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Abstract curity breach and an average episode results in close to
§S4 million in losses [10]. A recent penetration test-

This paper proposes a static analysis technique fo o
detecting many recently discovered application vulner-"9 study performed by the Imperva Application De-

abilities such as SQL injections, cross-site scripting, an4ense Center included more than 250 Web applications

HTTP splitting attacks. These vulnerabilities stem from fom e-commerce, on|.|ne banking, ente_rpnse collabo.—
{a'uon, and supply chain management sites [54]. Their

i ISP .~ vulnerability assessment concluded that at least 92% of
common source of security vulnerabilities in Web appli- -

. . . Web applications are vulnerable to some form of hacker
cations. We propose a static analysis approach based on

. . ; attacks. Security compliance of application vendors is
a scalable and precise points-to analysis. In our system

user-provided specifications of vulnerabilities are auto—éSpem"’IIIy important in light of recent U.S. industry reg-

. . . ulations such as the Sarbanes-Oxley act pertaining to in-
matically translated into static analyzers. Our approad}ormation security [4, 19]

finds all vulnerabilities matching a specification in the deal of ion has b . K
statically analyzed code. Results of our static analysi A great deal of attention has )een given to network-
j vel attacks such as port scanning, even though, about

are presented to the user for assessment in an auditi % of all K !
interface integrated within Eclipse, a popular Java devel 2% of all attacks against Web servers target Web-based

opment environment. applications, according to a recent survey [24]. Tra-

Our static analysis found 29 security vulnerabilities in ditional defense strategies such as firewalls do not pro-
nine large, popular open-source applications, with two of €Ct against Web apphcatlc_)n qttacks, as these attacks rely
the vulnerabilities residing in widely-used Java libraries. SOlely on HTTP traffic, which is usually allowed to pass
In fact, all but one application in our benchmark suite through firewalls unhindered. Thus, attackers typically
had at least one vulnerability.Context sensitivity, com-have a direct line to Web applications.
bined with improved object naming, proved instrumen- Many projects in the past focused on guarding against
tal in keeping the number of false positives low. Our problems caused by the unsafe nature of C, such as buffer
approach yielded very few false positives in our experi-Overruns and format string vulnerabilities [12, 45, 51].
ments: in fact, only one of our benchmarks suffered fromHowever, in recent years, Java has emerged as the lan-

false alarms. guage of choice for building large complex Web-based
) systems, in part because of language safety features that
1 Introduction disallow direct memory access and eliminate problems

The Security of Web app"ca’[ions has become increasSUCh as buffer overruns. Platforms such as J2EE (Java. 2
ingly important in the last decade. More and more Web-Enterprise Edition) also promoted the adoption of Java
based enterprise applications deal with sensitive financia®s @ language forimplementing e-commerce applications
and medical data, which, if compromised, in addition tosuch as Web stores, banking sites, etc.
downtime can mean millions of dollars in damages. Itis A typical Web application accepts input from the user
crucial to protect these applications from hacker attacksbrowser and interacts with a back-end database to serve

However, the current state of application securityuser requests; J2EE libraries make these common tasks
leaves much to be desired. The 2002 Computer Crimeasy to code. However, despite Java language’s safety, it
and Security Survey conducted by the Computer Secuis possible to make logical programming errors that lead
rity Institute and the FBI revealed that, on a yearly ba-to vulnerabilities such as SQL injections [1, 2, 14] and
sis, over half of all databases experience at least one seross-site scripting attacks [7, 22, 46]. A simple pro-



gramming mistake can leave a Web application vulner-1.2 Code Auditing for Security
able to unauthorized data access, unauthorized updates ) ) ) _
or deletion of data, and application crashes leading to Many attacks described in the previous section can

denial-of-service attacks. be detected with code auditing. Code reviews pinpoint
L potential vulnerabilities before an application is run. In
1.1 Causes of Vulnerabilities fact, most Web application development methodologies

Of all vulnerabilities identified in Web applications, écommend a security assessment or review step as a sep-
problems caused bynchecked inpuare recognized as arate development phase after testing laeibreapplica-
being the most common [41]. To exploit unchecked in-tion deployment [40, 41].
put, an attacker needs to achieve two goals: Code reviews, while recognized as one of the most
effective defense strategies [21], are time-consuming,
costly, and are therefore performed infrequently. Secu-
rity auditing requires security expertise that most devel-
. . opers do not possess, SO security reviews are often car-
* I_De}rameter tamp‘?””g pass specially crafted ma- ried out by external security consultants, thus adding to

licious values in fields of HTML forms. the cost. In addition to this, because new security errors
e URL manipulation: use specially crafted parame- gre often introduced as old ones are correctidble-

ters to be submitted to the Web application as paryygits(auditing the code twice) is highly recommended.

of the URL. The current situation calls for better tools that help de-
e Hidden field manipulation: set hidden fields of velopers avoid introducing vulnerabilities during the de-

HTML forms in Web pages to malicious values. velopment cycle.

e HTTP header tampering: manipulate parts of ) )
HTTP requests sent to the application. 1.3 Static Analysis

e Cookie poisoning place malicious data in cookies,
small files sent to Web-based applications.

Inject malicious data into Web applications. Common
methods used include:

This paper proposes a tool based on a static analy-
sis for finding vulnerabilities caused by unchecked in-
Manipulate applications using malicious data. Com-  Put. Users of the tool can describe vulnerability pat-
mon methods used include: terns of interest succinctly in PQL [35], which is an easy-

to-use program query language with a Java-like syntax.

e SQL injection: pass input containing SQL com- Our tool, as shown in Figure 1, applies user-specified

mands to a database server for execution. queries to Java bytecode and finds all potential matches
statically. The results of the analysis are integrated into
Eclipse, a popular open-source Java development envi-
ronment [13], making the potential vulnerabilities easy
to examine and fix as part of the development process.

The advantage of static analysis is that it can find all
potential security violations without executing the appli-
. . cation. The use of bytecode-level analysis obviates the
* Path trave.rsal:. exploit unchecked user input to need for the source code to be accessible. This is espe-
control which files are accessed on the server. cially important since libraries whose source is unavail-
e Command injection: exploit user input to execute aple are used extensively in Java applications. Our ap-
shell commands. proach can be applied to other forms of bytecode such as
These kinds of vulnerabilities are widespread in today'sMSIL, thereby enabling the analysis of C# code [37].
Web applications. A recent empirical study of vulnera- Our tool is distinctive in that it is based on a precise
bilities found that parameter tampering, SQL injection, context-sensitive pointer analysis that has been shown
and cross-site scripting attacks account for more than o scale to large applications [55]. This combination of
third of all reported Web application vulnerabilities [49]. scalability and precision enables our analysis to find all
While different on the surface, all types of attacks listedvulnerabilities matching a specification within the por-
above are made possible by user input that has not bedion of the code that is analyzed statically. In contrast,
(properly) validated. This set of problems is similar to previous practical tools are typically unsound [6, 20].
those handled dynamically by tkeint modein Perl [52],  Without a precise analysis, these tools would find too
even though our approach is considerably more extensimany potential errors, so they only report a subset of er-
ble. We refer to this class of vulnerabilities as thimted  rors that are likely to be real problems. As a result, they
object propagatiorproblem. can miss important vulnerabilities in programs.

e Cross-site scripting exploit applications that out-
put unchecked input verbatim to trick the user into
executing malicious scripts.

e HTTP response splitting exploit applications that
output input verbatim to perform Web page deface-
ments or Web cache poisoning attacks.
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Figure 1: Architecture of our static analysis framework.

