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Abstract
Commodity operating systems entrusted with securing sensitive
data are remarkably large and complex, and consequently, fre-
quently prone to compromise. To address this limitation, we in-
troduce a virtual-machine-based system called Overshadow that
protects the privacy and integrity of application data, even in the
event of a total OS compromise. Overshadow presents an applica-
tion with a normal view of its resources, but the OS with an en-
crypted view. This allows the operating system to carry out the
complex task of managing an application’s resources, without al-
lowing it to read or modify them. Thus, Overshadow offers a last
line of defense for application data.

Overshadow builds on multi-shadowing, a novel mechanism
that presents different views of “physical” memory, depending on
the context performing the access. This primitive offers an addi-
tional dimension of protection beyond the hierarchical protection
domains implemented by traditional operating systems and proces-
sor architectures.

We present the design and implementation of Overshadow and
show how its new protection semantics can be integrated with ex-
isting systems. Our design has been fully implemented and used
to protect a wide range of unmodified legacy applications running
on an unmodified Linux operating system. We evaluate the perfor-
mance of our implementation, demonstrating that this approach is
practical.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection

General Terms Design, Security, Performance

Keywords Virtual Machine Monitors, VMM, Hypervisors, Oper-
ating Systems, Memory Protection, Multi-Shadowing, Cloaking

1. Introduction
Commodity operating systems are ubiquitous in home, commer-
cial, government, and military settings. Consequently, these sys-
tems are tasked with handling all manner of sensitive data, from
individual passwords and crypto keys, to databases of social secu-
rity numbers, to sensitive documents and voice traffic.
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Unfortunately, the security provided by commodity operating
systems is often inadequate. Trusted OS components include not
just the kernel but also device drivers and system services that
run with privilege (e.g., daemons that run as root in Linux). These
components generally comprise a large body of code, with broad
attack surfaces that are frequently vulnerable to exploitable bugs or
misconfigurations. Once such privileged code is compromised, an
attacker gains complete access to sensitive data on a system. While
some facets of security in these systems will continue to improve,
we believe competitive pressures to provide richer functionality
and retain compatibility with existing applications will keep the
complexity of such systems high, and their assurance poor.

To ameliorate this problem, many have attempted to retrofit
higher-assurance execution environments onto commodity sys-
tems. Previous efforts have explored executing applications han-
dling sensitive data in separate virtual machines [10, 29, 8], using
secure co-processors [7], or changing the processor architecture
to introduce orthogonal protection mechanisms that protect appli-
cation data from the OS [6, 13, 16, 19, 27]. Unfortunately, these
generally demand major changes in the way that applications are
written [7, 8, 16, 18, 28] and used [8, 10], and how OS resources
are managed [10, 29]. Such radical departures pose a substantial
barrier to adoption.

We offer an alternative in a system called Overshadow. Over-
shadow protects legacy applications from the commodity operat-
ing systems running them. Unlike other approaches, it requires no
changes to existing operating systems or applications, nor any ad-
ditional hardware support. Instead, it works by extending the iso-
lation capabilities of the virtualization layer to allow protection of
entities inside a virtual machine.

Overshadow adds this protection through a novel technique
called multi-shadowing which leverages the extra level of indirec-
tion offered by memory virtualization in a virtual machine mon-
itor (VMM). Conceptually, a typical VMM maintains a one-to-
one mapping from guest “physical” addresses to actual machine
addresses. Multi-shadowing replaces this with a one-to-many,
context-dependent mapping, providing multiple views of guest
memory. Overshadow leverages this mechanism to present an ap-
plication with a cleartext view of its pages, and the OS with an
encrypted view, a technique we call cloaking. Encryption-based
protection allows resources to remain accessible to the OS, yet
secure, permitting it to manage resources without compromising
application privacy or integrity.

Cloaking is a low-level primitive that operates on basic mem-
ory pages. However, nearly all higher-level application resources –
including code, data, files, and even IPC streams – are already man-
aged as memory-mapped objects by modern operating systems, or



can be adapted as such. As a result, cloaking is sufficiently general
to protect all of an application’s major resources.

Using cloaking to protect a legacy application running on an
unmodified OS requires some changes to the normal execution en-
vironment. To accommodate these changes while maintaining com-
patibility, Overshadow introduces a shim at load time into the ad-
dress space of each cloaked application to mediate all communica-
tion with the OS. With assistance from the VMM, the shim inter-
poses on events such as system calls and signal delivery, modifying
their semantics to enable safe resource sharing between a cloaked
application and an untrusted OS.

The next section presents our design goals and threat model
for Overshadow. Section 3 reviews virtualized memory systems,
and describes extensions to support multi-shadowing and cloaking.
Section 4 introduces the challenges that arise when applying cloak-
ing to protect real applications, and provides an overview of the
Overshadow architecture. Section 5 describes how the shim and
VMM adapt applications for a cloaked environment, and Section 6
explains how particular system calls are mediated. Section 7 dis-
cusses how cryptographic metadata is managed and stored, to pro-
tect against reordering and replay attacks. Section 8 evaluates our
implementation in the VMware VMM using large unmodified ap-
plications running on an unmodified Linux kernel. Section 9 dis-
cusses future work. Related work is examined in Section 10, and
we summarize our conclusions in Section 11.

2. Design Goals
Overshadow offers a last line of defense for application data in the
event of an OS compromise. We begin with a discussion of why
Overshadow targets whole-application protection, and the threats it
attempts to address.

2.1 Whole-Application Protection
We were motivated to build a practical system that could be adopted
easily, deployed incrementally, and used for diverse applications.
As a result, we designed Overshadow to protect entire existing
applications in situ in existing commodity operating systems. This
approach has several advantages:

Ease of Adoption. Previous work on protecting applications re-
quires partitioning an application into protected and unprotected
parts – forcing developers to modify their applications heavily [8,
28] or port to a new OS [29]. Changes to how software is packaged
and used may also be required [10, 29].

Support for Diverse Applications. Solutions for providing higher
assurance are often restricted to a limited set of applications or data,
such as passwords [8, 7]. However, sensitive data is remarkably
diverse, from databases of credit card numbers, to files containing
medical patient information. Sensitive data in real applications
frequently doesn’t lend itself to being placed in a neat separate
container, and restructuring applications is often impractical.

Incremental Path to Higher Assurance. Even after taking the
operating system out of the application’s trusted computing base,
large, complex applications will still have significant assurance
concerns. Refactoring applications into more-critical and less-
critical pieces running in separate protection domains [8, 28] is
ultimately a compelling goal. Overshadow provides an incremental
path to achieving this, as cloaking can be used for whole applica-
tion protection as well as fine-grained compartmentalization.

2.2 Threat Model
Overshadow prevents the guest operating system from reading or
modifying application code, data and registers, but makes no at-
tempt to provide availability in the face of a hostile OS. All non-

application access to cloaked data, including DMA from virtual I/O
devices, only reveals the data in encrypted form. Data secrecy, in-
tegrity, ordering and freshness are protected up to the strength of
the cryptography used. If the OS or other hostile code tries to mod-
ify encrypted data, the application will be terminated.

Control transfers to and from a cloaked application are permit-
ted only at well-defined entry and exit points through mechanisms
such as system calls and signal delivery. Application registers are
also protected from the OS, and are saved and restored securely
upon entry and exit from an application’s execution context. Over-
shadow can also protect information shared between cloaked appli-
cations via the file system, shared memory or other forms of IPC.

