA, followed by a detailed
description.

Authenticated broadcast requires an asymmetric mecha-
nism, otherwise any compromised receiver could forge mes-
sages from the sender. Unfortunately, asymmetric cryp-
tographic mechanisms have high computation, communica-
tion, and storage overhead, making their usage on resource-
constrained devices impractical. µTESLA overcomes this
problem by introducing asymmetry through a delayed disclo-
sure of symmetric keys, which results in an efficient broadcast
authentication scheme.

We first explain µTESLA for the case where the base sta-
tion broadcasts authenticated information to the nodes. Later
we discuss the case where the nodes are the sender.

µTESLA requires that the base station and nodes be
loosely time synchronized, and each node knows an upper
bound on the maximum synchronization error. To send an au-
thenticated packet, the base station computes a MAC on the
packet with a key that is secret at that point in time. When a
node gets a packet, it can verify that the corresponding MAC
key was not yet disclosed by the base station (based on its
loosely synchronized clock, its maximum synchronization er-
ror, and the time schedule at which keys are disclosed). Since
a receiving node is assured that the MAC key is known only
by the base station, the receiving node is assured that no ad-

versary could have altered the packet in transit. The node
stores the packet in a buffer. At the time of key disclosure,
the base station broadcasts the verification key to all receivers.
When a node receives the disclosed key, it can verify the cor-
rectness of the key (which we explain below). If the key is
correct, the node can now use it to authenticate the packet
stored in its buffer.

Each MAC key is a key of a key chain, generated by
a public one-way function F . To generate the one-way key
chain, the sender chooses the last key Kn of the chain ran-
domly, and repeatedly applies F to compute all other keys:
Ki = F(Ki+1). Each node can easily perform time synchro-
nization and retrieve an authenticated key of the key chain for
the commitment in a secure and authenticated manner, using
the SNEP building block. (We explain more details in the next
subsection.)

Example. Figure 1 shows the µTESLA one-way key chain
derivation, the time intervals, and some sample packets that
the sender broadcasts. Each key of the key chain corresponds
to a time interval and all packets sent within one time inter-
val are authenticated with the same key. In this example, the
sender discloses keys two time intervals after it uses them to
compute MACs. We assume that the receiver node is loosely
time synchronized and knows K0 (a commitment to the key
chain). Packets P1 and P2 sent in interval 1 contain a MAC
with key K1. Packet P3 has a MAC using key K2. So far,
the receiver cannot authenticate any packets yet. Assume that
packets P4, P5, and P6 are all lost, as well as the packet that
discloses key K1, so the receiver can still not authenticate P1,
P2, or P3. In interval 4 the base station broadcasts key K2,
which the node authenticates by verifying K0 = F(F(K2)).
The node derives K1 = F(K2), so it can authenticate packets
P1, P2 with K1, and P3 with K2.

Key disclosure is independent from the packets broadcast,
and is tied to time intervals. In µTESLA, the sender broad-
casts the current key periodically in a special packet.

5.5. µTESLA detailed description

µTESLA has multiple phases: sender setup, sending authen-
ticated packets, bootstrapping new receivers, and authenticat-
ing packets. We first explain how µTESLA allows the base
station to broadcast authenticated information to the nodes,

Figure 1. The µTESLA one-way key chain. The sender generates the one-
way key chain right-to-left by repeatedly applying the one-way function F .
The sender associates each key of the one-way key chain with a time interval.
Time runs left-to-right, so the sender uses the keys of the key chain in reverse
order, and computes the MAC of the packets of a time interval with the key
of that time interval.

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 527

and we then explain how TESLA allows nodes to broadcast
authenticated messages.

Sender setup. The sender first generates a sequence of secret
keys (a one-way key chain). To generate a one-way key chain
of length n, the sender chooses the last key Kn randomly,
and generates the remaining values by successively apply-
ing a one-way function F (e.g., a cryptographic hash function
such as MD5 [46]): Kj = F(Kj+1). Because F is a one-
way function, anybody can compute forward, e.g., compute
K0, . . . ,Kj given Kj+1. On the other hand, nobody can com-
pute backward, e.g., compute Kj+1 given only K0, . . . ,Kj ,
because the generator function is one-way. The S/Key one-
time password system uses a similar approach [21].

Broadcasting authenticated packets. Time is divided into
uniform time intervals, and the sender associates each key of
the one-way key chain with one time interval. In time inter-
val i, the sender uses the key of the current interval, Ki , to
compute the message authentication code (MAC) of packets
in that interval. In time interval (i + δ), the sender reveals
key Ki . The key disclosure time delay is on the order of a
few time intervals, as long as it is greater than any reasonable
round trip time between the sender and the receivers.

Bootstrapping a new receiver. In a one-way key chain, keys
are self-authenticating. The receiver can easily and efficiently
authenticate subsequent keys of the one-way key chain us-
ing one authenticated key. For example, if a receiver has
an authenticated value Ki of the key chain, it can easily au-
thenticate Ki+1, by verifying Ki = F(Ki+1). To bootstrap
µTESLA, each receiver needs to have one authentic key of
the one-way key chain as a commitment to the entire chain.
Other requirements are that the sender and receiver be loosely
time synchronized, and that the receiver knows the key disclo-
sure schedule of the keys of the one-way key chain. Both the
loose time synchronization and the authenticated key chain
commitment can be established with a mechanism provid-
ing strong freshness and point-to-point authentication. A re-
ceiver R sends a nonce NR in the request message to the
sender S. The sender S replies with a message containing
its current time TS , a key Ki of the one-way key chain used in
a past interval i (the commitment to the key chain), the start-
ing time Ti of interval i, the duration Tint of a time interval,
and the disclosure delay δ (the last three values describe the
key disclosure schedule):

M → S: NM

S → M: TS | Ki | Ti | Tint | δ

MAC(KMS,NM | TS | Ki | Ti | Tint | δ).

