Peering Through the Shroud:
The Effect of Edge Opacity on IP-Based Client Identification

Martin Casado and Michael J. Freedman
Stanford University
http://illuminati.coralcdn.org/

Abstract

Online services often use IP addresses as client identifiers
when enforcing access-control decisions. The academic
community has typically eschewed this approach, how-
ever, due to the effect that NATSs, proxies, and dynamic
addressing have on a server’s ability to identify individual
clients.

Yet, it is unclear to what extent these edge technolo-
gies actually impact the utility of using IP addresses as
client identifiers. This paper provides some insights into
this phenomenon. We do so by mapping out the size and
extent of NATs and proxies, as well as characterizing the
behavior of dynamic addressing.

Using novel measurement techniques based on active
web content, we present results gathered from 7 mil-
lion clients over seven months. We find that most NATs
are small, consisting of only a few hosts, while prox-
ies are much more likely to serve many geographically-
distributed clients. Further, we find that a server can gen-
erally detect if a client is connecting through a NAT or
proxy, or from a prefix using rapid DHCP reallocation.
From our measurement experiences, we have developed
and implemented a methodology by which a server can
make a more informed decision on whether to rely on IP
addresses for client identification or to use more heavy-
weight forms of client authentication.

1 Introduction

Faced with an ever increasing amount of unwanted traffic,
Internet services must be able to differentiate clients in
order to enforce access-control decisions. One traditional
approach is to use the client’s IP address as an identifier.
For instance, if a client is exhibiting malicious behavior—
such as attempting to post spam messages to online blogs
or trolling ssh servers for weak passwords—a server may
add the client’s IP address as a firewall rule that will pro-
hibit further connections from the offending address.
Unfortunately, middleboxes (both layer-3 network ad-
dress translation (NAT) devices and layer-5 proxies) and
dynamic IP renumbering due to DHCP challenge the util-

ity of using IP addresses as client identifiers. Given the
previous example, adding a firewall rule for an IP address
due to abusive behavior (blacklisting) can deny system
access to many users that may share that IP, either si-
multaneously via a middlebox or over time via DHCP.
Similarly, when IP addresses are naively used to allow
access to a resource (whitelisting), an open proxy from
an authenticated domain, such as a university, can en-
able Internet-wide access to the protected resource. We
refer to this phenomenon of edge technologies obscuring
a client’s identity at the network level as edge opacity.

Due to these apparent operational issues, many web-
sites have moved from using IP addresses as identifiers to
requiring some form of registration, authentication, and
then application-level identity checks. For example, it is
not uncommon for wikis or web forums to require their
users to register, login, and then present HTTP cookies
on each access. Yet, these extra steps can be a usability
hurdle and generally require more server-side resources.

Because of these concerns, other websites continue to
use IP whitelisting and blacklisting as the basis for man-
aging client access. And yet, as the extent of edge opacity
remains unquantified, the impact of using IP addresses as
client identifiers is uncertain. Thus, server operators are
making uninformed decisions regarding the best way to
use IP addresses as client identities.

The goal of our work is to help a server determine if the
IP address of an incoming client is a useful identifier for
access-control decisions. We do so by exploring the ex-
tent to which edge opacity obscures a server’s view of its
clients. Specifically, we consider the following questions:

1. To what extent does edge opacity from NATSs, prox-
ies, and DHCP prevent accurate IP-based client iden-
tification?

2. Isit possible for a server to determine when IP-based
filtering is insufficient and stronger methods of iden-
tification are required?

To answer the first question, we performed a large-scale
study measuring 7 million unique web clients from 177
million HTTP requests over a seven-month period. We
found that while the majority of clients are behind NAT's

(roughly 60%), NATs are small and localized—with most
serving fewer than 7 hosts. Furthermore, clients using
DHCP generally rotate their IP addresses on the order of
several days, limiting the impact of dynamic addressing
on short-lived access-control decisions. Web proxies,1 on
the other hand, while fewer in number (roughly 15%),
often serve large and commonly geographically-diverse
client populations.

To answer the second question, we introduce, analyze,
and implement a set of techniques with which a web
server can detect with high accuracy if a client is using a
proxy or NAT, or whether it belongs to a prefix with rapid
IP reallocation. Because of their potential to host large
client populations, we mainly focus on proxy detection,
proposing additional methods to determine a client’s dis-
tance from its proxy and to disambiguate multiple clients
behind a single proxy.

The main contributions of this paper are as follows.

* We introduce and demonstrate the utility of using
active content as a measurement vehicle for under-
standing the Internet’s edge (§3).

* We present the results of a large-scale measurement
study which helps to quantify the extent and char-
acteristics of NATs, proxies, and DHCP usage (§4).
We believe these results are original and have inde-
pendent academic interest.

* From our measurement experience, we derive and
implement a methodology to aid Internet services in
determining whether or not a client’s IP address is a
useful identifier (§5).

2 Background and Limitations

2.1 IP vs. application-level identification

There are a number of practical benefits to using IP ad-
dresses as the basis for enforcing access controls in to-
day’s Internet. IP-based filtering, ACLs, and rate-limits
are all standard on firewalls and routers. Further, these
IP-based enforcement mechanisms typically operate at
carrier-grade line speeds. Filtering on IP addresses also
allows an online service to “drop early,” rather than waste
CPU, memory, or bandwidth resources on traffic that will
be eventually dropped via heavier-weight mechanisms.
Application-level identification methods (greylisting),
on the other hand, can be used to differentiate clients when
IP addresses are not sufficient. However, these methods
often come at a cost. Many greylisting methods put a
burden on users, for example, requiring them to answer

'In this paper, we refer to address translation middleboxes that do not
perform TCP termination as NATSs. Layer-5 proxies, on the other hand,
establish application sessions with both their clients and remote servers
and therefore terminate their clients’ TCP sessions.

CAPTCHAs [32] or to go through a separate sign-on step.
Application-level identification is also more resource in-
tensive for the server. Whereas IP blacklisting can drop
packets before they ever reach the server, registration re-
quires that the server handles a client’s session prior to its
decision whether to accept the client.

We note that if the server’s greylisting scheme is ef-
fective, an attacker has no incentive to masquerade as a
proxy. Most obviously, greylisting may require the at-
tacker to expend resources—e.g., requiring some cryp-
tographic computations or additional time for “tarpit-
ted” TCP connections to complete—better spent attacking
other systems. Furthermore, if the time required to iden-
tify malicious behavior and blacklist the client is greater
than that needed to greylist a proxy, an attacker has a
disincentive to appear as a proxy: immediate greylisting
would provide the attacker with fewer opportunities to at-
tack the system. This argument does not necessarily hold
if the attacker is attempting to launch a denial-of-service
attack on the server; we consider this case in §2.3.