1.4 Contributions vulnerabilities have recently been appearing on special-
A unified analysis framework. We unify multiple ized vulnerability tracking sites such &scurityFocus
seemingly diverse, recently discovered categories of s¢3nd were widely publicized in the technical press [39,
curity vulnerabilities in Web applications and propose an*1]- Recent reports include SQL injections in Oracle
extensible tool for detecting these vulnerabilities using aProducts [31] and cross-site scripting vulnerabilities in
sound yet practical static analysis for Java. Mozilla Firefox [30].
_ A pow_erful static analy5|_s.0urtoql_ is the first prac- 2.1 SQL Injection Example
tical static security analysis that utilizes fully context- _ _ _ S
sensitive pointer analysis results. We improve the state Let us start with a discussion of SQL injections, one
of the art in pointer analysis by improving the object- of the most well-known kinds of security vulnerabilities
naming scheme. The precision of the analysis is effecfound in Web applications. SQL injections are caused

tive in reducing the number of false positives issued byPY unchecked user input being passed to a back-end
our tool. database for execution [1, 2, 14, 29, 32, 47]. The hacker

A simple user interface. Users of our tool can find may embed SQL commands into the data he sends to the

a variety of vulnerabilities involving tainted objects by application, leading to unintended actions performed on
specifying them using PQL [35]. Our system provides athe back-end database. When exploited, a SQL injection
GUI auditing interface implemented on top of Eclipse, May cause unauthorized access to sensitive data, updates
thus allowing users to perform security audits quickly OF dele_tions from the database, and even shell command
during program development. execution.

Experimental validation. We present a detailed ex- Example 1. A simple example of a SQL injection is
perimental evaluation of our system and the static analyshown below:
sis approach on a set of large, widely-used open-source
Java a_lpplicati_ons. We found a to_t_a_l of_29 s_:ecurity BITOrS, o g userName ~ request.getParameter ("name");
including two important vulnerabilities in widely-used li- Comnection con = ...
braries. Eight out of nine of our benchmark applications  String query "SELECT * FROM Users " +
had at least one vulnerability, and our analysis produced " WHERE name = °’" + userName + "’";
only 12 false positives. con. execute (query) ;

HttpServletRequest request = ...;

. This code snippet obtains a user nanefrName) by in-
1.5 Paper Organization vokingrequest.getParameter (" name" ) and usesitto
The rest of the paper is organized as follows. Section Zonstruct a query to be passed to a database for execution
presents a detailed overview of application-level security(con.execute(query)). This seemingly innocent piece
vulnerabilities we address. Section 3 describes our statiof code may allow an attacker to gain access to unautho-
analysis approach. Section 4 describes improvementszed information: if an attacker has full control of string
that increase analysis precision and coverage. Section{g&serName obtained from an HTTP request, he can for
describes the auditing environment our system providesexample set it td OR 1 = 1; ——. Two dashes are used
Section 6 summarizes our experimental findings. Secto indicate comments in the Oracle dialect of SQL, so the
tion 7 describes related work, and Section 8 concludes. WHERE clause of the query effectively becomes the tau-
) . tology name =" OR 1 = 1. This allows the attacker
2 Overview of Vulnerabilities to circumvent the name check and get access to all user
In this section we focus on a variety of security records in the databas&]
vulnerabilities in Web applications that are caused by SQL injection is but one of the vulnerabilities that
unchecked input. According to an influential sur- can be formulated atinted object propagatiomprob-
vey performed by the Open Web Application Security lems. In this case, the input variahleerName is con-
Project [41], unvalidated input is the number one secusideredtainted If a tainted object (thesourceor any
rity problem in Web applications. Many such security other object derived from it) is passed as a parameter to



con.execute (thesink), then there is a vulnerability. As 2.2.3 Hidden Field Manipulation

discussed above, such an attack typically consists of two Because HTTP is stateless, many Web applications
parts: (1) injecting malicious data into the application yse hidden fields to emulate persistence. Hidden fields
and (2) using the data to manipulating the applicationare just form fields made invisible to the end-user. For
The former corresponds to tiseurcesf a tainted object  example, consider an order form that includes a hidden

propagation problem and the latter to 8ieks The rest  field to store the price of items in the shopping cart:
of this section presents attack techniques and examples <input type="hidden" name="total_price"

of how exploits may be created in practice. value="25.00">

2.2 Injecting Malicious Data A typical Web site using multiple forms, such as an on-
[ine store will likely rely on hidden fields to transfer state
information between pages. Unlike regular fields, hid-
den fields cannot be modified directly by typing values

Protecting Web applications against unchecked inpu
vulnerabilities is difficult because applications can obtain

information from the user in a variety of different ways. . . . ) )
! ! u : varnety ! way H]to an HTML form. However, since the hidden field is

One must check all sources of user-controlled data suc ¢ of th ing the HTML diti
as form parameters, HTTP headers, and cookie value%ar ol the page source, saving the page, ediling

systematically. While commonly used, client-side filter- the C\l/dcg)en f'?.ld \t/'aluet, and rgloatlglng th? pag((ja \iwlclicatljse
ing of malicious values is not an effective defense strat- € VWeb application fo receive the newly updated value

egy. For example, a banking application may present thé)f the hidden field.
user with a form containing a choice of only two account2.2.4 HTTP Header Manipulation

numbers; however, this restriction can be easily circum- HTTP headers typically remain invisible to the user
vented by saving the HTML page, editing the values inand are used only by the browser and the Web server.
the ”St, and resubmitting the form. Therefore, inputS However' some Web app"ca‘[ions do process these head_
must be filtered by the Web application on the serverers, and attackers can inject malicious data into applica-
Note that many attacks are relatively easy to mount: aRjons through them. While a normal Web browser will
attacker needs little more than a standard Web browse&iot allow forging the outgoing headers, multiple freely
to attack Web applications in most cases. available tools allow a hacker to craft an HTTP request
2.2.1 Parameter Tampering leading to an exploit [9]. Consider, for example, the

The most common way for a Web application to acceleeferer field, which contains the URL indicating where
parameters is through HTML forms. When a form is Sub_the request comes from. This field is commonly trusted

mitted, parameters are sent as part of an HTTP requeé?y the Web application, but can be easily forged by an

An attacker can easily tamper with parameters passed @ttacker. Itis possible to manipulate theferer field's

a Web application by entering maliciously crafted valuesvalue used in an error page or for redirection to mount

into text fields of HTML forms cross-site scripting or HTTP response splitting attacks.

2.2.2 URL Tampering 2.2.5 Cookie Poisoning

For HTML forms that are submitted using the HTTP ~ C0Okie poisoning attacks consist of modifying a

GET method, form parameters as well as their values ap00kie, which is a small file accessible to Web applica-

pear as part of the URL that is accessed after the form i§0NS stored on the user's computer [27]. Many Web ap-

submitted. An attacker may directly edit the URL string plications use cookies to store information such as user
embed malicious data in it, and then access this new yRrilogin/password pairs and user identifiers. This informa-
to submit malicious data to the application. tion is often created and stored on the user’s computer af-

. ) ter the initial interaction with the Web application, such
Example 2. Consider a Web page at a bank site that al-5 yisjting the application login page. Cookie poison-
lows an authenticated user to select one of her accounfgg js 5 variation of header manipulation: malicious in-
from a list and debit $100 from the account. When the
submit button is pressed in the Web browser, the follow
ing URL is requested:

put can be passed into applications through values stored
“‘within cookies. Because cookies are supposedly invisi-
ble to the user, cookie poisoning is often more dangerous

http://waw.mybank. con/myaccount? in practice than other forms of parameter or header ma-
accountnumber=341948&debit_amount=100 . .
nipulation attacks.

However, if no additional precautions are taken by the2.2.6 Non-Web Input Sources
Web application receiving this request, accessing Malicious data can also be passed in as command-
http://www.mybank.com/myaccount? line parameters. This problem is not as important be-
accountnumber=341948kdebit_amount=-5000  c5,;5e typically only administrators are allowed to ex-
may in fact increase the account balance. ecute components of Web-based applications directly



from the command line. However, by examining our spoofed page to collect user data even more devastating.
benchmarks, we discovered that command-line utilities=or HTTP splitting to be possible, the application must
are often used to perform critical tasks such as initializ-include unchecked input as part of the response headers
ing, cleaning, or validating a back-end database or misent back to the client. For example, applications that
grating the data. Therefore, attacks against these impoembed unchecked data in HTTRBcation headers re-
tant utilities can still be dangerous. turned back to users are often vulnerable.