A malicious kernel can still observe an application’s memory
access patterns, and measure the time that application code sec-
tions take to complete. In extreme cases, such side channel infor-
mation can leak private information, including application crypto
keys [15]. Overshadow does not protect against these side-channel
attacks. However, most contemporary cryptographic application
code (such as OpenSSL) is designed to resist side channel attacks.

Security is ultimately limited by the application being protected.
Logical or semantic weaknesses in the application, such as an ex-
ploitable buffer overflow, or a DumpMyMemory command, could
allow a malicious OS to fool it into revealing its data, or otherwise
exploit it. The implications of maliciously changing the behavior
of seemingly innocuous parts of the system call API, such as those
for managing identity and concurrency, are still largely unstudied.

Assurance in Overshadow is ultimately limited by the VMM.
While our current implementation uses the VMware VMM, a much
simpler, high-assurance hypervisor could be used for running a
single VM securely. Regardless, Overshadow offers a valuable
additional layer of defense-in-depth. As its protection model is
orthogonal to that of the guest OS, protected applications require
no additional privileges within the guest.

We make no attempt to protect network I/O, as this is addressed
by existing technologies such as SSL. Although a trusted path for
user input and secure display is also desirable [8], and could be
facilitated by Overshadow, we have not tried to support this in the
current system.

3. Multi-Shadowed Cloaking
In this section we review how traditional virtualized memory sys-
tems work, and explain how they can be extended to support multi-
shadowing. Multi-shadowing is then coupled with encryption to
implement cloaking, providing both encrypted and unencrypted
views of memory.

3.1 Classical Memory Virtualization
Conventional operating systems use page tables to map virtual
addresses to physical addresses with page granularity. A virtual
page number (VPN) is mapped to a physical page number (PPN),
and VPN-to-PPN translations are cached by a hardware TLB.

A classical virtual machine monitor (VMM) provides each vir-
tual machine (VM) with the illusion of being a dedicated physical
machine that is fully protected and isolated from other virtual ma-
chines [24]. To support this illusion, physical memory is virtualized
by adding an extra level of address translation. The terms machine
address and machine page number (MPN) are commonly used to
refer to actual hardware memory [4, 30]. In contrast, “physical”
memory is a software abstraction that presents the illusion of hard-
ware memory to a VM. We refer to address translation performed
by a guest operating system in a VM as mapping a guest virtual
page number (GVPN) to a guest physical page number (GPPN).

The VMM maintains a pmap data structure for each VM to
store GPPN-to-MPN translations. The VMM also typically man-
ages separate shadow page tables, which contain GVPN-to-MPN



mappings, and keeps them consistent with the GVPN-to-GPPN
mappings managed by the guest OS [1]. Since the hardware TLB
caches direct GVPN-to-MPN mappings, ordinary memory refer-
ences execute without incurring virtualization overhead.

3.2 Multi-Shadowing
Existing virtualization systems present a single view of guest
“physical” memory, faithfully emulating the properties of real
hardware. One-to-one GPPN-to-MPN mappings are typically em-
ployed, backing each guest physical page with a distinct machine
page. Some systems implement many-to-one mappings to sup-
port shared memory; e.g., transparent page sharing maps multiple
GPPNs copy-on-write to a single MPN [4, 30]. However, existing
virtualization systems do not provide flexible support for mapping
a single GPPN to multiple MPNs.1

Multi-shadowing is a novel mechanism that supports context-
dependent, one-to-many GPPN-to-MPN mappings. Conceptually,
multiple shadow page tables are used to provide different views of
guest physical memory to different shadow contexts. The “context”
that determines which view (shadow page table) to use for a partic-
ular memory access can be defined in terms of any state accessible
to the VMM, such as the current protection ring, page table, in-
struction pointer, or some other criteria.

Traditional operating systems and processor architectures im-
plement hierarchical protection domains, such as protection rings
[25]. Multi-shadowing offers an additional dimension of protection
orthogonal to existing hierarchies, enabling a wide range of uncon-
ventional protection policies.

3.3 Memory Cloaking
Cloaking combines multi-shadowing with encryption, presenting
different views of memory – plaintext and encrypted – to different
guest contexts. Our use of encryption is similar to XOM [19, 18],
which modified both the processor architecture and operating sys-
tem to encrypt and isolate application memory. The term “cloak-
ing” has also been used by Intel’s LaGrande Technology (LT) [13],
which introduced a different architectural mechanism for creating
orthogonal protection domains.

In contrast to XOM and LT, our virtualization-based cloaking
does not require any changes to the processor architecture, OS, or
applications. In fact, cloaking based on multi-shadowing represents
a relatively small change to the core MMU functionality already
implemented by a VMM. We initially describe cloaking using a
high-level model. Details concerning metadata management and
integration with existing systems are presented in later sections.

Single Page, Encrypted/Unencrypted Views. We represent each
GPPN using only a single MPN, and dynamically encrypt and de-
crypt its contents depending on the view currently accessing the
page. This works well, since few pages are accessed simultaneously
by both the application and the kernel in practice. As an optimiza-
tion, the system could keep two read-only copies of the page, one
encrypted, and one plaintext, for pages that are read concurrently
from both views.

When a cloaked page is accessed from outside the shadow
context to which it belongs, the VMM first encrypts the page,
using a fresh, randomly-generated initialization vector (IV), then
takes a secure hash H of this ciphertext. The pair (IV, H) is stored
securely for future use. During decryption, the correct hash is first
verified. If verification fails, the application is terminated. If it
succeeds, the cloaked page is decrypted, and execution proceeds

1 Some x86 VMMs do statically map a single GPPN to multiple MPNs to
emulate the legacy A20 line, for compatibility with real-mode applications.
The A20 line forces physical address bit 20 to zero, aliasing adjacent 1MB
regions of memory.

Figure 1. Basic Cloaking Protocol. State transition diagram for
maintaining the secrecy and integrity of a single cloaked page. Applica-
tion reads RA and writes WA manipulate plaintext page contents, while
kernel reads RK and writes WK use an encrypted version of the page. A
secure hash H is computed and stored immediately after page encryption,
and verified immediately prior to page decryption.

as normal. By checking the hash before decryption, any attempts to
corrupt cloaked pages will be detected.

Overshadow currently uses a single secret key KVMM managed
by the VMM to encrypt all pages; see Section 7.7 for details.
Encryption uses AES-128 in CBC mode, and hashing uses SHA-
256; both are standard constructions. An integrity-only mode could
be supported easily, but is not part of the current implementation.

Basic Cloaking Protocol. Consider a single guest “physical”
page (GPPN). At any point in time, the page is mapped into only
one shadow page table – either a protected application shadow
used by a cloaked user-space process, or the system shadow used
for all other accesses. When the page is mapped into the application
shadow, its contents are ordinary plaintext, and application reads
and writes proceed normally.

Figure 1 presents the basic state transition diagram for man-
aging cloaked pages. When the cloaked page is accessed via the
system shadow (transition 1), the VMM unmaps the page from the
application shadow, encrypts the page, generates an integrity hash,
and maps the page into the system shadow. The kernel may then
read the encrypted contents, e.g., to swap the page to disk, and may
also overwrite its contents, e.g., to swap in a previously-encrypted
page from disk.

When the encrypted page is subsequently accessed via the ap-
plication shadow (transitions 2 or 3), the VMM unmaps the page
from the system shadow, verifies its integrity hash, decrypts the
page, and maps the page into the application shadow. For an ap-
plication read (transition 3), the page is mapped read-only and its
(IV, H) is retained. If the page is later written by the application
(transition 4), the (IV, H) is discarded, and the page protection is
changed to read/write. If the page is instead accessed by the kernel
(transition 5), the VMM proceeds as in transition 1, except that the
hash for the (unmodified) page is not recomputed.