Since we do not need confidentiality, the sender does not
need to encrypt the data. The MAC uses the secret key shared
by the node and base station to authenticate the data, the
nonce NM allows the node to verify freshness. Instead of us-
ing a digital signature scheme as in TESLA, we use the node-
to-base-station authenticated channel to bootstrap the authen-
ticated broadcast.

Authenticating broadcast packets. When a receiver receives
the packets with the MAC, it needs to ensure that the packet is
not a spoof from an adversary. The adversary already knows
the disclosed key of a time interval, so it could forge the
packet since it knows the key used to compute the MAC. We
say that the receiver needs to be sure that the packet is safe –
i.e. that the sender did not yet disclose the key that was used
to compute the MAC of an incoming packet. As stated above,
the sender and receivers need to be loosely time synchronized
and the receivers need to know the key disclosure schedule.
If the incoming packet is safe, the receiver stores the packet
(it can verify it only once the corresponding key is disclosed).
If the incoming packet is not safe (the packet had an unusu-
ally long delay), the receiver needs to drop the packet, since
an adversary might have altered it.

As soon as the node receives a new key Ki , it authenticates
the key by checking that it matches the last authentic key it
knows Kv , using a small number of applications of the one-
way function F : Kv = F i−v(Ki). If the check is successful,
the new key Ki is authentic and the receiver can authenticate
all packets that were sent within the time intervals v to i. The
receiver also replaces the stored Kv with Ki .

Nodes broadcasting authenticated data. New challenges
arise if a node broadcasts authenticated data. Since the node
is memory limited, it cannot store the keys of a one-way key
chain. Moreover, re-computing each key from the initial gen-
erating key Kn is computationally expensive. Also, the node
might not share a key with each receiver, so sending out the
authenticated commitment to the key chain would involve an
expensive node-to-node key agreement. Finally, broadcasting
the disclosed keys to all receivers is expensive for the node
and drains precious battery energy.

Here are two solutions to the problem:

• The node broadcasts the data through the base station. It
uses SNEP to send the data in an authenticated way to the
base station, which subsequently broadcasts it.

• The node broadcasts the data. However, the base station
keeps the one-way key chain and sends keys to the broad-
casting node as needed. To conserve energy for the broad-
casting node, the base station can also broadcast the dis-
closed keys, and/or perform the initial bootstrapping pro-
cedure for new receivers.

6. Implementation

Because of stringent resource constraints on the sensor nodes,
implementation of the cryptographic primitives is a major
challenge. We can sacrifice some security to achieve feasi-
bility and efficiency, but we still need a core level of strong
cryptography. Below we discuss how we provide strong cryp-
tography despite restricted resources.

Memory size is a constraint: our sensor nodes have
8 Kbytes of read-only program memory, and 512 bytes of
RAM. The program memory is used for TinyOS, our security
infrastructure, and the actual sensor net application. To save

528 PERRIG ET AL.

program memory we implement all cryptographic primitives
from one single block cipher [29,50].

Block cipher. We evaluated several algorithms for use as a
block cipher. An initial choice was the AES algorithm Rijn-
dael [12]; however, after further inspection, we sought alter-
natives with smaller code size and higher speed. The base-
line version of Rijndael uses over 800 bytes of lookup tables
which is too large for our memory-deprived nodes. An op-
timized version of that algorithm (about a 100 times faster)
uses over 10 Kbytes of lookup tables. Similarly, we rejected
the DES block cipher which requires a 512-entry SBox table
and a 256-entry table for various permutations [32]. A small
encryption algorithm such as TEA [54] is a possibility, but is
has not yet been subject to cryptanalytic scrutiny.4 We use
RC5 [47] because of its small code size and high efficiency.
RC5 does not rely on multiplication and does not require large
tables. However, RC5 does use 32-bit data-dependent rotates,
which are expensive on our Atmel processor (it only supports
an 8-bit single bit rotate operation).

Even though the RC5 algorithm can be expressed suc-
cinctly, the common RC5 libraries are too large to fit on our
platform. With a judicious selection of functionality, we use a
subset of RC5 from OpenSSL, and after further tuning of the
code we achieve an additional 40% reduction in code size.

Encryption function. To save code space, we use the same
function for both encryption and decryption. The counter
(CTR) mode of block ciphers (figure 2) has this property.
CTR mode is a stream cipher. Therefore, the size of the ci-
phertext is exactly the size of the plaintext and not a mul-
tiple of the block size.5 This property is particularly desir-
able in our environment. Message sending and receiving con-
sume a lot of energy. Also, longer messages have a higher
probability of data corruption. Therefore, block cipher mes-
sage expansion is undesirable. CTR mode requires a counter
for proper operation. Reusing a counter value severely de-
grades security. In addition, CTR-mode offers semantic se-
curity: the same plaintext sent at different times is encrypted
into different ciphertext since the encryption pads are gener-
ated from different counters. To an adversary who does not
know the key, these messages will appear as two unrelated
random strings. Since the sender and the receiver share the
counter, we do not need to include it in the message. If the
two nodes lose the synchronization of the counter, they can
simply transmit the counter explicitly to resynchronize using
SNEP with strong freshness.