2.2 Other uses for edge opacity detection

With the exception of this subsection, this paper only dis-
cusses using IP addresses to enforcing access controls. In
practice, IP addresses are used by servers in a variety of
other settings, including geolocation and fraud detection,
which we review here.

Websites use geolocation in both content personaliza-
tion and access control contexts. For example, Major
League Baseball uses Quova’s GeoPoint server [20] to
ensure that games are not webcast to subscribers subject
to blackout restrictions. Yet end-users can often circum-
vent such restrictions by using proxies (indeed, we have
personal experience with clients using Coral CDN for pre-
cisely this reason [3]); accurate proxy detection is needed
to prevent such behavior. Furthermore, if a server can
peer through a client’s proxy to determine its true location
(§5.1), advertisements can be more accurately targeted.

An important aspect of combating online fraud is to de-
tect suspicious IP-based usage: e.g., when a California-
based bank customer accesses his online account from
Romania, or when huge numbers of clicks for pay-per-
click advertisements originate from a small IP range.
Proxy detection can improve servers’ decisions; for in-
stance, by discovering when a fraudster is trying to proxy
its banking session behind a U.S.-based IP address, or by
recognizing the potential legitimacy of high rates of traffic
originating from AOL’s proxies. While efforts to correlate
anomalous IP characteristics to fraud exist [10], their abil-
ity to detect and peer behind proxies is limited.

Our paper does not further address these two additional
uses of IP-based identification. Indeed, evaluating the ac-
curacy of a geolocation package or the security of a fraud-
detection system is challenging and beyond the scope

Country Unique hosts
United States 1,290,928
Japan 1,024,088
China 912,543
Germany 385,466
Great Britain 218,125
France 215,506
Canada 204,904

Table 1: Top 7 countries by unique hosts measured

of this paper. We describe these examples, however, to
demonstrate why—if one were to deploy a geolocation or
fraud-detection system (and many companies do exactly
that [10, 12, 20, 26])—detecting proxies and other IP ex-
ceptions is important.

2.3 Limitations

In what follows, we present results from our efforts to
characterize NAT, proxy, and DHCP usage and their
effects on client identification. From March through
September, 2006, our measurement servers handled over
177 million HTTP requests, originating from nearly 7
million unique hosts from 214 countries. Table 1 gives
a sense of the dataset’s international coverage, including
large numbers of requests from the United States, Japan,
China, and Europe. As we mention in 3.2, we collected
measurements from web clients as they visited a wide va-
riety of different sites serving largely different client de-
mographics.

While these measurements are over a large and diverse
population, we do not claim to provide a representative
sampling of all Internet traffic.? Rather, our goal is to un-
derstand edge opacity from the viewpoint of a server op-
erator: What is the extent to which its clients are behind
middleboxes or experience rapid IP reallocation? Sec-
ondly, given this large body of measurement data, what
techniques and heuristics can we develop to identify when
a server operator should not use IP address and client con-
figuration information for access control decisions?

We do not envision opacity detection to be useful to
prevent denial-of-service attacks. An attacker with suffi-
cient resources can resort to flooding with spoofed IP ad-
dresses, making any IP-based logic meaningless. Further,
an attacker attempting an application-level DDoS could
masquerade as a proxy and potentially afford herself more
access to resources. However, we found that IP black-
listing will affect far fewer clients than we had originally
anticipated (§4).

2For example, users of Internet cafes are probably more likely to use
online email, chat, or game services, none of which we were able to
measure.

3 Measurement Overview

3.1 Using active content for measurement

Our approach to studying the impact of NATSs, prox-
ies, and DHCP-based IP allocation relies on a variety
of network- and application-level client characteristics.
These include such properties as public and local IP ad-
dresses, round-trip-time measurements, system configura-
tion parameters, and so forth. Unfortunately, much of this
information cannot be captured through traditional mea-
surement means alone, i.e., active probing or passive traf-
fic sniffing [7].

Instead, we leverage active web content as a means for
gathering edge-network configuration state. We redirect
oblivious web clients to a custom-built web server that
serves web pages with active content (currently, javascript
and/or a Java applet). The server then performs some
limited passive analysis and cooperates with the exe-
cuting code to measure and collect client configuration
state, which is analyzed and added to our measurement
database.

In contrast to active measurement, active content is ex-
ecuted at the application layer, generally behind NATs or
proxies. Active content is in wide use by popular websites
today; for example, users of Google’s GMail application
execute tens of thousands of lines of javascript. Thus, it is
both almost universally supported and, at the same time,
much less likely to generate abuse complaints normally
associated with unsolicited scans of end-hosts [18]. (We
have yet to receive a single abuse complaint.)

Furthermore, in contrast to expecting clients to down-
load proprietary measurement code [13, 19], we target
content providers. Web clients access our measurement
platform either when requesting a web-beacon placed on
popular websites (as of September 2006, 32 third-party
sites have incorporated this web-beacon) or after being
redirected from CoralCDN [9, 17]. While browser-based
active content can collect strictly less information than
client-executed proprietary code—insofar as it must oper-
ate within the confines of browsers’ security policies—it
is easier to gather large-scale measurements. For instance,
the Dimes project [13] has collected measurements from
roughly 11,000 agents from 5,000 users over 2 years of
operation, almost three orders of magnitude less than our
coverage.

3.2 Data collection methods

To cast a wide net, we collect information from two main
sources. First, we built an online measurement commu-
nity of content providers, allowing websites to track and
compare their individual contributions. A wide variety
of websites contributed to our measurements, including
popular blogs, news sites, personal web-pages, education
sites, hosting services, hobbyist sites, and public forums.

Second, we have instrumented CoralCDN [9, 17], a
popular web content distribution network we run, to redi-
rect a small percentage of its approximately 25 million
daily requests through our measurement servers. Traf-
fic from CoralCDN currently accounts for approximately
two-thirds of our clients and its world-wide distribution.

Operators of servers can contribute to our measurement
project in two ways. First, websites insert a transpar-
ent, embedded object into their web pages (the 1x1 pixel
iframe “web-beacon” in Figure 1). When clients down-
load these sites’ pages, they subsequently request this
web object from our measurement servers. Alternatively,
a server integrates client-side measurements by redirect-
ing link click-through traffic to our measurement servers,
which causes clients to load our web-beacon before they
are redirected back to the link’s real destination. We used
this latter approach for measuring clients of CoralCDN.