The read-only plaintext state, where the (IV, H) is retained, is
required to correctly handle the case where the kernel legitimately
caches a copy of the encrypted page contents. For example, this
could occur if the kernel swaps a cloaked page to disk, which is
later paged in due to an application read, and then swapped out
again before the application modifies it. The kernel can optimize
the second page-out by noticing that the page is not dirty, and sim-
ply unmap the page without reading it, since the on-disk swapped



Figure 2. Overshadow Architecture. The VMM enforces two vir-
tualization barriers (gray lines). One isolates the guest from the host, and
the other cryptographically isolates cloaked applications from the guest OS.
The shim cooperates with the VMM to interpose on all control flow between
the cloaked application and OS.

copy is still valid. If the (IV, H) had been discarded, it would not
be possible to decrypt the page after it is swapped back in.

Cloaking is compatible with copy-on-write (COW) techniques
for sharing identical pages within or between VMs. Plaintext pages
can be shared transparently, and page encryption handled like a
COW fault.

Virtual DMA. Cloaking is also compatible with virtual devices
that access guest memory using DMA. For example, suppose the
guest kernel performs disk I/O on a cloaked memory page via a
virtual SCSI adapter. For a disk read, the cloaked page contents are
already encrypted on disk, and the VMM simply permits the kernel
to issue a DMA request to read the page.

For a disk write, the action taken by the VMM depends on the
current state of the cloaked page. If the page is already encrypted,
the VMM allows the DMA to be performed directly. When the page
is in the plaintext read-only state, the VMM first encrypts the page
contents with its existing (IV, H) into a separate page that is used
for the DMA operation. Similarly, if the page is in the plaintext
read-write state, the VMM encrypts its contents into a separate page
used for the DMA operation. The cloaked page then transitions
to the read-only plaintext state, and is associated with the newly-
generated (IV, H). Note that in both plaintext states, the original
guest page is still accessible in plaintext form to the application,
since a transient encrypted copy is used during the actual DMA.

4. Overshadow Overview
Cloaking is a low-level primitive that protects the privacy and
integrity of individual memory pages. Overshadow leverages this
basic mechanism to cloak whole applications, cryptographically
isolating application resources from the operating system.

Figure 2 provides an overview of the Overshadow architecture.
A single VM is depicted, consisting of a guest OS together with
multiple applications, one of which is cloaked. The VMM enforces
a virtualization barrier between the cloaked application and the OS,
similar to the barrier it enforces between the guest OS and host
hardware. Overshadow introduces a shim into the address space
of the cloaked application, which cooperates with the VMM to
mediate all interactions with the OS.

Realizing the Overshadow design goal of whole-application
protection for unmodified applications running on unmodified com-

modity operating systems has proved challenging. In this section,
we describe several key challenges, sketch high-level solutions, and
explain where more complete technical details can be found in sub-
sequent sections.

Context Identification. The VMM must identify the guest con-
text accessing a cloaked resource precisely and securely, in order
to use the shadow page table with the correct GPPN-to-MPN view.
Section 5 explains how Overshadow leverages the shim to help
identify application contexts, without relying on an untrusted OS.

Secure Control Transfer. Applications must interact with the
OS to perform useful work, and need to be adapted for cloaked
execution. Overshadow performs this adaptation by injecting a
shim into the address space of each cloaked application. The VMM
cooperates with the shim to implement a transparent trampoline
that interposes on all control transfers between the application
and OS. The detailed mechanics of shim-based interposition for
interrupts, faults, and system calls are discussed in Section 5.

System Call Adaptation. Most system calls require only simple
argument marshalling between cloaked and uncloaked memory.
Others, such as file I/O operations, need more complex emulation.
For example, read and write system calls are implemented
using mmap for encrypted I/O. Section 6 explains how particular
system calls are adapted for cloaked execution.

Mapping Cloaked Resources. Overshadow must track the cor-
respondence between application virtual addresses and cloaked re-
sources. The shim is responsible for keeping a complete list of map-
pings, which is cached by the VMM. The shim resides in the same
guest virtual address as the application, and interposes on all calls
that modify it, such as mmap and mremap. A more detailed dis-
cussion is presented in Section 7.

Managing Protection Metadata. The VMM must maintain pro-
tection metadata, such as (IV, H) pairs, for each encrypted page, to
ensure privacy and integrity. For active mappings, the VMM main-
tains an in-memory metadata cache that is not accessible to the
guest. Metadata associated with persistent cloaked resources, such
as file-backed memory regions, is stored securely within the guest
filesystem. Section 7 contains a detailed treatment of Overshadow
metadata management.

5. OS Integration with Cloaking
The VMM interposes on transitions between the cloaked user-mode
application and the guest kernel, using distinct shadow page tables
for each. Privilege-mode transitions include asynchronous inter-
rupts, faults, and signals, and system calls issued by the cloaked
application. Mediating these interactions in a secure, backwards-
compatible manner requires adapting the protocols used to interact
with the operating system, as well as some system calls. This is fa-
cilitated by a small shim that is loaded into a cloaked application’s
address space on startup.

We describe the shim in the context of our Linux implementa-
tion, although we believe this approach could be applied to other
operating systems, including Microsoft Windows. While the sys-
tem call interface varies across kernels, low-level mechanisms for
system call vectoring, fault handling, and memory sharing are tied
more closely to the processor architecture than to a particular OS.

We begin by discussing the basic operation of the shim, how
it helps the VMM manage identity, and its interaction with the
kernel and VMM to adapt the application for cloaked execution.
Support for handling faults, interrupts, and system calls is presented
in detail. A discussion of how particular system calls are mediated
is deferred until the next section.



5.1 Shim Overview
The shim is responsible for managing transitions between the
cloaked application and the operating system. It uses an explicit
hypercall interface for interacting with the VMM, i.e., a secure
communication mechanism between the guest and the VMM. This
arrangement allows relatively complex operations, such as OS-
specific system call proxying, to be located in user-mode shim
code, instead of the VMM. It also facilitates extensibility, provid-
ing a convenient place to add custom or OS-specific functionality
without modifying the VMM.

Shim Memory. In memory, the shim consists of both cloaked and
uncloaked regions, each with its own distinct code, data and stack
space. Each application thread has its own shim instance, and all
thread-specific data used by the shim is kept in thread-local storage,
preventing conflicts between different instances.

The cloaked shim is multi-shadowed like the rest of the appli-
cation. It is responsible for tasks where trust is required to maintain
protection, such as providing well-defined entry and exit points for
control transfers, and moving data between cloaked and uncloaked
memory securely. The cloaked shim also includes a cloaked thread
context (CTC) page, which is set aside for the VMM to store sen-
sitive data used for control transfers. This includes areas for saving
register contents, a table of entry points to shim functions, and the
identity of the shadow context containing the shim.

The uncloaked shim contains buffer space that provides a neu-
tral area for the kernel and application to exchange uncloaked data.
It also contains simple trampoline code to facilitate transitions from
the kernel to cloaked code. Nothing in the uncloaked shim is trusted
or necessary for protection. If its code or data is corrupted, it will
merely cause the application to crash.