Freshness. Weak freshness is automatically provided by the
CTR encryption. Since the sender increments the counter af-
ter each message, the receiver verifies weak freshness by ver-
ifying that received messages have a monotonically increas-
ing counter. For applications requiring strong freshness, the

4 TREYFER [56] by Yuval is a small and efficient cipher, but Biryukov and
Wagner describe an attack on it [7].

5 The same property can be achieved with a block cipher and the ciphertext-
stealing method described by Schneier [50]. The downside is that
Schneier’s approach requires both encryption and decryption functions.

Figure 2. Counter mode encryption and decryption. The encryption func-
tion is applied to a monotonically increasing counter to generate a one time
pad. This pad is then XORed with the plaintext. The decryption operation is
identical.

sender creates a random nonce NM (an unpredictable 64-bit
value) and includes it in the request message to the receiver.
The receiver generates the response message and includes the
nonce in the MAC computation (see section 5). If the MAC
of the response verifies successfully, the node knows that the
response was generated after it sent the request message and
hence achieves strong freshness.

Random-number generation. The node has its own sensors,
wireless receiver, and scheduling process, from which we
could derive random digits. But to minimize power require-
ments, we use a MAC function as our pseudo-random num-
ber generator (PRG), with the secret pseudo-random number
generator key Xrand. We also keep a counter C that we incre-
ment after each pseudo-random block we generate. We com-
pute the C-th pseudo-random output block as MAC(Xrand, C).
If C wraps around (which should never happen because the
node will run out of energy first), we can derive a new PRG
key from the master secret key and the current PRG key us-
ing our MAC as a pseudo-random function (PRF): Xrand =
MAC(X ,Xrand).

Message authentication. We also need a secure message au-
thentication code. Because we intend to reuse our block ci-
pher, we use the well-known CBC-MAC [33]. A block dia-
gram for computing CBC MAC is shown in figure 3.

To achieve authentication and message integrity we use the
following standard approach. Assuming a message M , an en-
cryption key K, and a MAC key K′, we use the following
construction: {M}K, MAC(K′, {M}K). This construction pre-
vents the nodes from decrypting erroneous ciphertext, which
is a potential security risk.

In our implementation, we decided to compute a MAC per
packet. This approach fits well with the lossy nature of com-
munications within this environment. Furthermore, at this
granularity, the MAC is used to check both authentication and
integrity of messages, eliminating the need for mechanisms
such as CRC.

Key setup. Recall that our key setup depends on a secret
master key, initially shared by the base station and the node.
We call that shared key XAS for node A and base station S.
All other keys are bootstrapped from the initial master secret
key. Figure 4 shows our key derivation procedure. We use the

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 529

Figure 3. CBC MAC. The output of the last stage serves as the authentication
code.

Figure 4. Deriving internal keys from the master secret key.

pseudo-random function (PRF) F to derive the keys, which
we implement as FK(x) = MAC(K, x). Again, this allows
for more code reuse. Because of cryptographic properties of
the MAC, it must also be a good pseudo-random function.
All keys derived in this manner are computationally indepen-
dent. Even if the attacker could break one of the keys, the
knowledge of that key would not help it find the master se-
cret or any other key. Additionally, if we detect that a key has
been compromised, both parties can derive a new key without
transmitting any confidential information.

7. Evaluation

We evaluate the implementation of our protocols by code size,
RAM size, and processor and communication overhead.

Code size. Table 2 shows the code size of three implemen-
tations of crypto routines in TinyOS. The smallest version of
the crypto routines occupies about 20% of the available code
space. The difference between the fastest and the smallest im-
plementation stems from two different implementations of the
variable rotate function. The µTESLA protocol uses another
574 bytes. Together, the crypto library and the protocol im-
plementation consume about 2 Kbytes of program memory,
which is acceptable in most applications.

It is important to identify reusable routines to minimize
call setup costs. For example, OpenSSL implements RC5 en-
cryption as a function. On our sensor hardware, the code size
of call setup and return outweigh the code size of the body of
the RC5 function. We implement RC5 as a macro and only
expose interfaces to the MAC and CTR-ENCRYPT functions.

Table 2
Code size breakdown (in bytes) for the security modules.

Version Total size MAC Encrypt Key setup

Smallest 1580 580 402 598
Fastest 1844 728 518 598
Original 2674 1210 802 686

Table 3
Performance of security primitives in TinyOS.