Whether through the web-beacon or a redirect, the
client executes javascript that collects various configura-
tion parameters, e.g., browser version information, screen
parameters, system languages, timezone settings, etc.
Java-enabled clients may also execute a Java applet that
creates a socket connection back to our measurement
servers, from which the client grabs its local IP address
and ephemeral port. Differences between the client’s lo-
cal IP address and its public IP address (as seen by our
server) indicates the existence of an on-path middlebox.’

Of course, both the javascript and Java applet code are
constrained by browser security policies, such as same-
origin restrictions. Additionally, cognizant of privacy
concerns, we have avoided collecting particularly inva-
sive information (such as extracting browser cache history
through CSS tricks).

Rather than explain the details of all our data-collection
techniques upfront, we will describe these techniques in-
crementally as we consider various questions throughout
the remainder of this paper.

3.3 Dataset coverage

This paper’s dataset, described in Table 2, covers client
data collected between March 3, 2006 through September
27, 2006. It includes nearly 7 million unique hosts, where
a unique host is identified by a three-tuple of the client’s
public IP address, its local IP address if available, and its
SYN fingerprint [27]. A smaller fraction of clients (1.1
million in all) executed our Java applet, due both to some
third-party websites choosing a no-Java “diet” version of
our web-beacon and the fact that only approximately 30%
of our measured clients will actually execute Java.

3We can also use differences in the ephemeral ports to help detect
transparent proxies and provide some insight into how the middleboxes
are doing port re-mapping, although we do not include such analysis in
this paper.

Unique targets
Hosts measured 6,957,282
Public IPs 6,419,071
Hosts running Java 1,126,168
Hosts behind middleboxes 73.8%

Coverage

IP Prefixes (per RouteViews) 85,048
AS Numbers (per RouteViews) 14,567
Locations (per Quova) 15,490
Countries (per Quova) 214

Table 2: Dataset statistics

In addition, we analyzed over 4 million requests from
540,535 clients that ran a heavier-weight version of
the javascript code (collected between August 29 and
September 27, 2006). This dataset, used in §4.3 and §5.1,
included client configuration settings and used client-side
cookies to link client sessions.

To assist with some analysis, we had access to Quova’s
geolocation database [20], the industry standard for IP
geolocation. This database includes 31,080 distinct lati-
tude/longitude locations for more than 6.85 million dis-
tinct IP prefixes. When we later refer to calculating the
geographic distance between two IP addresses, we re-
fer to first performing longest-prefix match to find the
most appropriate IP prefix in this geolocation database,
then computing the geographic distance between the lati-
tude/longitude coordinates for these two prefixes.

As Table 2 shows, our dataset includes hosts from ap-
proximately two-thirds of all autonomous systems and
more than one-third of all BGP-announced IP prefixes
(per RouteViews [25]). It covers more than one-half of
Quova’s identified locations and 214 of 231 countries.

3.4 Summary of results

This section summarizes our two main results:

NATSs and DHCP do not contribute largely to edge
opacity from the viewpoint of a server. While the ma-
jority of clients are behind NATs (roughly 60% from our
measurements), virtually all NATs are small. In fact, NAT
sizes tend to follow an exponential, rather than a power
law, distribution (§4.2). Second, IP reallocation due to
DHCEP is slow, generally on the order of days. For exam-
ple, fewer than 1% of the clients we measured used more
than one IP address to access our servers over the course
of one month, and fewer than 0.07% of clients used more
than three IP addresses (§4.3).

Proxies pose a greater problem for IP-based server
decisions. While only 15% of clients we measured tra-
versed proxies, these proxies were generally larger than
NATs and often served a geographically-diverse client
population (§4.4). This latter property is especially im-
portant if access control decisions are being made for reg-
ulatory compliance. Additionally, as a single client may

<iframe src='http://www.cdn.coralcdn.org/noredirect.html?teamid=fcc9c..

.0c7’

scrolling=no frameborder=0 marginwidth=0
marginheight=0 width=1 height=1></iframe>

Figure 1: Our measurement web-beacon

use many proxies in multiple locations, blacklisting proxy
IP addresses in such cases is largely ineffective.

From these results, we conclude that a principal con-
cern for server operators is the ability to detect and react
to proxies. In §5, we introduce a set of classifiers with
which a server, using only a single client request, can de-
tect proxies with high accuracy.

4 The Extent of Edge Opacity

4.1 Establishing a comparison set

The analysis in the next two sections requires the ability
to detect the existence of a middlebox, as well as to deter-
mine whether the middlebox is a NAT or proxy.

To do so, we first build a set of all measured hosts that
have clear identifiers of having come through a NAT or
a proxy. We characterized a client as having traversed a
middlebox if its public IP address differed from the local
IP addresses, as returned by our Java applet. (We note that
those clients whose local and public IP address are the
same were classified as non-middleboxes, a dataset used
later in §5.1).4

We also built an independent comparison set consisting
solely of proxies and another consisting solely of NATS.
An IP address was considered a proxy if its request con-
tained a standard proxy header, e.g., Via. We classified a
middlebox as a NAT iff (1) the SYN fingerprint was not a
known proxy type, e.g., Cisco or NetApp, (2) the request
did not contain proxy headers, (3) the domain name of the
middlebox was not suggestive of a proxy, e.g., contained
proxy, prx, cache, or dmz, and finally, (4) the ratio of dis-
tinct User—Agent strings to distinct SYN fingerprints
was at most three (we explain the rational for this met-
ric in §5.2.2). Under these criteria, we classified 128,066
public IPs as proxies and 444,544 as NATs.

We will also use these sets of known proxies and non-
middleboxes in Section 5, in order to evaluate the accu-
racy of a number of lighter-weight proxy detection heuris-
tics that do not rely on Java.

4.2 NAT characteristics

We begin by showing that the majority of NAT’d net-
works only consist of a few hosts. To establish this re-

4During our analysis, we uncovered many fransparent web proxies
which do not perform address translation. However, since these do not
render the client’s IP address opaque, we treated them in the same man-
ner as client requests which did not traverse a middlebox.

sult, we leverage the fact that most devices assign ad-
dresses from their DHCP address pool in linear order,
starting from some (usually well-known) default value.
For example, the DHCP pool of Linksys routers starts at
192.168.1.100 [23]. Then, given the local IP addresses
of our clients, we analyze the frequency histogram of the
private address space usage between NATs.