Hypercall Interface. The VMM exports a small hypercall inter-
face to the shim. Uncloaked code is allowed to invoke operations
to initialize a new cloaked context (used to bootstrap). It can also
make calls to enter and resume cloaked execution. Since control
can be transferred only to an existing cloaked context, these calls
can be initiated safely by untrusted code. Cloaked code can make
hypercalls to cloak new memory regions, unseal existing cloaked
data, create new shadow contexts, and access other useful inter-
faces, such as metadata cache operations.

Loading Cloaked Applications. To start a cloaked application, a
minimal loader program is run with the shim linked into a distinct
portion of its address space. The actual loader is part of the shim;
before taking steps to load the program, the shim must bootstrap
into a cloaked context.

To create a new shadow context, the shim issues a hypercall
with a pointer to itself and protection metadata containing hashes
for all pages associated with cloaked code and data; see Section 7
for details. The VMM uses this metadata to verify its integrity,
as the cloaked shim will have access to the address space of the
cloaked application. Thus, to bootstrap a secure protection domain
for the application, the shim must be trusted; i.e., not malicious to
the application. The call to create a new context also takes a pointer
to a portion of thread-local storage in which the VMM can setup a
new CTC. Once this setup is complete, the VMM transfers control
to start execution in the cloaked shim.

The cloaked shim then runs its loading routine, which reads
the application binary, and maps appropriate sections into memory.
When creating anonymous memory regions or memory-mapping
protected files, the shim performs hypercalls to cloak their corre-
sponding virtual memory ranges. After the cloaked application has
been loaded, it may launch additional programs. On a subsequent
execve, if the target program is cloaked, the loader program is
prepended to the exec call so that the new program will also be
cloaked.
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Figure 3. Control Flow for Handling Faults and Interrupts

Identity Management. To switch between shadow page tables
appropriately, the VMM must employ some reliable procedure
for identifying shadow contexts uniquely. Precise identification
is challenging – contexts are associated with guest-level process
abstractions, and scheduling is controlled by the OS, not the VMM.
For example, the guest kernel may switch contexts while handling
a fault or system call.

Existing approaches for VMM tracking of guest-level pro-
cesses, such as monitoring assignments to the current page table
root in Antfarm [14], work fairly well, but are not foolproof. Other
schemes, such as accessing guest OS state at fixed kernel addresses
(e.g., Linux current pointer), or having the VMM store identify-
ing information at some fixed virtual address, are generally fragile,
or assume application pages can be pinned in physical memory.
Most importantly, these approaches cannot be guaranteed to work
in the presence of an adversarial OS. Overshadow takes an alterna-
tive shim-based approach that avoids these problems.

The VMM maintains a separate shadow context for each ap-
plication address space, for which it assigns a unique address
space identifier (ASID). Each address space may contain multiple
threads, each with its own distinct cloaked thread context. When the
shim begins execution, it makes a hypercall to initialize its CTC.
During this initialization, the VMM writes the ASID and a random
value into the CTC, and returns the ASID to the caller. The ASID
value is not protected, and can be used by the uncloaked shim.
However, since the CTC is cloaked, the random value is protected,
and cannot be read by the uncloaked shim.

Shim hypercalls that transition from uncloaked to cloaked exe-
cution are self-identifying. The uncloaked shim passes arguments
to the VMM containing its ASID, and the address of its CTC. The
hypercall handler verifies that the CTC contains the expected ran-
dom value, and also that its ASID matches the specified value. Note
that the CTC resides in ordinary, unpinned application virtual mem-
ory. If the hypercall handler finds that the GVPN for the CTC is not
currently mapped, it returns a failure code to the uncloaked shim,
which simply touches the page to fault it back into physical mem-
ory, and then retries the hypercall.

5.2 Faults and Interrupts
While a cloaked application is executing, OS intervention is re-
quired to service faults or interrupts, such as application page faults
and virtual timer interrupts. Figure 3 illustrates the flow of control
for handling a fault from a cloaked application, involving the ap-
plication, its associated shim, the guest kernel, and the VMM. The
procedure for handling a virtual interrupt is essentially identical.
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Figure 4. Control Flow for Handling System Calls

The fault occurs in step 1, and control is transferred to the
VMM. In step 2, the VMM saves the contents of all application
registers to the CTC in the cloaked shim. The VMM then zeros out
the application’s general-purpose registers to prevent their contents
from being leaked to the OS. Next, the return instruction pointer
(IP) and stack pointer (SP) registers are modified to point to
addresses in the uncloaked shim, setting up a simple trampoline
handler to which the kernel will return after servicing the fault.
Finally, the VMM transfers control to the kernel.

The kernel handles the fault as usual in step 3, and then returns
to the trampoline handler in the uncloaked shim setup in step 2. In
step 4, this handler performs a self-identifying hypercall into the
VMM to resume cloaked execution. In step 5, the VMM restores
the registers saved in step 2, and returns control to the faulting
instruction in the cloaked application.

Note that the active shadow page table must be switched
when transitioning between uncloaked and cloaked contexts. Two
shadow page table switches are required to handle a fault, in steps
2 and 5.

5.3 System Call Redirection
Unlike faults and interrupts, which are intended to be transparent
to the application, system calls represent an explicit interaction
between the cloaked application and the kernel. A system call is
issued by the application using the standard OS calling convention.
Figure 4 depicts the flow of control for handling a system call
from a cloaked application, involving the application, its associated
shim, the guest kernel, and the VMM. Note that the transitions
involved in performing a system call are a strict superset of the
transitions presented for handling a fault in Figure 3.

In step 1, the cloaked application performs a system call, and
control is transferred to the VMM. In step 2, the VMM saves the
contents of all application registers to the CTC in the cloaked shim.
The IP is set to an entry point in the cloaked shim corresponding to
a system call dispatch handler; similarly, the SP is set to a private
stack in the cloaked shim for executing this handler. The VMM
then redirects control to the dispatch handler in the cloaked shim.

In step 3, the cloaked dispatch handler performs any operations
required to proxy the system call on behalf of the application.
For some system calls, this may involve marshalling arguments,
copying them to a buffer in the uncloaked shim. The dispatch
handler then reissues the system call, substituting the marshalled
arguments in place of the original application-specified values. As
before, the VMM again intercepts the system call.

In step 4, the VMM saves the contents of all application regis-
ters in the CTC. Note that the CTC contains two distinct register
save areas: one for the application registers saved earlier in step
2, and one for the shim registers saved in this step. The VMM then
scrubs the contents of any application registers that are not required
by the kernel system call interface. The return IP and SP are modi-
fied to point to addresses in the uncloaked shim, setting up a simple
trampoline handler to which the kernel will return after executing
the system call. Finally, the VMM transfers control to the kernel.

The kernel executes the system call as usual in step 5, and then
returns to the trampoline handler in the uncloaked shim setup in
step 4. In step 6, this handler performs a self-identifying hypercall
into the VMM to enter cloaked execution. In step 7, the VMM
restores the shim registers saved in step 4, and resumes execution
in the cloaked dispatch handler.

The cloaked dispatch handler continues execution in step 8, per-
forming any operations required to finish proxying the system call.
For some calls, this may involve unmarshalling result values, and
copying them into cloaked application memory. The dispatch han-
dler then performs a hypercall into the VMM, requesting resump-
tion of the cloaked application. In step 9, the VMM restores the
application registers saved in step 2, and returns control to the in-
struction after the original system call in the application.

As in the case of fault handling, only two transitions require
shadow page table switches between uncloaked and cloaked con-
texts, during steps 4 and 7.

6. Adapting System Calls
Cloaking necessarily changes the way the OS can manage process
memory – it cannot modify it or introduce any sort of sharing with-
out application help. It also changes the way the OS transfers con-
trol – it can only branch to well-defined entry and exit points within
the application. Accommodating these changes requires adapting
the semantics of a variety of system calls.