2.3 Exploiting Unchecked Input 2.3.4 Path Traversal

Once malicious data is injected into an application, an Path-traversal_vuInerapHmes a”°.W a hackc_ar to ac-
atacker may use one of many techniques totake advaifl & TN 1 A Ree S L e e
tage of this data, as described below. unchecked URL input parameters, cookies, and HTTP
2.3.1 SQL Injections request headers. Many Java Web applications use files
SQL injections first described in Section 2.1 areto maintain an ad-hoc database and store application re-
caused by unchecked user input being passed to a backources such as visual themes, images, and so on.
end database for execution. When exploited, a SQL in- Ifan af[tackerhas control over the specification ofthgse
jection may cause a variety of consequences from leakll€ locations, then he may be able to read or remove files
ing the structure of the back-end database to adding nef/th sensitive data or mount a denial-of-service attack
users, mailing passwords to the hacker, or even executingy {rYing to write to read-only files. Using Java secu-
arbitrary shell commands. fity policies aI'onvs the dgveloper to restrict access to the
Many SQL injections can be avoided relatively eas-fil€ System (similar to usinghroot jail in Unix). How-
ily with the use of better APIs. J2EE provides the €Ver, missing or incorrect policy configuration still Igaveg
PreparedStatement class, that allows specifying a "0°m for errors. When used carelessly, 10 operations in
SQL statement template witfs indicating statement pa- Java may lead to path-traversal attacks.
rameters. Prepared SQL statements are precompiled, a2i3.5 Command Injection
expanded parameters never become part of executable command injection involves passing shell commands
SQL. However, not using or improperly using preparedinig the application for execution. This attack technique
statements still leaves plenty of room for errors. enables a hacker to attack the server using access rights
2.3.2 Cross-site Scripting Vulnerabilities of the application. While relatively uncommon in Web

. - . applications, especially those written in Java, this attack
Cross-site scripting occurs when dynamically gener- PP P y

. . technique is still possible when applications carelessly
ated Web pages display input that has not been properl . i
validated [7, 11, 22, 46]. An attacker may embed mali-Mse functions that execute shell commands or load dy

cious JavaScript code into dynamically generated pagegamlc ibraries

of trusted sites. When executed on the machine of a usey  Static Analysis
who views the page, these scripts may hijack the user ac- In this section we present a static analysis that ad-
count credentials, change user settings, steal cookies, ar . . . X
. X resses the tainted object propagation problem described
insert unwanted content (such as ads) into the page. A ;

S . S In Section 2.
the application level, echoing the application input back
to the browser verbatim enables cross-site scripting. 3.1  Tainted Object Propagation

2.3.3 HTTP Response Splitting We start by defining the terminology that was infor-
HTTP response splitting is a general technique tha{nallymtroduced in Example 1. We define arcess path

A . . .as a sequence of field accesses, array index operations, or
enables various new attacks including Web cache poi- q y b

soning, cross-user defacement, sensitive page hijackinmethod calls separated by dots. For instance, the result

as well as cross-site scripting [28]. By supplying unex—%lf applying access pathg to variablev is v.f.g. We

pected line break CR and LF characters, an attacker Ca?]enote the empty access pathehprray indexing opera-

causawo HTTP responses to be generateddoemali- 'ons a_re |nd|cz_ited by. ) )

ciously constructed HTTP request. The second HTTP re- A tainted object propagation problemonsists of a set
sponse may be erroneously matched with the next HTTEf source descriptorssink descriptors and derivation
request. By controlling the second response, an attacké&€Scriptors

can generate a variety of issues, such as forgingoor e Source descriptors of the forrm, n,p) specify
soningWeb pages on a caching proxy server. Because  ways in which user-provided data can enter the pro-
the proxy cache is typically shared by many users, this  gram. They consist of a source methadparame-
makes the effects of defacing a page or constructing a  ter numbem and an access pathto be applied to



argumentn to obtain the user-provided input. We To allow the use of string concatenation in the construc-
use argument number -1 to denote the return resultion of query strings, we use derivation descriptors:
of a method call.

e Sink descriptors of the forntm, n,p) specify un-
safe ways in which data may be used in the program.

They consist of a sink method, argument number Due to space limitations, we show only a few descrip-
n, and an access patrapplied to that argument. tors here; more information about the descriptors in our

e Derivation descriptors of the form experiments is available in our technical report [34].

(m,ns,ps,na,pa) Specify how data propa- Below we formally define a security violation:
gates between objects in the program. They consisb
of a derivation methodn, a source object given

<St:ringBu:ffer.append(String)7 1l,e,—1, 6>7 and
<StringBuffer.toStr:‘Lng()7 0,e,—1, €>

efinition 3.1 A source objecfor a source descriptor
by argument number, and access path., and a (m,n,p) is an object obtained by applying access path

destination object given by argument number to a'rg.u'menh ofacalll tom. _ . .

and access pafhy. This derivation descriptor spec- Definition 3.2 A sink objectfor a sink descriptor

ifies that at a call to methoah, the object obtained (7 n,p) is an object obtained by applying access path

by applyingp, to argumenty, is derived from the P 10 argument: of a call to methodn.

object obtained by applying, to argument. Definition 3.3 Object o, is derived from object oy,
In the absence of derived objects, to detect potential vulwritten derived(o1,02), based on a derivation descrip-
nerabilities we only need to know if a source object istOr {1, ns, ps, na, pa), if 01 is obtained by applying
used at a sink. Derivation descriptors are introduced td0 argument:; ando, is obtained by applying, to ar-
handle the semantics of strings in Java. Becausengs ~ gumentn, at a call to methodn.
are immutable Java objects, string manipulation routine®efinition 3.4 An object istaintedif it is obtained by
such as concatenation create brand Bewing objects,  applying relationderived to a source object zero or more
whose contents are based on the origitaling objects.  times.

Derivation descriptors are used to specify the behavior obefinition 3.5 A security violationoccurs if a sink ob-
string manipulation routines, so that taint can be explicject is tainted. A security violation consists of a sequence
itly passed among th&tring objects. of objectso; . . . o5, such thab, is a source object ang,

Most Java programs use built#itring libraries and s 3 sink object and each object is derived from the pre-
can share the same set of derivation descriptors as @gus one:

result. However, some Web applications use multiple _ _

String encodings such as Unicode, UTF-8, and URL oL b derived(0;,0i11).

encoding. If encoding and decoding routines propagate B

taint and are implemented using native method calls oMVe refer to object paifos, o) as asource-sink pair
character-level string manipulation, they also need t3.2 Specifications Completeness

t.)e specified as deriyation descriptors. Sanitization OU~ e problem of obtaining a complete specification for
tines that valldatg Input are often lmplemgnted USING, tainted object propagation problem is an important one.
character-level string manlpu_latlon. Since taint does nof 5 specification is incomplete, important errors will be
propagate through such routines, they should not be "Nissed even if we use a sound analysis that finds all vul-

cluded in the list of derivation descriptors. ... __ nerabilities matching a specification. To come up with a
It is possible to obviate the need for manual specificas, ; : A
list of source and sink descriptors for vulnerabilities in

tion with a static analysis that determines the relationship ur experiments, we used the documentation of the rele-

between strings passed into and returned by Iow-leve\ﬁjamJZEE APIs.

sf[rlng nlat;ﬂlpulalflon r%utlnte_s. tHovvtive‘r], SUCQ ?n agalg— Since it is relatively easy to miss relevant descriptors
sis must be performed not just on the Java bytecode by, ,q specification, we used several techniques to make

on all the relevant native methods as well. our problem specification more complete. For example,
Example 3. We can formulate the problem of detecting to find some of the missing source methods, we instru-
parameter tampering attacks that result in a SQL injecmented the applications to find places where application
tion as follows: the source descriptor for obtaining pa-code is called by the application server.

rameters from an HTTP request is: We also used a static analysis to identify tainted ob-
. jects that have no other objects derived from them, and
(HrtpServietRequest getParaneter (String), —1, ) examined methods into which these objects are passed.