Given the frequency histogram of the private address
range, we have found that one can easily detect the de-
fault starting addresses used by DHCP servers. For
example, Figure 2 shows a histogram of 192.168.0/24:
There are two clear spikes starting at 192.168.0.2 and
192.168.0.100. Thus, given a common starting value (the
beginning of a spike) and given that IP addresses are
largely assigned in linear order, we can estimate the distri-
bution of NAT’d network sizes that share the same starting
IP address.

More specifically, a client’s rank in a group of size n can
be approximated by its IP address subtracted by the de-
fault starting address. We term this value a host’s IP rank.
In the limit, the average IP rank of measured hosts behind
a NAT will converge to 5. Given a sufficient sampling of
hosts from a single public IP address, this could be used
to approximate the NAT’s size. Of course, this technique
is useful only for a particular NAT and requires measure-
ments from multiple hosts behind that NAT. Our dataset
contained requests from multiple hosts in fewer than 10%
of the NAT’d public IPs.

However, one can still reach useful conclusions given
aggregate data across many NAT’d IPs. Recall that Fig-
ure 2 plots an aggregate histogram of the frequency with
which each private IP address is used by unique hosts.
(again, unique hosts are identified by a unique (pub-ip,
local-ip, SYN-FP) tuple.) We can use this aggregate infor-
mation to determine the relative sizes of individual NAT’d
networks. To do so, we take the discrete derivative of the
histogram, which approximates the ratios of relative NAT
sizes. As a simple example, a derivative value of ten for
IP rank 1 and derivative value of two for IP rank 2 implies
that NAT’d networks with one unique host are five times
more likely than networks with two hosts.

Figure 4 shows the discrete derivative calculated
over the smoothed histogram® for IP address range
192.168.1.100 through 192.168.1.199, inclusive. We use
this range for demonstrative purposes, as it contains a sin-
gle clear spike (see Figure 2): this implies that most hosts
within this range use the same starting IP address within
their DHCP pool, e.g., due to Linksys routers’ default con-

3Using a degree-five Bernstein basis polynomial for smoothing [24].

25000 grmrmrmmrmr TRTTATITTFTTTT TR TRTATIOeT
20000
15000

10000

5000 |
&
q ~
: &
&
=

Frequency

IP addresses

Figure 2: Histogram of the IP address usage within the 192.168.0/24 prefix of all clients which ran the Java Applet

4000
3500

3000
2500

2000
1500
1000
500

10

Rat

~ ~ ~
o iy

o @ ~ @ &

~ ~ ~ ~ ~
i i i ~ -
& & & & &
-~ ~ ~ ~ ~
& o o o o
~ ~ ~ ~

—~

IP addresses

3 & 5
~ ~ ~ ~ ~
- i i ~ ~
& & & & &
~ ~ ~ ~ -~
o @ ? o o
~ ~ ~ ~ ~

Figure 3: Discrete derivative of the smoothed frequency histogram for 192.168.1.1xx

= = = Exponential dist.: e”™(-0.5r)
==+« Power-law dist.: r”™-2
— Approximate NAT size ratio

103

10°k

Ratio

101

10°

1071
10° 10t
IP addresses

Figure 4: Discrete derivative of the smoothed frequency histogram for 192.168.1.1xx on a log-log scale, with common exponential
and power-law curves plotted as comparison. Vertical lines are drawn every 10 IP addresses.

figurations [23]. With the derivative peaking at IP rank
2, we conclude that for this IP range, the most common
NAT’d network has two hosts. In fact, the vast major-
ity of networks in this range have fewer than 7 hosts, and
there are almost 200 times fewer networks of 10 hosts than
those of 2 hosts (IP rank 10 has value 19.6).

Figure 4 plots the same discrete derivative on a log-log
scale, given as the solid line. We see that the curve is
somewhat periodic, with new (yet smaller) peaks roughly
correlating to intervals of ten IP addresses. While points
at increasing IP rank may be caused by the existence
of (outlying) large networks, this periodicity likely indi-
cates less-common defaults used by some DHCP pools
for numbering a network.

Figure 4 also includes an exponential and a power-
law distribution curve that attempt to fit the data. The
plot suggests that NAT’d networks follow an exponen-
tial distribution: The first curve of IP address usage
starting at 192.168.1.100—before the periodic jump at
192.168.1.110—closely follows e,

We applied this NAT-size analysis to all other populated
regions of the private address space that we measured,
including 10/8, 192.168/16, 172.16/12, and 169.254/16.
Overall, the characteristics of the analyzed IP ranges ap-
peared similar to the results presented above. One excep-
tion is that 10/8 had (only slightly) largely NAT sizes, yet
we also found an order of magnitude fewer hosts using
10/8 networks compared to 192.168/16 networks. We do
not include the graphs of these results due to length limi-
tations.

Analyzing the data less in aggregate, of the 444,544
NAT’d networks we measured, only 112 networks have
more than 10 hosts (or < 0.03%). The largest NAT’d net-
works we discovered were heavily biased based on geo-
graphic location: Of the largest ten networks, eight were
residential ISPs in Japan (including all top-five), with one
additional ISP in China and one for Google. As we show
in Section 35, it is possible for a server to detect and track
exceptionally large NATsS.

4.3 DHCP usage characteristics

In this section, we analyze dynamic IP renumbering. To
do this, we track clients using HTTP cookies. All results
presented in this section were derived from a one month
subset of our data in which we added javascript to perform
cookie management. The dataset covers 537,790 individ-
ual clients (where clients are identified by unique cookies)
across 4 million web sessions.

Figure 5 shows the extent to which clients use multi-
ple IP addresses over time. Each histogram bar for time
epoch 7 includes those clients whose first and last accesses
to our servers are fully contained within the time period
[i,i +1). Each bar additionally shows the breakdown of
the number of IP addresses used by its respective client

16000 |
14000
12000
10000 F
8000
6000
4000
2000 F

IPs
IPs
IPs
IPs
IPs
IPs

T LW

Number of clients

lh 3h 6h

12h 18h 1d 2d 3d =5d
Duration

7d lad

Figure 5: Prevalence of multiple IP usage by clients over time

Clients affected | All public IPs | Proxy IPs only

2 9.7% 53.4%
3 5.1% 40.2%
5 3.1% 28.3%
10 1.4% 17.3%

Table 3: Probability of collateral damage when blacklist-
ing public IP addresses.

over its lifetime. We excluded only those clients who use
more than one public IP address within 10 minutes—hand
verification shows such clients to be using some form of
load-balancing or anonymizing proxies.