Operation Time in ms Time in ms
Fast implementation Small implementation

Encrypt (16 bytes) 1.10 1.69
MAC (16 bytes) 1.28 1.63
Key setup 3.92 3.92

Performance. The performance of the cryptographic primi-
tives is adequate for the bandwidth supported by the current
generation of network sensors. Key setup is relatively expen-
sive (4 ms). In contrast, the fast version of the code uses less
than 2.5 ms to encrypt a 16 byte message and to compute the
MAC (the smaller but slower version takes less than 3.5 ms).
Let us compare these time figures against the speed of our net-
work. Our radio operates at 10 kbps at the physical layer. If
we assume that we communicate at this rate, we can perform
a key setup, an encryption, and a MAC for every message we
send out.6

In our implementation, µTESLA discloses the key after
two intervals (δ = 2). The stringent buffering requirements
also dictate that we cannot drop more than one key disclosure
beacon. We require a maximum of two key setup operations
and two CTR encryptions to check the validity of a disclosed
TESLA key. Additionally, we perform up to two key setup
operations, two CTR encryptions, and up to four MAC op-
eration to check the integrity of a TESLA message.7 That
gives an upper bound of 17.8 ms for checking the buffered
messages. This amount of work is easily performed on our
processor. In fact, the limiting factor on the bandwidth of au-
thenticated broadcast traffic is the amount of buffering we can
dedicate on individual sensor nodes. Table 4 shows the mem-
ory size required by the security modules. We configure the
µTESLA protocol with four messages: the disclosure interval
dictates a buffer space of three messages just for key disclo-
sure, and we need an additional buffer to use this primitive in
a more flexible way. Despite allocating minimal amounts of
memory to µTESLA, the protocols we implement consume
half of the available memory, and we cannot afford any more
memory.

Energy costs. We examine the energy costs of security
mechanisms. Most energy costs will come from extra trans-
missions required by the protocols.

6 The data rate available to the application is significantly smaller, due to
physical layer encoding, forward error correction, media access protocols,
and packet format overheads.

7 Key setup operations are dependent on the minimal and maximal disclosure
interval, but the number of MAC operations depends on the number of
buffered messages.

530 PERRIG ET AL.

Table 4
RAM requirements of the security modules.

Module RAM size (bytes)

RC5 80
TESLA 120
Encrypt/MAC 20

Table 5
Energy costs of adding security protocols to the
sensor network. Most of the overhead arises
from the transmission of extra data rather than
from any computational costs.

71% Data transmission
20% MAC transmission
7% Nonce transmission (for freshness)
2% MAC and encryption computation

Table 5 lists the energy costs of computation and commu-
nication for the SNEP protocol. The energy costs are com-
puted for 30 byte packets. The energy overhead for the trans-
mission dominates energy overhead for computation. Since
we use a stream cipher for encryption, the size of encrypted
message is the same as the size of the plaintext. The MAC
adds 8 bytes to a message. But, because the MAC gives us
integrity guarantees, we do not need an extra 2 bytes of CRC,
so the net overhead is only 6 bytes. The transmission of these
6 bytes requires 20% of the total energy for a 30 byte packet,
as table 5 shows.

Messages broadcast using µTESLA have the same costs of
authentication per message. Additionally, µTESLA requires
a periodic key disclosure, but these messages are combined
with routing updates. We can take two views regarding the
costs of these messages. If we accept that the routing bea-
cons are necessary, then µTESLA key disclosure is nearly
free, because energy of transmitting or receiving dominate the
computational costs of our protocols. On the other hand, one
might claim that the routing beacons are not necessary and
that it is possible to construct an ad hoc multihop network im-
plicitly. In that case the overhead of key disclosure would be
one message per time interval, regardless of the traffic pattern
within the network. We believe that the benefits of authenti-
cated routing justify the costs of explicit beacons.

Remaining security issues. Although this protocol suite ad-
dresses many security related problems, there remain many
additional issues. First, we do not address the problem of in-
formation leakage through covert channels. Second, we do
not deal completely with compromised sensors, we merely
ensure that compromising a single sensor does not reveal the
keys of all the sensors in the network. Third, we do not deal
with denial-of-service (DoS) attacks in this work. Since we
operate on a wireless network, an adversary can always per-
form a DoS attack by jamming the wireless channel with a
strong signal. Finally, due to our hardware limitations, we
cannot provide Diffie-Hellman style key agreement or use
digital signatures to achieve non-repudiation. For the majority
of sensor network applications, authentication is sufficient.

8. Applications

In this section we demonstrate how we can build secure proto-
cols out of the SPINS secure building blocks. First, we build
an authenticated routing application, and second, a two-party
key agreement protocol.

8.1. Authenticated routing

Using the µTESLA protocol, we developed a lightweight, au-
thenticated ad hoc routing protocol that builds an authenti-
cated routing topology. Ad hoc routing has been an active
area of research [11,20,25,26,38,40,41]. Marti et al. discuss
a mechanism to protect an ad hoc network against misbehav-
ing nodes that fail to forward packets correctly [28]. They
describe two mechanisms: a watchdog to detect misbehav-
ing neighboring nodes, and a pathrater to keep state about the
goodness of other nodes. They propose running these mecha-
nisms on each node. However, we are not aware of a routing
protocol that uses authenticated routing messages. It is possi-
ble for a malicious user to take over the network by injecting
erroneous, replaying old, or advertise incorrect routing infor-
mation. The authenticated routing scheme we developed mit-
igates these problems.

The routing scheme within our prototype network assumes
bidirectional communication channels, i.e. if node A hears
node B, then node B hears node A. The route discovery de-
pends on periodic broadcast of beacons. Every node, upon
reception of a beacon packet, checks whether it has already
received a beacon (which is a normal packet with a globally
unique sender ID and current time at base station, protected
by a MAC to ensure integrity and that the data is authentic)
in the current epoch.8 If a node hears the beacon within the
epoch, it does not take any further action. Otherwise, the node
accepts the sender of the beacon as its parent to route towards
the base station. Additionally, the node would repeat the bea-
con with the sender ID changed to itself. This route discovery
resembles a distributed, breadth first search algorithm, and
produces a routing topology (see [23] for details).