In our experience, some of these methods turned out to
be obscure derivation and sink methods missing from our
(Connection.executeQuery(String), 1, €). initial specification, which we subsequently added.

The sink descriptor for SQL query execution is:



3.3 Static Analysis plying access patlp to argumentn in a call to
Our approach is to use a sound static analysis to find methodm for a sink descriptotm, n, p).

all potential violations matching a vulnerability specifi- 3. There exist variables;, . . ., v, such that

cation given by its source, sink, and derivation descrip-

tors. To find security violations statically, it is necessary YL pointsto(v, hy) A pointsto(vit1, hit1),
to know whatobjectsthese descriptors may refer to, a -

general problem known gminteror points-to analysis where variable); corresponds to applying, to ar-
3.3.1 Role of Pointer Information gumentn, andv; 4 corresponds applying, to ar-

gumentny in a call to methodn for a derivation

To illustrate the need for points-to information, we .
descriptor(m, ns, ps, nd, Pd)-

consider the task of auditing a piece of Java code for SQL
injections caused by parameter tampering, as describ@ur static analysis is based on a context-sensitive Java
in Example 1. points-to analysis developed by Whaley and Lam [55].
Their algorithm uses binary decision diagrams (BDDs)
o efficiently represent and manipulate points-to results
or exponentially many contexts in a program. They have
developed a tool callesbdbddb (BDD-Based Deductive
DataBase) that automatically translates program analy-
ses expressed in terms of Datalog [50] (a language used

Example 4. In the code below, stringparam is
tainted because it is returned from a source methoé
getParameter. So isbufi, because it is derived from
paranm in the call toappend on line 6. Finally, string
query is passed to sink methatkecuteQuery.

String param = req.getParameter("user"); in deductive databases) into highly efficient BDD-based
StringBuffer bufi; implementations. The results of their points-to analysis
StringBuffer buf2; can also be accessed easily using Datalog queries. Notice

e that in the absence of derived objects, finding security vi-
buf?.append(paran) ; . olations can be easily done with pointer analysis alone,
String query = buf2.toString(); . . .

con. executeQuery (query) ; because pointer analysis tracks objects as they are passed

Unl K h iabl q into or returned from methods.
nless we know that variablesf 1 andbuf2 maynever However, it is relatively easy to implement the tainted

refer to the same object, we would have to conservativel)bbject propagation analysis usipadbddb. Constraints

assume that they may. Sineefl is tainted, variable ot gpecification as given by Definition 3.6 can be trans-
query may also refer to a tainted object. Thus a conser e into Datalog queries straightforwardly. Facts such
vatlve_ tool that lacks additional mformathn about point- as “variable is parameten of a call to methodn” map

ers will flag the call toexecuteQuery on line 8 as po- directly into Datalog relations representing the internal
tentially unsafe. O representation of the Java program. The points-to results

An unbounded number of objects may be_a!located byused by the constraints are also readily available as Dat-
the program at run time, so, to compute a finite answer,

th it vsis staticall i mates d . alog relations after pointer analysis has been run.
€ pointer analysis statically approximates “ynam|c"pro— Because Java supports dynamic loading and classes
gram objects with a finite set of static object “names”. A

L hi bi bcan be dynamically generated on the fly and called reflec-
common gppr('mma.tlon. approach1s to name an object Yively, we can find vulnerabilities only in the code avail-
its allocation site which is the line of code that allocates able to the static analysis. For reflective calls, we use a

the object. simple analysis that handles common uses of reflection
3.3.2 Finding Violations Statically to increase the size of the analyzed call graph [34].

Points-to information enables us to find security viola-3.3. 3 Role of Pointer Analysis Precision
tions statically. Points-to analysis results are represented
as the relatiomointsto(v, h), wherev is a program vari-
able andh is an allocation site in the program.

0 ~NOoO O WwN -

Pointer analysis has been the subject of much compiler
research over the last two decades. Because determining
what heap objects a given program variable may point to
Definition 3.6 A static security violatioris a sequence during program execution is undecidable, sound analy-
of heap allocation sitek; .. . h; such that ses compute conservative approximations of the solution.
) _ Previous points-to approaches typically trade scalability
1. There exists a variable v; such that for precision, ranging from highly scalable but imprecise
pointsto(vy, hy), where vy corresponds to ac- techniques [48] to precise approaches that have not been
cess pathp applied to argument: of a call to  ghown to scale [43].
methodm for a source descriptdimn, n, p). In the absence of precise information about pointers, a
2. There exists a variable vy, such that sound tool would conclude that many objects are tainted
pointsto(vy, hi), where v, corresponds to ap- and hence report many false positives. Therefore, many



1 class DataSource {

2 String url; query main()

3 DataSource(String url) { returns

4 this.url = url; object Object sourceObj, sink0bj;
5 ¥ matches {

6 String getUrl O{ sourceObj := source();

7 return this.url; sink0bj = derived*(sourceObj) ;
8 ¥ sink0bj = sink();

9 }

10 }

11 String passedUrl = request.getParameter("..."); Figure 3: Main query for finding source-sink pairs.

12 DataSource dsi
13  String localUrl
14 DataSource ds2

new DataSource(passedUrl); -
"http://localhost/"; allowed us to scale our framework to programs consist

new DataSource(localUrl); ing of almost 1,000 classes.

ds1.getUrl(); 3.4 Specifying Taint Problems in PQL

ds2.getUrl();

16 String si
17  String s2

While a useful formalism, source, sink, and deriva-
Figure 2: Example showing the importance of context sensitivity.  tion descriptors as defined in Section 3.1 are not a user-

practical tools use an unsound approach to pointers, adriendly way to describe security vulnerabilities. Data-
suming that pointers are unaliased unless proven othetog queries, while giving the user complete control, ex-
wise [6, 20]. Such an approach, however, may miss im{0se too much of the program’s internal representation
portant vulnerabilities. to be practical. Instead, we use PQL, a program query
Having precise points-to information can significantly language. PQL serves as syntactic sugar for Datalog
reduce the number of false positives. Context sensitivityueries, allowing users to express vulnerability patterns
refers to the ability of an analysis to keep information in a familiar Java-like syntax; translation of tainted object
from different invocation contexts of a method separatePropagation queries from PQL into Datalog is straight-
and is known to be an important feature contributing toforward. PQL is a general query language capable of ex-
precision. The effect of context sensitivity on analysisPressing a variety of questions about program execution.

precision is illustrated by the example below. However, we only use a limited form of PQL queries to
formulate tainted object propagation problems.

Due to space limitations, we summarize only the most
important features of PQL here; interested readers are re-
ferred to [35] for a detailed description. A PQL query is
a pattern describing a sequence of dynamic events that
involves variables referring tdynamic object instances
The uses clause declares all object variables the query
trefers to. Thanatches clause specifies the sequence of
events on object variables that must occur for a match.
Finally, thereturn clause specifies the objects returned
by the query whenever a set of object instances partici-
pating in the events in thmatches clause is found.

Example 5. Consider the code snippet in Figure 2.
The classDataSource acts as a wrapper for a URL
string. The code creates tvlataSource objects and
callsgetUrl on both objects. A context-insensitive an-
alysis would merge information for calls gktUrl on
lines 16 and 17. The referenedis, which is consid-
ered to be argument O of the call, points to the objec
on line 12 and 14, sehis.url points to either the ob-
ject returned on line 11 drhttp : //localhost/" on
line 13. As a result, bote1 ands2 will be considered
tainted if we rely on context-insensitive points-to results.