6.1 Pass-through and Marshalling
A majority of system calls can be passed through to the OS with
no special handling. These include calls with scalar arguments
that have no interesting side effects, such as getpid, nice, and
sync. The shim need not alter arguments to these system calls,
so the cloaked shim is bypassed altogether, resulting in control
flow like that in Figure 3. Note that the VMM itself is not aware
of system call semantics; during initialization, the shim simply
indicates which system call numbers can be bypassed.

Many other calls have non-scalar arguments that normally re-
quire the OS to read or modify data in the cloaked application’s ad-
dress space, for example, path names and struct sockaddrs.
Such arguments are marshalled into a buffer in the uncloaked shim,
and registers are modified so the system call uses this buffer as the
new source (or destination) for non-scalar data. After the system
call completes, results are copied back into the cloaked application,
if necessary. Implementing all this manually would be tedious and
error prone, so we instead generate this code automatically from a
simple specification, and the resulting code is used by the shim.

6.2 More Complex Examples
Several system calls require changes to resolve incompatibilities
between cloaked semantics and normal OS semantics. We first
describe system calls that require non-trivial emulation, and then
discuss thread creation and signal handling.

Emulation. We are forced to emulate the semantics of several
system calls. For example, pipe normally creates a queue in the
kernel for communicating bytes. We cannot easily protect this, so
instead we emulate a pipe between cloaked applications with a



queue in cloaked shared memory. To preserve the normal block-
ing semantics of calls such as read, write, and poll, reads and
writes are performed over the pipe as normal, except that the sender
sends zeros instead of actual data. For the receiver, zeros are read,
then actual data is copied from the protected queue. Support for
futex (Linux fast mutex) calls is another example of where emu-
lation is required, as the normal OS implementation involves direct
access to process memory.

Thread Creation. Handling the clone and fork system calls is
particularly interesting, since these are intimately related with how
the shim manages resources. A clone call begins by allocating
thread-local storage for the new thread. Next, the child’s cloaked
thread context (CTC) is setup by making a copy of the parent’s
CTC, and fixing all thread-local pointers for the child. Finally, it
changes the IP and SP for entering cloaked mode in the child’s
CTC, arranging for the child to start executing in a child_start
function located in the child’s shim, which will complete its initial-
ization.

Normally, the CTC would be modified by the VMM on a switch
from cloaked to uncloaked mode. However, in this case, the child’s
CTC is not currently being used. Thus, on a clone system call,
only the parent’s CTC is modified. We also setup the uncloaked
stack that will be used by the cloned thread when returning from
the system call, so that it will start running the new cloaked context.
After returning from the system call, the parent thread returns to
the original execution context. The child thread begins execution in
child_start, as described above.

Signal Handling. Normal Unix signal-handling semantics are in-
compatible with cloaking, as we cannot allow the operating system
to transfer control into an arbitrary section of cloaked code. Keep-
ing portions of the shim non-preemptible also simplifies its imple-
mentation.

When the application registers a signal handler with signal,
the shim emulates it, registering the handler in its own table. All
actual signal handlers (those registered with the kernel) use a single
handler located in the uncloaked shim. This signal handler makes
a hypercall to the VMM immediately upon receiving a signal,
indicating which shadow context received the signal, the signal that
occurred, and any additional signal parameters.

The VMM examines the cloaked context and checks the sig-
nal status to determine in which context the signal occurred: the
cloaked shim, uncloaked shim, cloaked application, or other un-
cloaked code. If the signal occurred when the cloaked application
was executing, the VMM transfers control to a well-defined sig-
nal entry point in the shim, with relevant signal information. If the
signal occurred while the shim was executing, the VMM further
checks a flag in the CTC to determine whether to safely rollback
execution to the last application system call entry point, or to defer
the signal delivery until shim exit, when execution has effectively
returned to the application.

6.3 File I/O
Extending Overshadow’s cryptographic protection to files on disk
requires interposing on I/O related system calls. Unprotected files
are handled using simple argument marshalling, while protected
files must be adapted to utilize cloaking.

Encrypted file I/O for cloaked applications is implemented in
the shim using mmap. For example, read and write system calls
are emulated by copying data to/from memory-mapped buffers.
File data is always mapped using the MAP_SHARED flag, to ensure
that other processes that may open the same file obtain a consis-
tent view. By transforming all file I/O into memory-mapped I/O,
file data is decrypted automatically when it is read by a cloaked ap-
plication, and encrypted automatically when it is flushed to disk by
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the kernel. To allow the VMM to protect integrity and ordering of
file data, the shim may need to load protection metadata from disk
when the file is opened; this is described in detail in Section 7.6. For
efficiency, the shim maintains a cache of mapped file regions; our
current implementation maps regions using 1MB chunks to amor-
tize the cost of the underlying mmap and munmap calls.

Using mmap for file I/O obviates the need to implement any
cryptography in the shim. Also, encryption and decryption are
performed only when necessary. An application can read and
write portions of a file repeatedly without causing additional
decryptions. Similarly, data is only encrypted when the OS flushes
it to disk.

A single-page Overshadow header is prepended to each cloaked
file. This header contains the actual file size, which may differ from
the current on-disk size due to the 1MB mapping granularity. Each
shim using the file maps its header using a shared mmap, to properly
emulate operations such as fstat and lseek. The shim also
tracks all operations that create or manipulate file descriptors, such
as dup, and maintains a table of all open files, their offsets, and
whether they are cloaked. This table is kept in a shared anonymous
region to properly track and share descriptors across process forks.

7. Managing Protection Metadata
Overshadow introduces OS-neutral abstractions for cloaking both
persistent and non-persistent resources, such as files and private
memory regions. For each resource, protection metadata, such as
(IV, H) pairs, must be managed to enforce privacy and integrity,
ordering, and freshness (to prevent rollback). Figure 5 provides
an overview of the components involved in metadata protection.
We begin by examining how metadata is stored and mapped to
protected objects, then consider how it is used to enforce protection.

7.1 Protected Resources
Each cloaked resource, such as a file or anonymous memory re-
gion, is associated with a unique 64-bit resource identifier (RID).
Each RID has a corresponding resource metadata object (RMD)
that stores metadata needed to decrypt, check integrity, and pre-
serve ordering. Concretely, an RMD is an ordered set of (IV, H)
pairs, one per encrypted page, addressed by a 32-bit resource page
number (RPN). In our current system, each RMD is implemented
with a data structure similar to a three-level page table to efficiently
support large, potentially-sparse address spaces, up to 256GB.

When a resource is mapped into memory, its RMD is loaded
into the metadata cache (MDC) in the VMM. A single MDC
caches metadata for all cloaked resources mapped by the guest.



This design ensures metadata consistency for shared objects, such
as files and shared memory regions. When a resource is not in
use by any process, its RMD is stored on disk in a metadata file.
The MDC provides primitive operations to get, set, and invalidate
metadata entries, as well as higher-level operations for cloning and
persisting metadata, described later in this section.

7.2 Protected Address Spaces
Access control and sharing for cloaked resources are determined
strictly by a unique security identifier (SID) that identifies an Over-
shadow protection domain. In the current implementation, a SID is
associated with an application instance, which may contain multi-
ple processes. Processes with the same SID have common access
to cloaked resources. The address space for a cloaked process is
identified by a unique address space identifier (ASID) that defines
its shadow context. Portions of multiple cloaked resources are typ-
ically mapped into the guest virtual address space associated with
a given ASID.