We find that fewer than 2% of clients use more than 2 [P
addresses between 3-7 days, with only 8% of clients using
more than 3 IPs in 2-4 weeks. In fact, 72% of nodes used
a single IP address (and 91% used 2 IPs) to access our
servers for up to 2 weeks! Thus, we conclude that DHCP
allocation results in little IP renumbering of clients from
a server’s perspective.

If clients switch IP addresses relatively rarely, can a
server simply blacklist an IP address and not worry about
the potential collateral damage to other hosts that may be
effected by this filtering rule? In other words, how of-
ten would other clients re-use the same IP address already
blacklisted?

Table 3 shows the extent of this collateral damage over
the course of the dataset’s month duration. We find that
over 90% of the time, blacklisting any IP address would
not have effected any other clients. Only in 1.4% of the
cases would it effect more than 10 clients. In fact, the
damage may even be less, as this analysis uses cookies
as a form of identity. Clients may delete their cookies
and thus inflate the measured damage. Indeed, other met-
rics of client identity—such as generating a client finger-
print based on a large set of browser configuration set-
tings, many of which have significant entropy—appear to
yield better preliminary results, although we do not in-
clude such analysis due to space limitations.

Finally, Table 3 demonstrates the importance of han-
dling proxies differently from NAT’d and non-NAT’d IP
addresses. We see that blacklisting a proxy would have
some collateral damage 53% of the time and impact more
than 10 clients in over 17% of cases.

100

= = NATs
20 — Proxies ||
80 .
&
5 70 .
=
S 60 |
E SO g
&
40 -
30 f |
20

161 162
Unigue clients per middlebox
Figure 6: CDFs of the number of unique hosts behind each
NAT and proxy devices

4.4 Proxy characteristics

This section shows that proxies both tend to be larger than
NATs and often serve clients with high geographic diver-
sity. These results are unsurprising: while virtually all
home routers support NAT, proxies are often deployed
in support of larger organizations. Further, unlike most
NATs (VPNs excepted), proxies do not need to be on route
and thus can serve clients from anywhere on the Internet.

Per §4.1, we created a set of known proxies by including
the public IP addresses of those clients whose requests
contained popular proxy headers. All IPs characterized as
proxies also must have had a least one client that ran Java
to reveal the existence of address translation.

Proxy sizes. Many of the larger proxies’ clients con-
tain publicly-routable local addresses. Unfortunately, this
makes it difficult to estimate proxy sizes using the same
DHCP allocation insight from §4.2. Instead, we plot
the number of unique clients which accessed our system
through proxies versus those using NATs (Figure 6). This
figure only includes middleboxes in which we identified
two or more distinct clients.

The graph shows that, as viewed from our servers,
proxies serve a larger client population than do NATs.
For example, only 10% of NATs were traversed by three
or more hosts, opposed to 50% of proxies. While these
results may not be representative for all servers, they do
align with our intuition that proxies are likely to represent
larger client groups.

Client-proxy locality. We now explore the proximity
between proxies and the clients they serve. This sub-
section’s results are limited to those pairs for which
the proxy’s public IP address differs from the publicly-
routable local IP address of the client. Our dataset in-
cludes 26,427 such pairs of clients and web proxies.
All geographic location information is obtained from
Quova[20].

Because proxies are often off-route, they have two char-
acteristics not found in NATs. First, clients from globally-
reachable proxies can originate from anywhere. Figure 7
demonstrates this by mapping out all clients accessing our
measurement servers through a Google web proxy located

¢ Canada

S Tarkiye o
g !

North =,
Allantic Gcean o ¢s00a, jran
L T

T~ ~ Arabia

A% Sudan
Ethiopia,

Atlantic Ocean South e
Wimirie

Figure 7: Location of clients accessing web via Google proxy
(identified by marker)

Figure 8: Location of anonymizing egress points used by
clients within a single class-C network (identified by marker)

in Mountain View, CA. While a server operator may be
comfortable whitelisting an IP shared by a large, albeit
localized, NAT, she may wish to restrict unfettered access
to such a proxy.

Secondly, while NATs virtually always map a small set
of globally-reachable IP addresses to a larger number of
machines, proxies are sometimes used to give a client ac-
cess to multiple public IP addresses. For example, Fig-
ure 8 plots the actual location of colocated clients con-
necting to our measurement site through numerous prox-
ies around the world. We believe these proxies to be part
of an anonymization network. In such cases, where a
single machine commands multiple geographically- and
topologically-diverse IP addresses, attempting to curtail a
particular client’s access through IP blacklisting is near
impossible.

From a more quantitative perspective, Figure 9 shows a
CDF of the distance between clients and their web prox-
ies. 51.4% of clients have the same location as their prox-
ies. However, fully 10% of client-proxy pairs are located
more than 3,677 kilometers apart, while 1% are located
more than 10,209 kilometers apart. Table 4 summarizes
locality properties with respect to countries and regions
for our dataset. We also analyzed clients’ logical proxim-
ity to the proxies they traverse. We found that only 29.2%
of clients shared the same AS number as their proxy and
only 6.7% shared the same IP prefix (per RouteViews
BGP data [25]).

Finally, for completeness, we analyzed the routing in-
efficiency caused by clients’ detour routes to their web

100

= T= = = = =T
-—-

”

g B — e .
2 90 |
e .
[=]
a 80 .
‘q::'J' 5k .
= 7o}: =~ = Same prefix only
L—; — Same ASN only
& 65 ... All pairs]
60 o L L
0 2000 4000 6000 8000 10000

Distance (km)

Figure 9: Proximity of web proxies to their clients

SLD
56.1%

Geolocation
51.4%

City
51.4%

Country
85.1%

Table 4: Percentage of client-proxy pairs located within the
same country, city, or distinct location, or belonging to the same
second-level domain (e.g., stanford.edu).

proxies (Table 5). All destinations considered in this
dataset correspond to our measurement servers, all located
in Stanford, CA.