With a c_ontext—sgnsmve analysis, however, ostywill Source-sink object pairs corresponding to static se-
be considered tainted O

. ; . . _curity violations for a given tainted object propagation
While many points-to analysis approaches exist, until y 9 Ject propag

. X . problem are computed by quetigin in Figure 3. This
recently, we did not have a scalable analysis that gNeguery uses auxiliary queriessurce andsink used to

a conservative yet precise answer. The context-sensitive& o

inclusion-based DOINS- vsis by Whal dL fine source and sink objects as well as qdetyi ved
Inclusion-based points-1o analysis by Ywhaley and Lam 1S, i Figure 4 that captures a transitive derivation re-
both precise and scalable [55]. It achieves scalability b

: . AL Mation. ObjectsourceObj in main is returned by sub-
using BDDs to exploit the similarities across the expo-

nentially many calling contexts.
A call graphis a static approximation of what methods auery derived*(object Object x)

may be invoked at all method calls in the program. While‘"e"“(‘;ﬁs.ect Obiect -

there are exponentially many acyclic call paths throughges ! e

the call graph of a program, the compression achieved by object Object temp;

BDDs makes it possible to efficiently represent as manymatches {

as10'* contexts. The framework we propose in this pa- Zemp :

per is the first practical static analysis tool for security toy

leverage the BDD-based approach. The use of BDDs has

x |
derived(x); y := derivedx(temp);

Figure 4: Transitive derived relatioferived*.



query source()
returns

object Object
uses

object Stringl[] sourceArray;

object HttpServletRequest req;
matches {

sourceObj;

sourceObj = req.getParameter(_)
| sourceObj = req.getHeader(_)
| sourceArray = req.getParameterValues(_);
sourceObj = sourceArray[]
|
}
query sink()
returns
object Object sink0bj;
uses
object java.sql.Statement stmt;
object java.sql.Connection con;

matches {
stmt.executeQuery (sinkObj)
| stmt.execute(sink0Obj)
| con.prepareStatement (sinkObj)
I ...
}

query derived(object Object x)
returns

object Object y;
matches {

y .append (x)

_ .append (x)
new String(x)
new StringBuffer(x)
x.toString()
x.substring(_ ,_)

1 class Vector {

2 Object[] table = new Object[1024];
3

4 void add(Object value){

5 int i = ...

6 // optional resizing ...
7 table[i] = value;

8 }

9

10 Object getFirst(){

11 Object value = table[0];
12 return value;

13 }

14 }

15 String s1 = "...";

16 Vector vl = new Vector();

17 vl.add(sl);

18 Vector v2 = mnew Vector();

19 String s2 = v2.getFirst();

Figure 6: Typical container definition and usage.

the identity of the object to be matched is irrelevant.

Query source is structured as an alterna-
tion: sourceObj can be returned from a call to
req.getParameter Or req.getHeader for an object
req Of type HttpServletRequest; sourceObj may
also be obtained by indexing into an array returned by
a call toreq.getParameterValues, etc. Querysink
defines sink objects used as parameters of sink methods
such as java.sql.Connection.executeQuery, etc.
Queryderived determines when data propagates from
objectx to objecty. It consists of the ways in which
Java strings can be derived from one another, including
string concatenation, substring computation, etél

As can be seen from this example, sub-queries
source, sink, andderived map to source, sink, and
} derivation descriptors for the tainted object propagation
problem. However, instead of descriptor notation for

) ] method parameters and return values, natural Java-like
querysource. Objectsink0bj is the result of sub-query  method invocation syntax is used.

derived* with sourceObj used as a sub-query param-

eter and is also the result of sub-quennk. Therefore, 4  Precision Improvements

sink0bj returned by queryain matches all tainted ob-  Thjs section describes improvements we made to the

jects that are also sink objects. object-naming scheme used in the original points-to an-
Semicolons are used in PQL to indicate a sequence Ofjysjs [55]. These improvements greatly increase the

events that must occur in order. Sub-quésyived+ de-  precision of the points-to results and reduce the number

fines a transitive derived relation: objects transitively o false positives produced by our analysis.
derived from objeck by applying sub-querderived

zero or more times. This query takes advantage of PQL4-1  Handling of Containers

sub-query mechanism to define a transitive closure re- Containers such as hash maps, vectors, lists, and oth-
cursively. Sub-queriesource, sink, andderived are  ers are a common source of imprecision in the original
specific to a particular tainted object propagation prob-pointer analysis algorithm. The imprecision is due to the
lem, as shown in the example below. fact that objects are often stored in a data structure al-
locatedinside the container class definitioAs a result,

the analysis cannot statically distinguish between objects
stored in different containers.

SIS A A

= x.toString()

Figure 5: PQL sub-queries for finding SQL injections.

Example 6. This example describes sub-queries
source, sink, andderived shown in Figure 5 that
can be used to match SQL injections, such as the on
described in Example 1. Usually these sub-queries ar&xample 7. The abbreviated vector class in Figure 6
structured as a series of alternatives separated Blie  allocates an array calleghble on line 2 and vectors1
wildcard character is used instead of a variable name if andv2 share that array. As a result, the original analysis
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[J] JarUtil.java

3 IDBCDatabaseExport, java

B LocaleComparator . java

[J] Partialsearcher java

[¥] PostComment.java bl -

¥ Make an XML respresentation from a table.
*,-’
private static Fesultiet readTable|5tring table, 3tring app0id, Connection connection) th
PreparedStatenent prepStmt = comnnection.prepareftatement("3ELECT * FROM ™ +
table + " WHERE applicationlids='"+app0id+™'™):
return prepitnt. execute(ueryl() ; L

L
v

B PostLog.]éva . = Security vulnerability viewsr 53 = = 8
B Presentation.java
I} PerertyCDnstantBuilder.javam = © 5 Mon-Web source causing a SQL injection. There are 4 objects in this security vulnerability. i
B Queue. java & IDECDatabaseExport.java: 76 source
[J] stringlitil java & IDBCDatabaseExport.java: 170 (derivation methad StringBuffer. append)
[¥] URLEncoderDecoder java & IDBC_DatabaseExport 170 (derivation method StringBuffer. append) m
[J] weblog.java & IDBCDatabaseExport.java: 170 sink (derivation method StringBuffer toString)
[J] WeblogQueue. java ¥ || #H- e 6 Mon-Web source causing a path traversal. There is 1 object in this security vulnerability.

- 9% » /| #-o ¥ Header manipulation source causing a cross-site scripting. There are 8 objects in this security vulnerability, v

Figure 7: Tracking a SQL injection vulnerability in the Eclipse GUI plugin. Objects involved in the vulnerability trace are shown at the bottom.

will conclude that thestring object referred to by2 5 Auditing Environment
retrieved from vector2 may be the same as tBering The static analysis described in the previous two sec-
objects1 deposited in vector1. 0O tions forms the basis of our security-auditing tool for

To alleviate this problem and improve the precision of Java applications. The tool allows a user to specify secu-
the results, we create a new object name for the interl'ty Patterns to detect. L'Jser—prowded.speglflcatlops are
nally allocated data structure for every allocation site oféXPressed as PQL queries, as described in Section 3.4.
the external container. This new name is associated wit N€S€ gueries are automatically translated into Datalog
the allocation site of the underlying container object. Asdueries, which are subsequently resolved usiagddb.

a result, the type of imprecision described above is elim- To help the user with the task of examining violation

inated and objects deposited in a container can only béeports, our provides an intuitive GUI interface. The in-

retrieved from a container created at the same allocatioterface is built on top of Eclipse, a popular open-source

site. In our implementation, we have applied this im-Java development environment. As a result, a Java pro-

proved object naming to standard Java container classé@$ammer can assess the security of his application, of-

includingHashMap, HashTable, andLinkedList. ten without leaving the development environment used
to create the application in the first place.