The VMM maintains a per-ASID cache of resource mappings
in its virtual address space, called the metadata lookaside buffer
(MLB). The MLB is used to map a virtual address to a resource.
An MLB entry has the form (start,end) 7→ (RID, RPN), where start
and end denote the virtual address range into which the resource is
mapped, RID denotes the resource being mapped, and RPN denotes
the first RPN in the mapping. For example, if file foo.txt has
RID 4, and its third page is mapped into the first GVPN in the
virtual address space, this is modeled as (0, 4096) 7→ (4, 2).

The shim is responsible for keeping a complete list of resource
mappings for both cloaked and uncloaked memory, updating the
MLB on any change. The shim resides in the same guest virtual
address space, and interposes on all calls that modify it, such as
mmap, munmap, and mremap in Linux; more details appear in
Section 5. By delegating this responsibility to the user-mode shim,
the VMM implementation is kept simple and OS-neutral.

On an MLB miss, the VMM performs an upcall into the shim
to obtain the required mapping, and installs it in the MLB, illus-
trated by the miss action in Figure 5. The mappings for the shim
itself are pinned in the MLB, preventing recursion. Note that even
if some bug caused the MLB to have an incorrect mapping, it gen-
erally fails-closed; the wrong address range or cloaking status will
cause decryption to fail, or the application will end up accessing
ciphertext, causing it to fail.

7.3 Page Decryption
When a process accesses a cloaked page in its shadow context, its
ASID and GVPN are known. If the page is unencrypted, then the
memory access proceeds normally, without any VMM intervention.

If the page is encrypted, the access will fault into the VMM,
since the GVPN is not mapped into the shadow for that ASID.
The VMM looks up the faulting address in the MLB, and uses
the resulting (RID, RPN) to index into the MDC and fetch the
(IV, H) needed to decrypt and integrity check the page contents;
see the find operation in Figure 5. The hash, check, and decrypt
steps are performed using the protocol described previously. If the
decryption succeeds, and the page is marked writable, (RID, RPN)
is invalidated in the MDC. The page is then zapped, i.e., removed
from all shadows, and mapped into the current shadow for the
ASID. The original application access is then allowed to proceed.

There is one special case. Operating systems commonly zero the
contents of a page before mapping it into userspace, and applica-
tions depend on this initialization. If an access is made to a GVPN
that is not mapped in the current shadow, and the (RID, RPN) for
that page is not in the MDC, then this must be the first applica-
tion access to the page, and no decryption is necessary. We check
that the page contents are indeed zero-filled, and assuming this suc-

ceeds, the page is simply zapped and then mapped into the current
shadow, and the original memory access is allowed to proceed.

Finally, the VMM stores the (RID, RPN) used for each decryp-
tion with the associated GPPN in the existing VMM pmap structure
which stores GPPN-to-MPN translations.

7.4 Page Encryption
When the guest kernel (or any context that doesn’t match the
application SID) accesses a cloaked page, its GPPN is known, but
its ASID and GVPN may not be known. The access could originate
from any guest context, e.g., during a virtual DMA operation. If
the page is already encrypted, then the memory access proceeds
normally, without any VMM intervention.

If the page is unencrypted, the access will fault into the VMM,
since it is not mapped in the current shadow. If the page is writable,
the VMM generates a new random IV; for a read-only page, the
existing IV is reused. The VMM then encrypts the page contents,
and computes a secure hash H over the encrypted contents. It stores
the resulting (IV, H) in the MDC, at the (RID, RPN) previously
associated with the GPPN in the pmap during its last decryption.
The page is then zapped and mapped into the current shadow, and
the original kernel access is allowed to proceed.

7.5 Cloning Metadata
The MDC also provides operations to facilitate support for ad-
dress space cloning, such as clone or fork in Linux. Suppose
a cloaked process forks a child. Immediately after the fork, the par-
ent and child processes share their private memory regions copy-
on-write (COW). Overshadow must ensure that the metadata as-
sociated with all unmodified COW pages remains accessible and
synchronized between the parent and child.

When the fork occurs, each of the parent’s private RMDs is
cloned eagerly for the child, by copying all of its existing metadata
entries, and assigning it a new RID. This ensures that metadata for
any pages encrypted prior to the fork remain available to the child,
even if the parent later modifies them.

However, suppose the parent encrypts a COW-shared page after
the fork; a subsequent access by the child would not find the meta-
data required for decryption. One approach is to forcibly encrypt
all pages in the parent during the fork, but this would be extremely
inefficient, since few private pages remain encrypted in practice,
unless the system is swapping heavily. Another option is to store a
complete backmap for every GPPN, containing all (ASID, GVPN)
pairs that map it, but this would be extremely complex.

The solution we implemented is to mirror the application’s
process tree in the MDC; each RMD has pointers to its parent, first
child, and next sibling RMDs, if any. The MDC also maintains a
global 64-bit version number, which is incremented on every RMD
creation and page decryption. A version is stored with each RMD,
set to the global version when it is created. Similarly, a version is
stored along with the (RID, RPN) in the pmap for each GPPN, and
set to the global version each time it is decrypted. Whenever a page
is encrypted, the (IV, H) is stored at the (RID, RPN) associated
with the GPPN, and also recursively propagated to any child RMDs
with versions greater than the GPPN’s version. Thus, metadata is
propagated to all children with pages whose contents existed prior
to the fork, as desired. A subtle point worth noting is that when the
parent modifies a COW page, it will be encrypted (and its metadata
propagated to the child) prior to the modification, since the guest
OS must first read the page to make a private copy for the parent
during the COW fault.

7.6 Persisting Metadata
RMDs associated with non-persistent memory regions (e.g., appli-
cation stack, data, or anonymous shared memory), can be discarded



when no longer in use. However, RMDs associated with persistent
content, such as file-backed memory regions, must be saved to disk.
Each cloaked file has an associated metadata file in the guest for
storing its RMD persistently. Metadata file integrity is protected by
a message authentication code (MAC) stored in the file, computed
using a key derived from the VMM’s secret key KVMM. The current
implementation uses HMAC with SHA-256.

When a process opens a cloaked file, the shim makes a hypercall
to determine if the metadata for its RID is in the MDC. If the
metadata is not present, the shim performs a hypercall to allocate a
new RMD for that RID, reads the entire metadata file, and passes
its contents to the VMM, which verifies its integrity, as illustrated
by the load action in Figure 5. Frequently reloading the RMD or
recomputing its MAC might raise efficiency concerns. This can be
optimized by keeping RMDs cached longer in the MDC, instead
of evicting them eagerly after they have been committed to disk.
Another option would be to store MACs in a Merkle hash tree [21],
allowing for more efficient verification and updates.

To ensure freshness, a 128-bit generation number is also written
to the metadata file, and protected by the MAC. The VMM checks
this number against a master list of valid generations when the file
is loaded. This number is stored in the MDC as part of the RMD.
Just prior to eviction, it is incremented in both the RMD and master
list. The master list is stored in the guest, protected by a MAC and
its own counter which is stored outside of the guest by the VMM.

RMDs are written to metadata files by the Overshadow file dae-
mon (osfd). The osfd communicates with the VMM via a sim-
ple hypercall interface, polling for metadata that should be evicted
from the MDC and persisted to disk. The daemon extracts the meta-
data for all of its valid RPNs, obtains their MAC as generated by the
VMM, commits everything to disk, and finally evicts the RID from
the MDC; refer to the evict action in Figure 5. Notably, the osfd
daemon is not trusted, and all data it handles is protected crypto-
graphically. Its compromise would sacrifice only system availabil-
ity, not data privacy or integrity.