While these results do not directly impact edge opacity,
it does provide some insight into the degree with which
clients go out of their way to access content. The choice
of longer detour routes may be forced on customers by
ISPs that choose to deploy fewer sets of proxies, e.g., for
easier management. For example, much of AOL’s Euro-
pean web traffic exits its network at proxies located in
Frankfurt, Germany [1]. On the other hand, longer de-
tour routes may be chosen by clients purposefully, ei-
ther for anonymization or to skirt regulatory-compliance
restrictions. In fact, we were able to detect numerous
instances of clients using anonymizers (similar to that
in Figure 8), making them normally appear as multiple
clients distributed world-wide.

5 Middlebox Detection

We now present and analyze a set of techniques for de-
tecting the usage of NATs and proxies. We first describe
a toolkit of classifiers which can be used to detect proxies
in real-time. We then describe how a server can use client
history to determine the IP addresses of large NATSs, as
well as prefixes with high rates of IP renumbering among
its clients. Finally, we describe our implementation of a
custom web-server that implements such techniques.

5.1 Real-time proxy detection

The previous section’s results suggest that proxies have a
higher potential of negatively impacting server decisions.
Not only are their client populations geographically dis-
tributed, but, unlike with NATS, a single client can hide
behind multiple proxies. Fortunately, we find that it is

50% 75% 90% 99%

Direct distance (km) | 3890 8643 10611 16908
Detour distance (km) | 4135 9156 13038 18587
Stretch 1.06 1.06 1.23 1.10

Table 5: Comparing direct vs. detour distances of web proxies

possible for a server to detect proxies in real time, i.e.,
immediately following a single client request.

To do so, we introduce and analyze the following set
of proxy indicators: (1) checking HTTP headers, (2) SYN
fingerprinting clients, (3) geolocating clients, (4) compar-
ing client timezone against geolocation information, (5)
comparing client language against geolocation, and (6)
analyzing application versus network round-trip-times. In
what follows, we analyze the efficacy of each technique
as well as their ability to detect proxies in the aggregate.
Our analysis uses client configuration state returned by
active content, passive server-side analysis, limited active
probing, and IP geolocation (specifically, Quova’s pack-
age [20]).

It is also possible to detect proxies using more intrusive
techniques. One common method is to attempt to connect
back to an incoming client’s IP address at known proxy
ports. Obviously, this technique only works for public
proxies. Another approach is to use a client-side Java ap-
plet that issues a GET request for a popular object from
a different domain than the server, e.g., the banner image
for google.com. A successful request would imply a
cache hit on an on-path proxy. In this section, however,
we limit our evaluation to the former six approaches, as
they are both light-weight and have low visibility.

To evaluate the utility of each heuristic, we test them
against the 22,546 known proxies per §4.1, as well as
those clients classified as non-NAT’d hosts (non-proxies).
A false positive (FP) occurs when a technique classifies
a non-proxy as a proxy, while a false negative (FN) cor-
responds to a proxy being classified as a non-proxy. We
summarize the results of each classifier for this headers
dataset in Table 6.

Table 6 also evaluates our classifiers against an alterna-
tive dns dataset of proxies: The set of middleboxes having
a domain name suggestive of a web proxy (e.g., contain-
ing cache). While this domain-name test does not provide
the certainty offered by proxy headers, it provides another
useful testing set.

Overall, we find that our combined classifiers can detect
a proxy between 75% and 97% of the time, with a false
positive rate between 1.9% and 2.5%. These numbers
merely serve to qualify the proposed classifier’s effective-
ness, as we combined them in a rather straight-forward
manner. Certainly, a more intelligent weighting of indi-
vidual classifiers’ results (perhaps using machine learning
techniques) should be able to improve the combined clas-
sifier’s accuracy.

Classifier ID’d proxy False Negatives ID’d non-proxy False Positives
dataset headers | DNS || headers | DNS || headers | DNS || headers | DNS
Headers n/a | 949 n/a 5.1 n/a | 100.0 n/a 0.0
SYN-FP 673 | 653 5.8 2.4 86.8 86.3 1.9 1.9
Geolocate 18.0 | 244 n/a n/a n/a n/a n/a n/a
Timezone 6.1 5.0 n/a n/a n/a n/a 2.0 2.0
Language 5.7 4.8 n/a n/a n/a n/a 0.5 0.6
RTT 52.9 ? n/a n/a n/a n/a 9.1 ?
Combined 75.7 | 97.6 5.0 2.3 85.0 97.5 2.5 1.9

Table 6: Effectiveness of real-time classifiers for known proxies (in percentages) for both the header- and dns-based proxy
datasets. n/a corresponds to a test being non-applicable; ? denotes insufficient data.

Proxy headers. Web proxies are required by the
HTTP/1.1 specification (RFC 2616 [14]) to add their in-
formation to a Via header for both HTTP requests and
responses that they proxy. Unfortunately, not all proxies
do such, making proxy detection a non-trivial task.

Limiting our consideration to the known-proxy
dataset—which by construction must include at least
one proxy header—13.5% lack the required Via header.
69.6% of these proxies include an X-Forwarded-For
header (a non-standard header introduced by Squid [30])
and 9.0% include X-Bluecoat-Via [6]. Although
we tested for five other anecdotally-used headers (e.g.,
Client-IP), we did not found any evidence of other
such proxy headers in use.

On the other hand, if we consider the set of proxies
in the dns dataset, we find that 94.9% include at least one
proxy header. Of course, given their indicative hostnames,
these proxies are not attempting to hide their identity, un-
like many anonymizing proxies.

Client SYN fingerprinting. Our modified web server
captures the SYN packet of all incoming requests and uses
it to generate the client’s SYN fingerprint [27]. SYN fin-
gerprints (SYN-FP) provide an estimate of the sender’s
operating system. In the case of web proxies, which termi-
nate their clients’ TCP sessions, the SYN fingerprint cor-
responds to the proxy’s TCP stack, not that of the clients.
SYN fingerprints can be immediately used to uncover a
variety of operating systems not commonly belonging to
end-hosts (e.g., Cisco, NetApp, and Tru64).

We can increase the coverage of this classifier, how-
ever, when combining SYN-FP information with oper-
ating system information returned in a client’s HTTP
User-Agent string. Specifically, we flag a host as a
proxy if its SYN-FP host-type differs sufficiently from its
User-Agent host-type, and mark it as a non-proxy if
they are the same (although this latter step can certainly
lead to false negatives).

Analyzed against our known proxies and non-proxies,
this classifier successfully identified 67.3% proxies and
86.4% non-proxies, with a 2.3% false positive (FP) and
5.8% false negative (FN) rate. The classifier failed
whenever the SYN-fingerprint did not match well-known

operating-system characteristics. The higher FN rate is
largely due to vagaries in the Windows TCP stack, yield-
ing sometimes-inaccurate host-type estimations (e.g., NT
5.0 vs. NT 5.1) from SYN fingerprinting.