However, in the above algorithm, route discovery depends
only on the receipt of route packet, not on its contents.
It is easy for any node to claim to be a valid base station.
In contrast, we note that the µTESLA key disclosure packets
can easily function as routing beacons. We accept only the
sources of authenticated beacons as valid parents. Reception
of a µTESLA packet guarantees that that packet originated at
the base station, and that it is fresh. For each time interval, we
accept as the parent the first node sending a successfully au-
thenticated packet. Combining µTESLA key disclosure with
distribution of routing beacons allows us to combine trans-
mission of the keys with network maintenance.

We have outlined a scheme leading to a lightweight au-
thenticated routing protocol for sensor networks. Since each
node accepts only the first authenticated packet as the one to
use in routing, it is impossible for an attacker to reroute arbi-
trary links within the sensor network. Each node verifies the

8 Epoch means the interval between routing updates.

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 531

behavior of the parent by implementing functionality similar
to watchdogs described in [28].

The authenticated routing scheme above is just one way to
build authenticated ad hoc routing protocol using µTESLA.
In protocols where base stations are not involved in route con-
struction, µTESLA can still be used for security. In these
cases, the initiating node will temporarily act as base station
and beacons authenticated route updates.9

8.2. Node-to-node key agreement

A convenient technology for bootstrapping secure connec-
tions is to use public key cryptography protocols for symmet-
ric key setup [5,22]. Unfortunately, our resource constrained
sensor nodes prevent us from using computationally expen-
sive public key cryptography. We need to construct our proto-
cols solely from symmetric key algorithms. We design a sym-
metric protocol that uses the base station as a trusted agent for
key setup.

Assume that the node A wants to establish a shared secret
session key SKAB with node B. Since A and B do not share
any secrets, they need to use a trusted third party S, which is
the base station in our case. In our trust setup, both A and
B share a master secret key with the base station, XAS and
XBS , respectively. The following protocol achieves secure
key agreement as well as strong key freshness:

A → B: NA,A,

B → S: NA,NB,A,B, MAC
(
K ′

BS,NA|NB |A|B)
,

S → A: {SKAB}KSA, MAC
(
K ′

SA,NA|B|{SKAB}KSA

)
,

S → B: {SKAB}KSB , MAC
(
K ′

SB,NA|B|{SKAB}KSB

)
.

The protocol uses our SNEP protocol with strong fresh-
ness. The nonces NA and NB ensure strong key freshness
to both A and B. The SNEP protocol ensures confidentiality
(through encryption with the keys KAS and KBS) of the estab-
lished session key SKAB , as well as message authentication
(through the MAC using keys K ′

AS and K ′
BS), so we are sure

that the key was really generated by the base station. Note
that the MAC in the second protocol message helps defend
the base station from denial-of-service attacks, and the base
station only sends two messages to A and B if it received a
legitimate request from one of the nodes.

A nice feature of the above protocol is that the base station
performs most of the transmission work. Many other proto-
cols involve a ticket that the server sends to one of the parties
which forwards it to the other node, which requires more en-
ergy for the nodes to forward the message.

The Kerberos key agreement protocol achieves similar
properties, but it does not provide strong key freshness
[27,30]. If Kerberos used SNEP with strong freshness, then
Kerberos would have greater security.

9 The node needs significantly more memory resources than our current sen-
sor nodes to store the key chain.

9. Related work

Tatebayashi et al. consider key distribution for resource-
starved devices in a mobile environment [52]. Park et al. [37]
point out weaknesses and improvements. Beller and Yacobi
further develop key agreement and authentication protocols
[4]. Boyd and Mathuria survey the previous work on key dis-
tribution and authentication for resource-starved devices in
mobile environments [8]. The majority of these approaches
rely on asymmetric cryptography. Bergstrom et al. consider
the problem of secure remote control of resource-starved de-
vices in a home [6].

Fox and Gribble present a security protocol providing se-
cure access to application level proxy services [16]. Their
protocol is designed to interact with a proxy to Kerberos and
to facilitate porting services relying on Kerberos to wireless
devices.

The work of Patel and Crowcroft focuses on security solu-
tions for mobile user devices [39]. Unfortunately, their work
uses asymmetric cryptography and is, hence, too expensive
for the environments we envision.

The work of Czerwinski et al. also relies on asymmetric
cryptography for authentication [10].

Stajano and Anderson discuss the issues of bootstrapping
security devices [51]. Their solution requires physical contact
of the new device with a master device to imprint the trusted
and secret information.

Zhou and Haas propose to secure ad hoc networks us-
ing asymmetric cryptography [57]. Recently, Basagni et al.
proposed to use a network-wide symmetric key to secure an
ad hoc routing protocol [2]. While this approach is efficient,
it does not resist compromise of a single node.

Carman et al. analyze a wide variety of approaches for
key agreement and key distribution in sensor networks [9].
They analyze the overhead of these protocols on a variety of
hardware platforms.

Marti et al. discuss a mechanism to protect an ad hoc net-
work against misbehaving nodes that fail to forward packets
correctly [28]. They propose that each node runs a watchdog
(to detect misbehaving neighboring nodes) and a pathrater (to
keep state about the goodness of other nodes); their solution,
however, is better suited for traditional networks, with empha-
sis on reliable point-to-point communication, than to sensor
networks.