7.7 Key Management and Access Control
Our usage model during Overshadow development has been to
set up a clean VM and cloak an unmodified application in place.
However, one could easily use our tools from outside the VM to
convert existing Linux packages (e.g., rpm files) by encrypting
their files, and adding corresponding metadata files to the package.

Given the simple primitives in our architecture, a wide range
of access control policies could be supported, as SIDs provide a
basic primitive for identifying subjects, and RIDs provide a basic
primitive for identifying objects. We currently use a simple model
that assumes mutual trust between all parts of an application and
dynamically assigns SIDs at startup.

Our current implementation performs all encryption using a
single set of encryption and MAC keys. It is important to note that
key management and access control in Overshadow are orthogonal.
The VMM arbitrates who is allowed to access what resources,
regardless of the key with which it was encrypted. Additional keys
could be added to support delegation of administrative tasks; e.g.,
a key per RID would allow different parties to package their own
sets of encrypted files outside of the VM.

8. Evaluation
The current Overshadow implementation realizes the full system
described in earlier sections. It supports cloaking for all application
memory regions – private and shared, anonymous and file-backed.
We demonstrate that the system is practical by presenting quantita-
tive results for experiments running substantial, unmodified appli-
cations on an unmodified Linux operating system.
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Figure 6. Microbenchmarks. Percentage of uncloaked performance
attained with full cloaking of all memory regions and files.

8.1 Implementation
The Overshadow implementation is based on a version of the
VMware VMM for 32-bit x86 processors that uses binary trans-
lation for guest kernel code [1]. The modified VMM was built as
a VMware Workstation binary running in a “hosted” configuration
on top of an existing Linux host OS.2 Since multi-shadowed mem-
ory cloaking does not depend on specific features of the VMware
VMM, it could also be realized in other virtualization platforms.

Our VMM modifications included approximately 4600 new
lines of code, plus 2000 additional lines from publicly-available
cryptographic routines. The shim handles nearly all system calls
supported by the Linux 2.6 kernel interface, and is sufficiently
complete to run large, unmodified Linux programs. The shim con-
sists of 13,100 lines of code, including roughly 8500 lines of new
code, and 4600 lines of standard library and utility routines.

Changes would be required to enable hardware-assist for x86
virtualization, such as Intel VT [22] and AMD SVM [2]. For ex-
ample, system call transitions between guest user-mode and kernel-
mode are always trapped by a binary-translating VMM, but are
not typically trapped by a hardware-assisted VMM. Forcing sys-
tem calls to trap for Overshadow interposition would likely intro-
duce additional overhead. Nevertheless, we expect that hardware
support for nested page tables will accelerate many Overshadow
operations, improving overall performance. Reducing the cost of
hardware context switches is also desirable. For Overshadow, the
ability to redirect a trap to guest user-mode code would be ideal,
making it possible to redirect system calls to handlers in the shim
without dynamic VMM intervention.

8.2 Performance
All experiments were conducted on a Dell Precision 390 host con-
figured with a 2.66GHz Intel Core2 Duo processor and 4GB RAM.
The VM was configured with one CPU and 2GB memory running
an unmodified Fedora Core 7 guest OS (Linux 2.6.21-1 kernel).

Microbenchmarks. Figure 6 presents the results of microbench-
marks that measure the overhead of system call redirection and
cloaking. Each data point plots the ratio of cloaked to uncloaked
performance, using the mean over the best 5 of 7 trials for both. In
these experiments, all the benchmarks exhibited low runtime vari-
ability (standard deviation within 2.4% of the mean).

The PPID and RESUID benchmarks measure raw system call
overheads, for both getppid, implemented using pass-through,

2 In this configuration, the VMM is not fully protected from the Linux host
OS. Secure deployment of Overshadow would require running the VMM
directly on hardware, like VMware ESX Server [30], Xen [3], or IBM
z/VM.
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Figure 7. SPEC CINT2006 Benchmarks. Percentage of uncloaked
performance attained with full cloaking of all memory regions and files
(gray), and cloaking anonymous memory regions only (white).

and getresuid, requiring simple argument marshalling. Cloak-
ing clearly increases system call costs significantly (by a factor of
3 to 5), primarily due to the extra pair of address-space switches on
transitions between cloaked and uncloaked guest contexts.

The FORKW benchmark highlights the overhead of process cre-
ation, destruction, and synchronization using fork and wait.
Cloaking introduces overhead due to encryption and decryption for
copy-on-write (COW) pages, as well as execution in the shim han-
dler and VMM during process creation.

The MMAPW benchmark measures the cost of writing one word
to each page in a large file-backed memory region, and flushing
the data to disk. The cloaking overhead is dominated by the cost
of encryption during disk write operations. MMAPR measures the
cost of reading one word from each page of a large memory region
backed by the file written by MMAPW. This benchmark incurs
page faults, but does not perform disk I/O, as pages containing the
file data still reside in the guest buffer cache. In this experiment,
cloaking does not cause decryptions because these pages remain
accessible to the application in plaintext form during virtual DMA
(see Section 3.3). The results indicate that cloaking approximately
doubles the cost of a minor page fault.

Application Benchmarks. Figures 7 and 8 present results from
the SPEC CPU2006 integer suite and aggressively-loaded Linux
web and database servers. All data points are averages over at least
three trials. Despite high overheads on some microbenchmarks
(Figure 6), real applications perform additional work that amortizes
these costs.

Figure 8 plots the geometric mean for the entire SPEC suite,
showing that overall the SPEC benchmarks incur very little over-
head from cloaking. When we consider the SPEC benchmarks indi-
vidually (Figure 7), only GCC has non-trivial overhead. This over-
head comes from GCC’s relatively high system call and page fault
rates.

The web server experiment used the standard prefork configu-
ration of APACHE 2.2.4, with caching disabled. A remote host gen-
erated client requests for fetching a 28 KB HTML file using the ab
benchmarking tool with 50 concurrent connections. The client and
server were connected by a 100Mbps (APACHE-100M) or 1Gbps
(APACHE-1G) switch. We measured the total number of requests
served per second. With full cloaking, performance for APACHE-
100M was within 1% of uncloaked performance. When using the
1 Gbps switch (APACHE-1G), fully-cloaked performance degraded
relative to the uncloaked server. These results are explained by the
fact that cloaked applications have higher CPU occupancy; for the
more realistic load (few web servers saturate 100 Mbps Internet
links), the processor was not fully utilized, and cloaking didn’t
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Figure 8. Benchmark Summary. Percentage of uncloaked perfor-
mance attained with full cloaking of all memory regions and files (gray),
and cloaking anonymous memory regions only (white).

affect performance. With the network bottleneck removed, cloak-
ing scales well until it saturates the CPU. Naturally, this saturation
point will occur later for multicore VM configurations (our experi-
ments utilize only one processor).

The database workload uses the DBT2 transactional database
performance test suite running with a PostgreSQL 8.2.4 server. This
test simulates a wholesale parts supplier with 22 warehouses and 11
concurrent clients at the peak throughput; the clients run uncloaked
in the same VM as the server. We measured the number of “new
order” transactions per minute during steady-state operation, the
standard metric from this suite. With full cloaking enabled for this
8.6 GB database, performance was more than 70% of the uncloaked
baseline.

While there are ample opportunities for optimization, the cur-
rent implementation of full cloaking is practical for many realistic
workloads. For applications that require only anonymous regions to
be cloaked, performance is uniformly above 80% of the baseline.