A typical auditing session involves applying the anal-
ysis to the application and then exporting the results into
Eclipse for review. Our Eclipse plugin allows the user to

Another set of methods that requires better objectasily examine each vulnerability by navigating among
naming is Java string manipulation routines. Methodsthe objects involved in it. Clicking on each object allows
such asString.toLowerCase() allocateString ob-  the user to navigate through the code displayed in the text
jects that are subsequently returned. With the defaulkditor in the top portion of the screen.

object-naming scheme, all the allocated strings are con-

sidered tainted if such a method is ever invoked on a&=*@mple 8. An example of using the Eclipse GUI
tainted string. iIs shown in Figure 7. The bottom portion of the

screen lists all potential security vulnerabilities re-
We alleviate this problem by giving uniqgue names toported by our analysis. One of them, a SQL injec-

results returned by string manipulation routines at differ-tion caused by non-Web input is expanded to show

ent call sites. We currently apply this object naming im-all the objects involved in the vulnerability. The

provement to Java standard libraries only. As explainedource object on line 76 dDBCDatabaseExport.java

in Section 6.4, imprecise object naming was responsiblés passed to derived objects using derivation methods

for all the 12 false positives produced by our analysis. StringBuffer.append andStringBuffer.toString

4.2 Handling of String Routines



until it reaches the sink object constructed and used on version H File ~ Line — Analyzed

. ) ) - ) Benchmark number count count classes
line 170 of the same file. Line 170, which contains a [Jooara 0.30 90 17,542 264
: ‘e hinhli blueblog 1.0 32 4,191 306

F:all to Connectlon:prepareStatement, is highlighted vebgoat 9 77 19440 349
in the Java text editor shown on top of the screen. blojsom 1.9.6 61 14,448 428
personalblog 1.2.6 39 5,591 611
. snipsnap 1.0-BETA-1 445 36,745 653

road2hibernate 2.1.4 2 140 867
6 Experlmental Results pebble 16-betal || 333 36,544 889
In this section we summarize the experiments we per-|olier 099 1| 276 52,089 989
Total 1,355 186,730 5,356

formed and described the security violations we found.F_ 5 S Cinformation about the benchmarks. Aooli
) . . lgure o. Ssummary of information abou € penchmarks. pplica-

We start O!“It by deSCI’Iblng our penChmark appllcatlon_stions are sorted by the total number of analyzed classes.

and experimental setup, describe some representative

vulnerabilities found by our analysis, and analyze the im-ma(‘jrk apph_ca_tlons. Nor;uce thallt t:F tra_ldltlr(])nal Ilnes;of-
pact of analysis features on precision. code metric is somewhat misleading in the case of ap-

plications that use large libraries. Many of these bench-
6.1 Benchmark Applications marks depend on massive libraries, so, while the appli-

While there is a fair number of commercial and o er]_cation code may be small, the full size of the application
PEN- o xecuted at runtime is quite large. An extreme case is

source tools available fpr testing Web application Sec.:u_roathibernate, which is a small 140-line stub pro-
rity, there are no established benchmarks for comparin

i o : ram designed to exercise theb te object per-
tools’ effectiveness. The task of finding suitable bench-% g ernate ODJeCt p

. . . OIsistence library; however, the total number of analyzed
marks for our experiments was especially complicate

by the fact that most Web-based applications are bro riclasses forroad2hibernate exceeded 800. A better
y PP PrOPM e asure is given in the last column of Figure 8, which
etary software, whose vendors are understandably reluc;,

tant to reveal their code, not to mention the vuInerabiIi—CgﬁVgrsagf total number of classes in each application’s
ties found. At the same time, we did not want to focus on '

artificial micro-benchmarks or student projects that lackg 2 Experimental Setup

the complexities inherent in real applications. We fo- . . .

cused on a set of large, representative open-source Web—The implementation of our system Is based on the

based J2EE applications, most of which are available o 2% Java compiler and analysis framework. In our sys-

SourceForge. tem we use a translator from PQLto Da_ltalog [35]_ anq the
The benchmark applications are briefly described befdgbidb ;\)/(/ogran]iagalﬁlis tOnOII[S?] :0 lfm(?( ‘;’efulrl'ts/ |ant0 d

low. jboard, blueblog, blojsom, personalblog, ations. YVe applied static analysis 1o look for all tainte

snipsnap, pebble, androller are Web-based bulletin object propagation problems described in this paper, and
board and bloggin,g applicationsebgoat is a J2EE ap- W& used a total of 28 source, 18 sink, and 29 derivation
plication designed by the Open Web Application SeCu_descriptors in our experimen?s. The derivation descrip-
rity Project [40, 41] as a test case and a teaching tool fo}sirs.co;refsgondsts met?o;is m class;as Slécsmng’ d
Web application security. Finallyoad2hibernateisa  --. ngbutier, stringlokenizer, €IC. SOUICE arn
test program developed fatbernate, a popular object sink descriptors correspond to methods declared in 19
persistence library ' different J2EE classes, as is further described in [34].

Applications were selected from among J2EE-based We used four different variations of our static analysis,

open-source projects on SourceForge solely on the b&{)_btalned by either enabling or disabling context sensitiv-

sis of their size and popularity. Other thaebgoat, ity gn_d |mprov§d obj_ect_nammg. Ana_ly3|s_ times for th_e
. . . . variations are listed in Figure 9. Running times shown in

which we knew had intentional security flaws, we had he table are obtained on an Opteron 150 machine with

no prior knowledge as to whether the applications ha&4 GB of memorv runnin Linu>F<) The first section of

security vulnerabilities. Most of our benchmark appli- y 9 '

cations are used widelyroller is used on dozens of

. . . . Pre- Points-to analysis Taint analysis

sites including prominent ones suchtdgs.sun.com. Context sensitivity | proces- < v v

snipsnap has more than 50,000 downloads accordingmprovednaming | _sing v v 4 Y

: . H jboard 37 8 7 12 10| 14 12 16 14

tq its authors. r-oad2h1bernatells a wrapper aro_und Blueblog 9l 13 8 15 10 17 14 21 18

hibernate, a highly popular object persistence library | webgoat 57| 45 30 118 90 69 66 106 101

. i ; . . blojsom 60| 18 13 25 16 24 21 30 27

that is used by multiple large projects, including a Nnews personaibiog 173107 28 303 37 62 50 19 59

i 193| 58 33 142 47 194 154 160 109

aggregator and a portapersonalblog has more than | Zoadznibernate 247|186 40 268 43 73 44 161 58

i icti ebble 177| 58 35 117 49 150 140 136 100

3,000 downloads according to SourceForge statistics. Fi-257.2 362| 226 55 733 103 1956 83 338 129
nally, bloj som was adopted as a blogging solution for Figure 9: Summary of times, in seconds, it takes to perform prepro-
the Apple Tiger Weblog Server. cessing, points-to, and taint analysis for each analysis variation. Analy-

Figure 8 summarizes information about our bench-sis variations have either context sensitivity or improved object naming
enabled, as indicated by signs in the header row.



Sources  Sinks Tainted objects Reported warnings False positives Errors
Context sensitivity v v v v v v
Improved object naming v v v v v v
jboard 1 6 268 23 2 2 0 0 0 O 0 0 0 O 0
blueblog 6 12 17 17 17 17 1 1 1 1 0 0 0 O 1
webgoat 13 59| 1,166 201 903 157 51 7 51 6 45 1 45 0 6
blojsom 27 18 368 203 197 112 48 4 26 2 46 2 24 0 2
personalblog 25 31| 2,066 1,023 1,685 426 460 275 370 2| 458 273 368 0 2
snipsnap 155 100| 1,168 791 897 456 732 93 513 27| 717 78 498 12 15
road2hibernate 1 33| 2,150 843 1,641 385 18 12 16 1 17 11 15 0 1
pebble 132 70| 1,403 621 957 258 427 211 193 1] 426 210 192 0 1
roller 32 64| 2,367 504 1,923 151 378 12 261 1 377 11 260 O 1
Total 302 393[10,073 4,226 8222 19612,115 615 1431 412086 586 1402 13 29 |
» 25007
g 22507 M Context-insensitive,
_g 2000 default naming
3 1750 O Context-insensitive,
€ 1500 improved naming
g 12507 4 Context-sensitive
10007 default naming '
L 750
E 500 Dpontext-ljsensitjve,
Z 250 I Improved naming
(F"“\ T T T 1 1 1

[ [
jboard blueblog webgoat blojsom personalblog snipsnap  road2hibernate pebble roller