Hubaux et al. present a system for ad hoc peer-to-peer au-
thentication based on public key certificates [24]. They con-
sider an ad hoc network with nodes powerful enough for per-
forming asymmetric cryptographic operations.

A number of researchers investigate the problem to pro-
vide cryptographic services in low-end devices. We first dis-
cuss the hardware efforts, followed by the algorithmic work
on cryptography. Several systems integrate cryptographic
primitives with low cost microcontrollers. Examples of such
systems are secure AVR controllers [1], the Fortezza govern-
ment standard [15], the Dallas iButton [13], and the Dyad
system [55]. These systems support primitives for cryptogra-
phy, and attempt to zeroize their memory if tampering is de-

532 PERRIG ET AL.

tected (as per the FIPS 140 standard [34,35]). However, these
devices were designed for different applications, and are not
meant as low-power devices.

Modadugu et al. describe an asymmetric crypto system for
low-end devices, which offloads the heavy computation for
finding an RSA key pair to untrusted servers [31].

Symmetric encryption algorithms seem to be inherently
well suited to low-end devices, because they have relatively
low overhead. In practice, however, many low-end micro-
processors are only 4-bit or 8-bit, and do not provide (ef-
ficient) multiplication or variable rotate/shift instructions.
Hence many symmetric ciphers are too expensive to imple-
ment on our target platform. The Advanced Encryption Stan-
dard (AES) [36] Rijndael block cipher [12] is too expensive
for our platform. Depending on the implementation, AES
was either too big or too slow for our application. Due to
our severe limitation on our maximum code size, we chose
to use RC5 by Ron Rivest [47]. Algorithms such as TEA
by Wheeler and Needham [54] or TREYFER by Yuval [56]
would be smaller alternatives, but those other ciphers have not
yet been thoroughly analyzed.

10. Conclusion

We designed and built a security subsystem for an extremely
limited sensor network platform. We have identified and im-
plemented useful security protocols for sensor networks: au-
thenticated and confidential communication, and authenti-
cated broadcast. We have implemented applications including
an authenticated routing scheme and a secure node-to-node
key agreement protocol.

Most of our design is universal and applicable to other net-
works of low-end devices. Our primitives only depend on fast
symmetric cryptography, and apply to a wide variety of de-
vice configurations. On our limited platform energy spent
for security is negligible compared with to energy spent on
sending or receiving messages. It is possible to encrypt and
authenticate all sensor readings.

The communication costs are also small. Data authenti-
cation, freshness, and confidentiality properties use up a net
6 bytes out of 30 byte packets. So, it is feasible to guarantee
these properties on a per packet basis. It is difficult to im-
prove on this scheme, as transmitting a MAC is fundamental
to guaranteeing data authentication.

Certain elements of the design were influenced by the
available experimental platform. If we had a more power-
ful platform, we could have used block ciphers other than
RC5. The emphasis on code reuse is another property forced
by our platform. A more powerful device would allow more
modes of authentication. In particular, memory restrictions
on buffering limit the effective bandwidth of authenticated
broadcast.

Despite the shortcomings of our target platform, we built a
system that is secure and works. With our techniques, we be-
lieve security systems can become an integral part of practical
sensor networks.

Acknowledgements

We gratefully acknowledge funding support for this re-
search. This research was sponsored in part by the United
States Postal Service (contract USPS 102592-01-Z-0236),
by the United States Defense Advanced Research Projects
Agency (contracts DABT63-98-C-0038, “Ninja”, N66001-
99-2-8913, “Endeavour”, and F33615-01-C-1895, “NEST”),
by the United States National Science Foundation (grants
FD99-79852 and RI EIA-9802069) and from gifts and grants
from the California MICRO program, Intel Corporation,
IBM, Sun Microsystems, and Philips Electronics. DARPA
Contract N66001-99-2-8913 is under the supervision of the
Space and Naval Warfare Systems Center, San Diego. This
paper represents the opinions of the authors and do not nec-
essarily represent the opinions or policies, either expressed or
implied, of the United States government, of DARPA, NSF,
USPS, or any other of its agencies, or any of the other fund-
ing sponsors.

We thank Jean-Pierre Hubaux, Dawn Song and David
Wagner for helpful discussions and comments. An earlier ver-
sion of this work appeared as [44].

References

[1] Atmel, Secure Microcontrollers for SmartCards, http://www.
atmel.com/atmel/acrobat/1065s.pdf

[2] S. Basagni, K. Herrin, E. Rosti and D. Bruschi, Secure Pebblenets,
in: ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc 2001) (2001) pp. 156–163.

[3] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A concrete security
treatment of symmetric encryption: Analysis of the DES modes of op-
eration, in: Symposium on Foundations of Computer Science (FOCS)
(1997).

[4] M. Beller and Y. Yacobi, Fully-fledged two-way public key authenti-
cation and key agreement for low-cost terminals, Electronics Letters
29(11) (1993) 999–1001.

[5] S. Bellovin and M. Merrit, Augmented encrypted key exchange:
a password-based protocol secure against dictionary attacks and pass-
word file compromise, in: ACM Conference on Computer and Commu-
nications Security CCS-1 (1993) pp. 244–250.

[6] P. Bergstrom, K. Driscoll and J. Kimball, Making home automation
communications secure, IEEE Computer 34(10) (2001) 50–56.

[7] A. Biryukov and D. Wagner, Slide attacks, in: International Workshop
on Fast Software Encryption (1999).