9. Future Work
A variety of interesting research opportunities remain in the areas
of retrofitting protection to legacy operating systems, and leverag-
ing multi-shadowing to define new protection models. We also de-
scribe extensions to our current implementation.

Retrofitting Protection. Applications are not designed with the
expectation that the operating system can become hostile. A more
formal treatment of how an OS might mislead an application – and
how such attacks can be mitigated – is an interesting topic for fu-
ture research. For example, an application might be misled into re-
vealing information if it is run with a particular uid. One possible
defense is to provide a “reverse sandbox” that filters system calls to
prevent such attacks.

We are also investigating a trusted path for user interface de-
vices, as this would enable complete protection of many compelling
applications, including web, email, and VOIP clients. In principle,
user interaction could be protected in the current implementation if
the application uses a remote display system that renders to soft-
ware frame buffers.

Protecting Device Memory. Many I/O devices present a memory-
mapped interface to software. For some devices, multi-shadowing
can be employed to protect the contents of “physical” device mem-
ory from being inspected or modified by untrusted software. For
example, an interactive VM typically provides a virtual high-
resolution graphics display that uses a memory-mapped frame
buffer. A multi-shadowed frame buffer could help implement a



trusted path, by ensuring that a cloaked application’s output re-
mains private. While this approach can be used to prevent the oper-
ating system from observing raw device memory, additional work
is needed to cloak off-screen display images and other memory
used by window managers and graphics subsystems.

Fine-Grained Cloaking. Applications can be modified to apply
multi-shadowing selectively, cloaking only sensitive pages. For ex-
ample, two shadow contexts could be defined for each applica-
tion: a protected shadow containing cloaked code and data, and
an unprotected shadow for uncloaked code and data. In this sim-
ple model, cloaked memory can be accessed only by cloaked code.
A shadow context is identified by the virtual address of the current
instruction pointer.

In order to interpose on transitions between these shadow con-
texts, a VMM can change the execute permission of pages in
the shadow page tables (independent of guest PTE permissions).
In the unprotected shadow, all protected pages are marked non-
executable; similarly, in the protected shadow, all unprotected
pages are marked non-executable. When the application branches
between protected and unprotected code, the resulting permissions-
based page fault will trap into the VMM, allowing it to switch
between shadow page tables.

Storage Extensions. Our current implementation has a few
storage-related limitations. First, the RID for a file is simply con-
structed from its device and inode numbers; this is problematic on
network file systems where uniqueness can’t be expected.

Next, Overshadow currently offers no protection for file system
metadata; consequently, the OS could maliciously swap inputs on
an application. A simple solution is to provide a secure namespace,
associating pathnames with (RID, MAC) pairs. This could be im-
plemented by employing a protected daemon or shared file, which
would be updated on file operations such as rename, create,
and unlink. More sophisticated approaches have been explored
by others [11, 9, 17].

Finally, we currently don’t maintain consistency between file
system data and metadata in the event of a system crash. If the
guest OS crashes before we commit the metadata for a given file,
or before the data for a given file is committed to disk, we could end
up in a state where data and metadata are out of sync. We believe
all of these issues are tractable, but a full treatment remains a topic
for future work.

10. Related Work
Memory virtualization enables transparent remapping of guest
physical pages. Previous systems have leveraged this ability for
transparent swapping [4, 30], transparent page sharing [4, 30],
transparent page migration across NUMA nodes [4], and trans-
parent VM migration across physical hosts [5, 23]. Overshadow
takes advantage of this extra level of indirection to provide iso-
lated, context-dependent views of guest physical memory.

Many prior systems have attempted to tackle the problem of
providing a higher-assurance execution environment on commodity
platforms. All have aimed to eliminate the need to trust commodity
operating systems with the security of sensitive data.

Intel’s LaGrande Technology (LT) [13] provides hardware
mechanisms for isolating a portion of a machine’s address space
to create orthogonal protection domains within the guest. The
NGSCB [8] (formerly Palladium) architecture proposed using this
functionality to split commodity systems into low-assurance and
high-assurance partitions. The low-assurance partition would run
a commodity operating system (Windows); the other, a simpler
trusted operating system (the Nexus). Applications would corre-
spondingly be split into a small trusted part (the agent, run under
the Nexus) and the untrusted part, run on the commodity OS.

Proxos [29] takes a similar, but more backwards-compatible
approach. It splits the system into multiple VMs, one running an
untrusted commodity OS, the other(s) running trusted, application-
specific operating systems. Sensitive applications are run in a
trusted VM, but still interact with resources in the untrusted VM via
a process that proxies system calls for it, manipulating resources on
its behalf. The Terra [10] architecture proposes moving the entire
application into a separate VM with its own application-specific
software stack tailored to its assurance needs. While Overshadow
takes an OS-level approach to application protection, unlike all of
these earlier systems, it does not introduce any additional resource
management mechanisms or new operating systems.

Retrofitting protection via an encryption layer is a familiar con-
cept from networking. In storage, systems like SUNDR [17] and
Sirius [11] have examined securing block and file-level storage on
untrusted substrates, and similar work exists for databases [20].
However, this approach is rarely encountered in the OS litera-
ture, with the exception of architecture-level research such as
XOM [18, 19] and SP [6, 16]. XOM and SP also provide a dual
encrypted-unencrypted view of memory, like Overshadow, though
they achieve this through custom processor architectures, and tar-
get a threat model where hardware attacks are possible, i.e., main
memory is untrusted.

Overshadow considers only software attacks, but works with
off-the-shelf hardware. Compared to architecture-level approaches,
Overshadow also gains substantial flexibility by being software-
based. XOM requires applications and/or the OS to be substan-
tially modified or rewritten [18]. SP also requires applications to
be rewritten, explicitly specifying which code and data to protect.
While SP does not need OS modifications, it supports only one pro-
tection domain per device [16]. In contrast, Overshadow makes in-
tegration with unmodified operating systems and applications fea-
sible, and enables sharing between protection domains. Neverthe-
less, Overshadow’s software mechanisms could be combined with
more hardware-centric approaches to provide similar benefits.

We have developed Overshadow as a means of enhancing se-
curity in commodity systems, where redesigning applications and
using a high-assurance OS [12, 26] is not an option. However, we
believe cloaking is useful as a more general OS abstraction, with
novel properties not afforded by normal memory protection. In par-
ticular, cloaking provides an OS-level analog to end-to-end encryp-
tion in networks, eliminating the need to trust those pieces of the
system that are merely responsible for moving data from one place
to another, versus those that are actively using that data.

11. Conclusions
We have presented Overshadow, a system that cryptographically
isolates an application inside a virtual machine from the operating
system it is running on, offering another layer of protection for
application data, even in the face of total OS compromise.

This capability is enabled by multi-shadowing, a novel tech-
nique for presenting different views of “physical” memory in virtu-
alized systems. This allows memory to be cloaked, so that it appears
normal to an application, but encrypted to the operating system.
Cloaking supports a separation of responsibilities for isolation and
resource management, allowing the use of a complex commodity
operating systems to manage application virtual memory and other
resources, while relying on a much simpler hypervisor to ensure
data privacy and integrity.

Unlike previous approaches to enhancing assurance in com-
modity systems, Overshadow is backwards-compatible, protecting
a broad range of unmodified legacy applications, managed by un-
modified commodity operating systems. While Overshadow is not
a panacea, we believe it demonstrates a promising approach to en-
hancing data security in commodity computing environments.
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