Benchmark applications

Figure 10: (a) Summary of data on the number of tainted objects, reported security violations, and false positives for each analysis version. Enabled
analysis features are indicated &ysigns in the header rob) Comparison of the number of tainted objects for each version of the analysis.

the table shows the times to pre-process the applicatiomalicious input. Exploits may also be ruled out because
to create relations accepted by the pointer analysis; thef the particular configuration of the application, but con-
second shows points-to analysis times; the last presenfigurations may change over time, potentially making ex-
times for the tainted object propagation analysis. ploits possible. For example, a SQL injection that may

It should be noted that the taint analysis times oftennot work on one database may become exploitable when
decreaseas the analysis precision increases. Contranghe application is deployed with a database system that
to intuition, we actually payessfor a more precise an- does not perform sufficient input checking. Furthermore,
alysis. Imprecise answers are big and therefore take w@irtually all static errors we found can be fixed easily by
long time to compute and represent. In fact, the contextmodifying several lines of Java source code, so there is
insensitive analysis with default object naming runs sig-generally no reasonot to fix them in practice.
nificantly slower on the largest benchmarks than the most After we ran our analysis, we manually examined all
precise analysis. The most precise analysis version takeke errors reported to make sure they represent security
a total of less than 10 minutes on the largest applicationerrors. Since our knowledge of the applications was not
we believe that this is acceptable given the quality of thesufficient to ascertain that the errors we found were ex-
results the analysis produces. ploitable, to gain additional assurance, we reported the

_— . errors to program maintainers. We only reported to ap-
6.3 Vulnerabilities Discovered plication maintainers only those errors found in te

The static analysis described in this paper reports a toplication coderather than general libraries over which
tal of 41 potential security violations in our nine bench- the maintainer had no control. Almost all errors we re-
marks, out of which 29 turn out to be security errors, ported to program maintainers were confirmed, resulting
while 12 are false positives. All but one of the bench-in more that a dozen code fixes.
marks had at least one security vulnerability. Moreover, Becausearebgoat is an artificial application designed
except for errors imebgoat and one HTTP splitting vul-  to contain bugs, we did not report the errors we found
nerability in snipsnap [16], none of these security er- in it. Instead, we dynamically confirmed some of the
rors had been reported before. statically detected errors by runningbgoat, as well as
a few other benchmarks, on a local server and creating
6.3.1 Validating the Errors We Found actual exploits.

Not all security errors found by static analysis or code It is important to point out that our current analysis
reviews are necessarigxploitablein practice. The error ignores control flow. Without analyzing the predicates,
may not correspond to a path that can be taken dynansur analysis may not realize that a program has checked
ically, or it may not be possible to construct meaningful its input, so some of the reported vulnerabilities may turn
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’M SQL injections HTTP splitting Cross-site scripting Path traversal H Total ‘

Header manip. 0 snipsnap=6 blueblog: 1,webgoat: 1, pebble: 1,roller: 1=4 0 10
Parameter manip. webgoat: 4, personalblog: 2=6 snipsnap =5 0 Dblojsom=2 13
Cookie poisoning webgoat =1 0 0 0 1
Non-Web inputs snipsnap: 1, road2hibernate: 1 =2 0 O snipsnap =3 5
[ Total [ 9 11 4 5[] 29]

Figure 11: Classification of vulnerabilities we found. Each cell corresponds to a combination of a source type (in rows) and sink type (in columns).

out to be false positives. However, our analysis shows alHTTP splitting was the most popular exploitation tech-

the steps involved in propagating taint from a source to anique (11 cases). Many HTTP splitting vulnerabilities

sink, thus allowing the user to check if the vulnerabilities are due to an unsafe programming idiom where the ap-

found are exploitable. plication redirects the user’s browser to a page whose
Many Web-based application perform some form of URL is user-provided as the following example from

input checking. However, as in the case of the vulnerasnipsnap demonstrates:

bilities we found insnipsnap, it is common that some

checks are missed. It is surprising that our analysis did  response.sendRedirect(

not generate any false warnings due to the lack of pred- request.getParameter("referer"));

[ nalysis, even though many of th lications w

;ﬁ;leyge?nyjjd: c?me(t:kguogn usgr)i/n%utt. eT?\E)ops(e:zactucr)it; ej\/lost of the vulnerabilities we discovered are in appli-

rors inblojsom flagged by our analysis deserve specialca_lt'or_1 code as opposed to I|brar|_es. Wh"e. errors in ap-
mention. The user-provided inputasin fact checked, plication code may result from simple coding mistakes

but the validation checks were too lax, leaving room for'”n"’ldlfj by protglr%mmers dun:;tware of Tlecg”ti; |tstsuets, tor:je
exploits. Since the sanitization routinebo jsom was would expect fibrary code 1o generally be betler teste

implemented using string operations as opposed to direcqnd more secure. Errors in libraries expose all applica-

character manipulation, our analysis detected the flow Oﬂons using the "bfary to attack. Desplt_e thls f".mt'_ we
taint from the routine’s input to its output. To prove the ave managed to find two attack vectors in libraries: one

vulnerability to the application maintainer, we created™ @ ¢ommonly used Java librany bernate and another

an exploit that circumvented all the checks in the vali-"" the J2EE implementation. While a total of 29 security

dation routine, thus making path-traversal vulnerabilitiesS'TOrs Were found, because the same vulnerability vec-

possible. Note that if the sanitation was properly irnple_tor in J2EE is present in four different benchmarks, they

mented, our analysis would have generated some fals%Ctually corresponded to 2fhiquevulnerabilities.

positives in this case. 6.3.3 SQL Injection Vector inhibernate

6.3.2 Classification of Errors We start by describing a vulnerability vector found
This section presents a classification of all the errorgn hibernate, an open-source object-persistence library
we found. A summary of our experimental results is pre-commonly used in Java applications as a lightweight
sented in Figure 10(a). Columns 2 and 3 list the numbeback-end databasehibernate provides the function-
of source and sink objects for each benchmark. It shouldility of saving program data structures to disk and load-
be noted that the number of sources and sinks for all ofng them at a later time. It also allows applications to
these applications is quite large, which suggests that sesearch through the data stored ihidernate database.
curity auditing these applications is time-consuming, be-Three programs in our benchmark sujfersonalblog,
cause the time a manual security code review takes igsoad2hibernate, and snipsnap, usehibernate to
roughly proportional to the number of sources and sinksstore user data.
that need to be considered. The table also shows the We have discovered an attack vector in code pertain-
number of vulnerability reports, the number of false pos-ing to the search functionality ihibernate, version
itives, and the number of errors for each analysis version2.1.4. The implementation of meth8dssion.find re-
Figure 11 presents a classification of the 29 secutrieves objects from aibernate database by passing
rity vulnerabilities we found grouped by the type of the its input string argument through a sequence of calls to
source in the table rows and the sink in table columnsa SQL execute statement. As a result, all invocations of
For example, the cell in row 4, column 1 indicates Session.find with unsafe data, such as the two errors
that there were 2 potential SQL injection attacks causedve found inpersonalblog, may suffer from SQL injec-
by non-Web sources, one gnipsnap and another in tions. A few other public methods such siserate and
road2hibernate. delete also turn out to be attack vectors. Our findings
Overall, parameter manipulation was the most com-highlight the importance of securing commonly used
mon technique to inject malicious data (13 cases) andoftware components in order to protect their clients.