Geolocation. Given a client’s local IP address (from our
Java applet) and its public IP address, we directly com-
pare the geolocation information known about these two
IP addresses. This method is limited to clients whose
local IPs are globally reachable. But as Table 4 shows,
these locations often differ. When classifying an IP ad-
dress as a proxy if its public and local IP addresses dif-
fer in location, we are able to successfully identify 18.0%
of our known proxies. We make no conclusion about
those clients sharing the same location as their public IP
address—while proxies may serve geographically-diverse
clients, they can certainly serve local ones as well—hence
the lower identification percentage. Additionally, given
that our list of known non-proxies required matching local
and public IP addresses, we cannot perform such analysis
on non-proxies to generate an FP rate.

Client timezone. We now consider how client geoloca-
tion hints may differ from the corresponding information
supplied by the server’s geolocation package. This ap-
proach is unnecessary if a client can be geolocated di-
rectly (as described immediately above), but it provides
a lighter-weight approach and may be applicable when a
client’s local IP address is in a private prefix.

Specifically, a web client exposes its timezone informa-
tion in its Dat e header (as well as directly via javascript).
Our timezone classifier compares client timezone infor-
mation to that of its geolocated public IP address, over
all client requests arising from that IP address. Unfortu-
nately, this approach does not appear very useful, identi-
fying only 6.1% of known proxies while yielding a 2.0%
FP rate, given the low apparent rate of requests across
timezones as compared to misconfigured or mobile hosts.
Note that direct IP geolocation (as above) using a com-
mercial database provides much higher granularity and
thus higher accuracy.

Client language. Similar to timezone information, we
see how client language information may serve as a geolo-

2000

= = Proxies ' ' ' J
— Non-NAT'd "

1000 s

1500 F

500 s

App/Net RTT diff (ms)

Figure 10: Differences in application- versus network-level
RTT measurements between proxies and non-proxies

cation hint. Client language is collected via javascript, al-
though it is also available per the Accept—-Languages
HTTP header. After building a database that maps lan-
guages to countries, we asked whether a client’s IP ad-
dress is located within a country using that language. If
some sizable fraction of an IP address’s clients cannot be
matched via language, the IP address is marked as a proxy.
This language heuristic identified 5.7% of our known
proxies, with a 0.5% FP rate. The coverage of this clas-
sifier is significantly limited by the universality of some
languages—e.g., browsers and hosts are configured with
language settings of en—us world-wide, which we sub-
sequently ignored—which led to our inability to make
meaningful decisions on a majority of clients.

RTT analysis. Finallyy, we wuse differences in
application-level and network-level round-trip-times
(RTTs) to detect proxies. Specifically, we compare
the difference between TCP RTT measurements on the
server-side to the minimum request time over multiple
HTTP GET requests issued by the client. We use
javascript to perform the application-level RTT measure-

ments (by timing asynchronous XMLHt t pRequests).

A large difference between application- and network-
level RTTs may suggest a client using a distant proxy. Fig-
ure 10 compares this difference as measured against our
known proxies and non-proxies. While non-proxies can
show a significant RTT gap—Ilikely due to application-
layer scheduling delays yielding inaccurate RTT measure-
ments, even across multiple HTTP requests—this RTT
gap is much more pronounced among clients of proxies.

This technique was able to identify 52.9% of our known
proxies (using an RTT difference threshold of 50ms), al-
though it had a much higher FP rate at 9.1% due to non-
proxies experiencing significant application RTT delays.
We draw no conclusion if a client has a similar network
and application-level RTT.

Additionally, unlike some previous techniques which
used client-supplied configuration state, this approach is
less susceptible to malicious clients: a client that does not
have control over the proxy it traverses can only make it-
self appear further from its proxy—and hence more likely
be flagged as indeed behind a proxy—not closer.

% _—_|—:-.'""' o
9%

<
Percentage

8 =~ NonJava * ~~ NonJava
86 — Java o — Java

10° 101 10° 10t

Unique User-Agents Unique SYN Fingerprints.

Figure 11: CDFs of unique User-Agent strings and SYN-FPs
per public IP for hosts that did and did not run the Java applet

5.2 History-based middlebox detection

This section presents a methodology by which servers can
identify large NAT's and proxies, as well as distinguish be-
tween the two, by using the history of requests seen from a
particular IP address or prefix. For this analysis, the server
must record the public IP, SYN-FP, and User-Agent for
each request.

We first show that non-NAT’d hosts show little variabil-
ity in User-Agent strings and SYN fingerprints, as com-
pared to clients behind middleboxes. Coupled with cookie
usage, this heuristic provides a strong first-order differ-
entiator of NAT’d and non-NAT’d hosts. Second, given
that non-NAT’d hosts show little variability in these pa-
rameters, one can often differentiate between individual
clients behind a middlebox using User-Agents alone, as
the strings have a large amount of entropy. Finally, we de-
termine the accuracy of detecting and differentiating be-
tween NAT’d and proxied networks by analyzing the dis-
tribution of User-Agents and SYN-FPs.

As before, we limit our study to those clients that ran
the Java applet. However, as Figure 11 shows, the User-
Agent and SYN-FP uniqueness characteristics of the en-
tire dataset closely matches those of the subset of clients
that ran the applet. Thus, we believe that our results gen-
eralize to the larger dataset.

5.2.1 Identifying NATs and proxies

How do the characteristics of non-NAT’d hosts differ from
those of NAT’d hosts? One obvious approach to detect
the presence of multiple clients behind a middlebox is to
monitor a public IP address for any changes in its local
hosts’ configurations (e.g., suggesting different operating
systems or application versions). This approach is com-
monly discounted, however, due to dynamic IP address-
ing, routine changes to machine configurations, operat-
ing system or application updates, and even physical hosts
that support multiple operating systems.

However, we have found that hosts identified as non-
NATs—i.e., hosts having the same local and public IP
address—have a relatively low variability in User-Agents
and SYN-FPs over time. Figure 12 shows the number
of unique User-Agents for non-NAT’d hosts compared to
those behind middleboxes. For the hosts behind middle-
boxes, we only include public IP addresses from which
we identified two or more local IP addresses.