[8] C. Boyd and A. Mathuria, Key establishment protocols for secure mo-
bile communications: A selective survey, in: Australasian Conference
on Information Security and Privacy (1998) pp. 344–355.

[9] D.W. Carman, P.S. Kruus and B.J. Matt, Constraints and approaches for
distributed sensor network security, NAI Labs Technical Report No. 00-
010 (2002).

[10] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph and R.H. Katz,
An architecture for a secure service discovery service, in: ACM In-
ternational Conference on Mobile Computing and Networking (Mobi-
Com’99) (1999) pp. 24–35.

[11] D. Johnson, D.A. Maltz and J. Broch, The dynamic source routing pro-
tocol for mobile ad hoc networks, Internet draft, Mobile Ad-Hoc Net-
work (MANET) Working Group, IETF (1999).

[12] J. Daemen and V. Rijmen, AES proposal: Rijndael (1999).
[13] Dallas, iButton: A Java-powered cryptographic iButton, http://

www.ibutton.com/ibuttons/java.html
[14] W. Diffie and M.E. Hellman, Privacy and authentication: An introduc-

tion to cryptography, Proceedings of the IEEE 67(3) (1979) 397–427.
[15] Fortezza, Fortezza: Application implementers guide (1995).

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 533

[16] A. Fox and S.D. Gribble, Security on the move: Indirect authentica-
tion using Kerberos, in: International Conference on Mobile Comput-
ing and Networking (MobiCom’96) (1996) pp. 155–164.

[17] R. Gennaro and P. Rohatgi, How to sign digital streams, in: Advances
in Cryptology – Crypto’97, Lecture Notes in Computer Science, Vol.
1294 (1997) pp. 180–197.

[18] O. Goldreich, S. Goldwasser and S. Micali, How to construct random
functions, Journal of the ACM 33(4) (1986) 792–807.

[19] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Com-
puter Security 28 (1984) 270–299.

[20] Z. Haas and M. Perlman, The Zone Routing Protocol (ZRP) for ad hoc
networks, Internet draft, Mobile Ad-Hoc Network (MANET) Working
Group, IETF (1998).

[21] N.M. Haller, The S/KEY one-time password system, in: Symposium on
Network and Distributed Systems Security (1994).

[22] D. Harkins and D. Carrel, The Internet key exchange (IKE), RFC
2409, Information Sciences Institute, University of Southern Califor-
nia (1998).

[23] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and K. Pister, System
architecture directions for networked sensors, in: International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems.

[24] J.-P. Hubaux, L. Buttyán and S. Čapkun, The quest for security in mo-
bile ad hoc networks, in: ACM Symposium on Mobile Ad Hoc Network-
ing and Computing (2001).

[25] D.B. Johnson and D.A. Maltz, Dynamic source routing in ad hoc wire-
less networks, in: Mobile Computing (Kluwer Academic, 1996) chap-
ter 5, pp. 153–181.

[26] Y.-B. Ko and N. Vaidya, Location-Aided Routing (LAR) in mobile ad
hoc networks, in: International Conference on Mobile Computing and
Networking (MobiCom’98) (1998).

[27] J. Kohl and C. Neuman, The Kerberos network authentication service
(V5), RFC 1510 (1993).

[28] S. Marti, T. Giuli, K. Lai and M. Baker, Mitigating routing misbehav-
iour in mobile ad hoc networks, in: International Conference on Mobile
Computing and Networking (MobiCom 2000) (2000) pp. 255–265.

[29] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Ap-
plied Cryptography (CRC Press, 1997).

[30] S.P. Miller, C. Neuman, J.I. Schiller and J.H. Saltzer, Kerberos authenti-
cation and authorization system, Project Athena Technical Plan (1987).

[31] N. Modadugu, D. Boneh and M. Kim, Generating RSA keys on a hand-
held using an untrusted server, RSA 2000 (2000).

[32] National Bureau of Standards (NBS), Specification for the data encryp-
tion standard, Federal Information Processing Standards (FIPS) Publi-
cation 46 (1977).

[33] National Institute of Standards and Technology (NIST), DES model
of operation, Federal Information Processing Standards Publication 81
(FIPS PUB 81) (1981).

[34] National Institute of Standards and Technology (NIST), Security re-
quirements for cryptographic modules, Federal Information Processing
Standards (FIPS) Publication 140-1 (1994).

[35] National Institute of Standards and Technology (NIST), Security re-
quirements for cryptographic modules, Federal Information Processing
Standards (FIPS) Publication 140-2 (1999).

[36] National Institute of Standards and Technology (NIST), Advanced
encryption standard (AES) development effort (2000) http://
csrc.nist.gov/encryption/aes/

[37] C. Park, K. Kurosawa, T. Okamoto and S. Tsujii, On key distribution
and authentication in mobile radio networks, in: Advances in Cryp-
tology – EuroCrypt’93, Lecture Notes in Computer Science, Vol. 765
(1993) pp. 461–465.

[38] V. Park and M. Corson, A highly adaptable distributed routing algo-
rithm for mobile wireless networks, in: IEEE INFOCOMM’97 (1997).

[39] B. Patel and J. Crowcroft, Ticket based service access for the mobile
user, in: International Conference on Mobile Computing and Network-
ing (MobiCom’97) (1997) pp. 223–233.

[40] C. Perkins and P. Bhagwat, Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers, in: ACM SIG-

COMM Symposium on Communication, Architectures and Applications
(1994).