6.3.4 Cross-site Tracing Attacks jboard, the most precise version on average reported 5

Analysis ofwebgoat and several other applications re- times fewer tainted opjects thgn the least precise. More-
vealed a previously unknown vulnerability in core J2EE OVer, the number of tainted objects dropped more that 15-
libraries, which are used by thousands of Java applicaf©!d in the case ofoller, our largest benchmark.
tions. This vulnerability pertains to tHERACE method 10 achieve a low false-positive rateoth context sen-
specified in the HTTP protocolTRACE is used to echo ~ Sitivity and improved object naming are necessary. The
the contents of an HTTP request back to the client foumber of false positives remains high for most pro-
debugging purposes. However, the contents of userdams wherpnly one of these analysis features is us_gd.
provided headers are sent back verbatim, thus enablingn® way to interpret the importance of context sensitiv-
cross-site scripting attacks. ity is that the right selection of object “names” in pointer

In fact, this variation of cross-site scripting causedanalysis allows context sensitivity to produce precise re-
by a vulnerability in HTTP protocol specification was Sults. While itis widely recognized in the compiler com-
discovered before, although the fact that it was presenfiunity that special treatment of containers is necessary
in J2EE was not previously announced. This type offor precision, improved object namimgpneis not gener-
attack has been dubbedoss-site tracingand it is re- ally sufficient to completely eliminate the false positives.
sponsible for CERT vulnerabilities 244729, 711843, and All 12 of the false positives reported by the
728563. Because this behavior is specified by the HTTPNOSt precise version for our analysis were located
protocol, there is no easy way to fix this problem atin snipsnap and were caused by insufficient preci-
the source level. General recommendations for avoidingion of the default allocation site-based object-naming
cross-site tracing include disablirfACE functionality ~ Scheme. The default naming caused an allocation site

on the server or disabling client-side scripting [18]. in snipsnap to be conservatively considered tainted
because a tainted object could propagate to that al-
6.4 Analysis Features and False Positives location site. The allocation site in question is lo-
The version of our analysis that employs both context‘c,ated _W',th'nStringfwriter'tOString()’ a JDK func-
sensitivity and improved object naming described in Secion Similar to String.toLowerCase() that returns a
tion 4 achieves very precise results, as measured by tH@intédString only if the underlyingStringWriter is

number of false positives. In this section we eXamineconstructed from a tainted string. Our analysis conser-

the contribution of each feature of our static analysis apYatively concluded that the return result of this method
ay be tainted, causing a vulnerability to be reported,

proach to the precision of our results. We also explainm ;
the causes of the remaining 12 false positives reported b{'€r€ none can occur at runtime. We should men-

the most precise analysis version. To analyze the impori©n thatall the false positives isnipsnap are elim-

tance of each analysis feature, we examined the numbdfatéd by creating a new object name at every call to,
of false positives as well as the number of tainted objectSt¥ingWriter.toString(), which is achieved with a
reported by each variation of the analysis. Just like fals@N€-line changéo the pointer analysis specification.
ositives, tainted objects provide a useful metric for an-
glysis precision: as Jthe aﬁalysis becomes more precisz Related Work
the number of objects deemed to be tainted decreases. In this section, we first discugenetration testingnd
Figure 10(a) summarizes the results for the four differ-runtime monitoringtwo of the most commonly used ap-
ent analysis versions. The first part of the table shows th@roaches for finding vulnerabilities besides manual code
number of tainted objects reported by the analysis. Théeviews. We also review the relevant literature on static
second part of the table shows the number of reporte@nalysis for improving software security.
security violations. The third part of the table summa- . .
rizes the number of false positives. Finally, the last col-7'1 Penetration Testing
umn provides the number of real errors detected for each Current practical solutions for detecting Web applica-
benchmark. Figure 10(b) provides a graphical represention security problems generally fall into the realm of
tation of the number of tainted objects for different anal- penetration testing [3, 5, 15, 36, 44]. Penetration testing
ysis variations. Below we summarize our observations. involves attempting to exploit vulnerabilities in a Web
Context sensitivity combined with improved object application or crashing it by coming up with a set of
naming achieves a very low number of false positives. Inappropriate malicious input values. Penetration reports
fact, the number of false positives was 0 for all applica-usually include a list of identified vulnerabilities [25].
tions butsnipsnap. Forsnipsnap, the number of false However, this approach is incomplete. A penetration test
positives was reduced more than 50-fold compared to thean usually reveal only a small sample of all possible se-
context-insensitive analysis version with no naming im-curity risks in a system without identifying the parts of
provements. Similarly, not counting the small programthe system that have not been adequately tested. Gener-



ally, there are no standards that define which tests to ruithe security type system in such a language enforces
and which inputs to try. In most cases this approach is noinformation-flow policies. The annotation effort, how-
effective and considerable program knowledge is neededver, may be prohibitively expensive in practice. In
to find application-level security errors successfully. addition to explicit information flows our approach ad-
. L dresses, JFlow also deals with implicit information flows.
7.2 Runtime Monitoring Static analysis has been applied to analyzing SQL
A variety of both free and commercial runtime mon- statements constructed in Java programs that may lead
itoring tools for evaluating Web application security are to SQL injection vulnerabilities [17, 53]. That work an-
available. Proxies intercept HTTP and HTTPS data beglyzes strings that represent SQL statements to check for
tween the server and the Client, so that data., inClUdin$otentia| type violations and taut0|ogies_ This approach
cookies and form fiEIdS, can be examined and mOdifiedassumeS thatfiow graphrepresenting how String values
and resubmitted to the application [9, 42]. Commercialcan propagate through the program has been constructed
application-level firewalls available from NetContinuum, a priori from points_to ana|ysis results. However, since
Imperva, Watchfire, and other companies take this congccurate pointer information is necessary to construct an
cept further by creating a model of valid interactions be-accurate flow graph, it is unclear whether this technique

tween the user and the application and warning about Vican achieve the scalability and precision needed to detect
olations of this model. Some application-level firewalls grrors in large systems.

are based on signatures that guard against known types

of attacks. The white-listing approach specifies what8 Conclusions
the valid inputs are; however, maintaining the rules for
white-listing is challenging. In contrast, our technique
can prevent security errotxeforethey have a chance to
manifest themselves.

In this paper we showed how a general class of se-
curity errors in Java applications can be formulated as
instances of the generainted object propagatioprob-
lem, which involves finding alkink objectsderivable
7.3 Static Analysis Approaches from source objectyia a set of giverderivation rules
aNe developed a precise and scalable analysis for this
problem based on a precise context-sensitive pointer

approaches employed by scanning tools such as ITS4 ar}a)cras analysis and introduced extensions to the handling

RATS use a set of predefined patterns to identify poten-. strings and conta_mers to further improve the. prect-
tially dangerous areas of a program [56]. While a Signif_S|on- Our approach finds all vulnerabilities matching the

icant improvement on Unigrep, these tools, however, specification within the statically analyzed code. Note,

have no knowledge of how data propagates througho owever, that errors may be missed if the user-provided

the program and cannot be used to automatically an&pemﬂcatlon IS mcomplgte. . .
fully solve taint-style problems. We formulated a variety of widespread vulnerabili-

A few projects use path-sensitive analysis to find er-ties including SQL injections, cross-site scripting, HTTP
rors in C and C++ programs [6, 20, 33]. While capa- splitting attacks, and other types of vulnerabilities as

ble of addressing taint-style problems, these tools rely ofidinted object propagation problems. Our experimental

an unsound approach to pointers and may therefore mid€sults showed that our analysis is an effective practical

some errors. The WebSSARI project uses combined untool for finding security vulnerabilities. We were able to

sound static and dynamic analysis in the context of analind @ total of 29 security errors, and all but one of our
lyzing PHP programs [23]. WebSSARI has successfullyn'”e large real-life pgpchmark appllca_tlons were vulner-
been applied to find many SQL injection and cross-sitea.ble',TWO vulnerap|llt|_es were_locgted in (?ommonily usgd
scripting vulnerabilities in PHP code. libraries, 'thus subjec.tlln.g applications using th_e libraries

An analysis approach that uses type qualifiers hado potential vulnerabllltl_es. Most of th_e security errors
been proven successful in finding security errors in CWe reported were confirmed as exploitable vulnerabili-
for the problems of detecting format string violations i€ by their maintainers, resulting in more than a dozen
and user/kernel bugs [26, 45]. Context sensitivity Sig_code flxe_s. The analysis repprted false positives for pnly
nificantly reduces the rate of false positives encountere@n€ application. We determined that the false warnings
with this technique; however, it is unclear how scalabler€Ported can be eliminated with improved object naming.
the context-sensitive approach is.
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