[41] C. Perkins and E. Royer, Ad hoc on-demand distance vector routing,
in: IEEE WMCSA’99 (1999).

[42] A. Perrig, R. Canetti, D. Song and J.D. Tygar, Efficient and secure
source authentication for multicast, in: Network and Distributed Sys-
tem Security Symposium, NDSS’01 (2001).

[43] A. Perrig, R. Canetti, J. Tygar and D. Song, Efficient authentication and
signing of multicast streams over lossy channels, in: IEEE Symposium
on Security and Privacy (2000).

[44] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J.D. Tygar, SPINS:
Security protocols for sensor networks, in: International Conference
on Mobile Computing and Networking (MobiCom 2001), Rome, Italy
(2001).

[45] K.S.J. Pister, J.M. Kahn and B.E. Boser, Smart dust: Wireless networks
of millimeter-scale sensor nodes (1999).

[46] R. Rivest, The MD5 message-digest algorithm. RFC 1321, Internet En-
gineering Task Force (1992).

[47] R.L. Rivest, The RC5 encryption algorithm, in: Workshop on Fast Soft-
ware Encryption (1995) pp. 86–96.

[48] R.L. Rivest, A. Shamir and L.M. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Communications of
the ACM 21(2) (1978) 120–126.

[49] P. Rohatgi, A compact and fast hybrid signature scheme for multicast
packet authentication, in: ACM Conference on Computer and Commu-
nications Security (1999).

[50] B. Schneier, Applied Cryptography, 2nd ed. (Wiley, 1996).
[51] F. Stajano and R. Anderson, The resurrecting duckling: Security issues

for ad-hoc wireless networks, in: International Workshop on Security
Protocols (1999).

[52] M. Tatebayashi, N. Matsuzaki and D.B.J. Newman, Key distribution
protocol for digital mobile communication systems, in: Advances in
Cryptology – Crypto’89, Lecture Notes in Computer Science, Vol. 435
(1989) pp. 324–334.

[53] D. Tennenhouse, Embedding the Internet: Proactive computing, Com-
munications of the ACM 43(5) (2000) 43.

[54] D. Wheeler and R. Needham, TEA, a Tiny Encryption Algorithm
(1994) http://www.ftp.cl.cam.ac.uk/ftp/papers/
djw-rmn/djw-rmn-tea.html

[55] B. Yee and J.D. Tygar, Secure coprocessors in electronic commerce ap-
plications, in: USENIX Workshop on Electronic Commerce, New York
(1995).

[56] G. Yuval, Reinventing the Travois: Encryption/MAC in 30 ROM bytes,
in: Workshop on Fast Software Encryption (1997).

[57] L. Zhou and Z. Haas, Securing ad hoc networks, IEEE Network Maga-
zine 13(6) (1999).

Adrian Perrig received his Bachelors degree in computer science from the
Swiss Federal Institute of Technology in Lausanne (EPFL) in 1997. He is
now a graduate student at Carnegie Mellon University, and is currently com-
pleting his degree with his advisor Doug Tygar at the University of California,
Berkeley. His research interests include cryptography, and designing security
protocols for wireless and broadcast networks.
E-mail: perrig@cs.berkeley.edu

Robert Szewczyk received the B.S. magna cum laude from Cornell Univer-
sity in 1997. He is currently pursuing a Ph.D. at University of California,
Berkeley, under the supervision of David Culler. His research interests in-
clude sensor networks and their applications.
E-mail: szewczyk@cs.berkeley.edu

J.D. Tygar is a Professor of Computer Science and Information Management
at the University of California, Berkeley. He has worked widely in the fields
of computer security and electronic commerce. He has received numerous
awards and was selected as an NSF Presidential Young Investigator. He has
designed and built systems for electronic commerce, mobile security, tamper-
resistant systems, and electronic postage. He has co-written two books.
E-mail: tygar@cs.berkeley.edu

534 PERRIG ET AL.

Victor Wen received a B.S. degree in electrical engineering and computer
science from the University of California, Berkeley in 1999. He is currently
a Ph.D. student at the University of California, Berkeley. His research in-
terests include coding techniques for power reduction on chip, and wireless
networking applications.
E-mail: vwen@cs.berkeley.edu

David E. Culler is a Professor of Computer Science at the University of Cal-
ifornia. He has been on the faculty at Berkeley since 1989 and has served
as a Vice Chair for Computing and Networking. He received his Ph.D. from
MIT in 1989. He was awarded the NSF Presidential Young Investigator in
1990 and the Presidential Faculty Fellowship in 1992. His research addresses
parallel computer architecture, parallel programming languages, and high

performance communication structures. He is well known for his work on
Networks of Workstations (NOW), Active Messages, Split-C, the Threaded
Abstract Machine (TAM), and dataflow systems. He has published widely
in leading conferences and journals, obtained three patents, and recently
completed a graduate text called Parallel Computer Architecture: A Hard-
ware/Software Approach (Morgan-Kaufmann, publisher). He has served as a
General Chair and Program Chair for Hot Interconnects, Program Chair for
the ACM Symposium on Parallel Algorithms and Architectures and Operat-
ing Systems Design and Implementation, Technical Papers Chair for SC2001
and Co-Editor for special issues of IEEE Transactions on Parallel and Dis-
tributed Computing and IEEE Micro.
E-mail: culler@cs.berkeley.edu