2
2

Percentage
5
|
'
Percentage

' - - NAT'd I - - NAT'd I
_____ ' — Non-NAT'd — Non-NAT'd

Y00 0t 907 0
Unique User-Agents Unique SYN Fingerprints

Figure 12: CDFs of unique User-Agents and SYN-FPs per
public IP addresses for non-NAT’d hosts and NAT’d hosts

100 T
sofF | e g
&
© 60 | .
5
=
T
E 40 } i
= = Public
0r — NATs
 Proxies
0 L
10° 101

Ratio of User-Agents to SYN-FPs

Figure 13: User-Agent to SYN-FP ratio for public (non-NAT'd),
NAT'd, and proxied hosts

Fewer than 1% of the non-NAT’d hosts have multiple
User-Agents, while the most any single host presented
was three. Additionally, only 2.5% of such hosts had more
than one SYN-FP, with a maximum of 11. While this does
not show that non-NAT’d hosts are not being periodically
renumbered via DHCP, it does corroborate our results in
§4.3 that these rotations are sufficiently slow from a server
operator’s vantage. On the other hand, requests from mid-
dleboxes serving at least two clients had a much higher
number of unique User-Agents and SYN-FPs.

This lack of different User-Agents from non-NAT’d ad-
dresses is not due to their paucity, however, as we found
a total of 164,122 unique User-Agents among all clients.
In fact, the frequency plot of these User-Agent strings fol-
lows a clear power-law distribution (we omit due to space
limitations). This distribution suggests that there exists
sufficient entropy to often differentiate between individ-
ual hosts’ User-Agents.

5.2.2 Differentiating NATs and proxies

Given that the variability in User-Agents is a good first-
order detector of middleboxes, we now turn to determin-
ing whether a middlebox is a NAT or proxy. Certainly,
all the real-time methods introduced in §5.1 can be used
to detect proxies. However, we also find that comparing
the ratio of User-Agents to SYN-FPs for a particular IP
address over multiple requests is useful for distinguishing
between non-NAT’d, NAT’d, and proxied hosts.

Figure 13 plots the ratio of User-Agents to SYN-FPs for
these three types of hosts (non-NAT’d, NAT’d and prox-
ies). As before, we only include middleboxes from which
we observed at least two clients. One finds a clear distinc-
tion between these three classes. For non-NAT’d hosts,
the ratio is one in 99.99% of the cases — that is, in al-

most all cases, there is exactly one user-agent string per
unique SYN-FP per IP. If the ratio is > 3—that is, there
are at least three distinct user-agent strings per SYN-FP—
the middlebox is a proxy with high probability.®

5.3 Implementation

We have implemented the techniques discussed in this
section into a custom web server which provides real-time
proxy and NAT detection to aid in access-control deci-
sions or other IP analytics applications. Our implementa-
tion consists of approximately 5,000 lines of C++, as well
as the accompanying javascript and Java applets.

Figure 14 shows how our server, hereafter called the
illuminati-server, integrates into an existing website. The
website includes both a standard Web server (serving dy-
namic pages), an IP analytics engine, and the illuminati-
server. In fact, we are currently integrating and deploy-
ing the illuminati-server alongside Quova’s GeoDirectory
Server [20] (the analytics engine in Figure 14) for com-
mercial real-time proxy detection and geolocation.

A website integrates this solution as follows. First,
the webserver dispatches client requests to the illuminati-
server by adding an embedded iframe (similar to Fig-
ure 1) or script object to any pages for which it wishes
to gather IP-based information (Step 1). This embed-
ded object returned by the web server is tagged with a
unique session id with which to later identify a particu-
lar client (as multiple clients may share the same public
IP address). The client then fetches the embedded ob-
ject from the illuminati-server, which subsequently serves
an appropriate javascript or Java applet to the client (Step
2). This object is loaded in the background and therefore
does not contribute to client-perceived latency on modern
browsers.” After executing, this active content sends its
client-generated information back to the illuminati-server,
along with the server-specified session identifier (Step 3).
Next, the illuminati-server pushes this information to the
IP analytics engine (Step 4), which both stores them for
historical analysis and, combining the data with IP geolo-
cation information, analyzes whether the client is behind
a NAT or proxy and, if the latter, where the client might
be actually located. Depending on the results of this anal-
ysis, the IP analytics engine might call for other code to
be executed by the client (i.e., repeat Steps 2-4). Finally,
the results of this analysis can be queried by the decision
logic of the website, keyed by session identifier, at any
point after it is collected (Step 5).

In this particular configuration, the time between a
client’s initial request and the time that a detection result

©We hand-inspected all middleboxes that the above criteria identified
as NATSs yet displayed a high User-Agent-to-SYN-FP ratio. From this,
we identified 30 more large proxies missed using our initial criteria.

"Unless the Java virtual machine must be booted, which can cause
some noticeable delay.

Client 1 GET 5 GET sessid
»| Web server ::\
HTTP (page w/ iframe + sessid) - Results =~
T '
H IP analytics
y 2 GET applet code engine
el w/ sessid
AN, luminati | 4PosTinfo. %/
3 POST results ."--.--___-_'_; Server ~_TIe
from code w/ sessid H| Code to serve next
'
: Website

Figure 14: Integrating the illuminati server

may be available is at least 2 RTTs: half an RTT to re-
turn the initial page, 1 RTT to get the embedded code, and
half an RTT to post the results. Of course, if application-
level RTT tests are also used, each measurement adds one
additional RTT. Serving additional applets increases this
delay as well. Still, we expect that proxy detection would
primarily be used for pages without strict latency require-
ments, such as to accompany user authentication.

Notice that this implementation provides for a separa-
tion of function between a simple stand-alone illuminati
server and the more complex IP analytics engine. The
illuminati-server must be deployed outside of any local
reverse proxy, so that it receives direct TCP connections
from a client (in order to get the client’s public IP address,
SYN headers for fingerprinting, and network RTT times).
The illuminati-server and engine can also be hosted at
some site external to the webserver, in which case the
webserver would remotely query the engine over a secure
channel. In both cases, the service can be integrated easily
into existing websites.

6 Related Work

Architectural proposals. Many research proposals
have offered new protocols or architectural changes which
support globally identifiable end-hosts. These include
HIP [22], DOA [33], LNA [2], UIP [15], IPNL [16].
TRIAD [8] and i3 [31]. These proposals generally fo-
cus on solving multiple architectural problems including
edge opacity. One of the primary motivations is to decou-
ple end-host identifiers from topology, allowing end-hosts
to retain the same identity during mobility and multi-
homing. However, globally unique end-host identifiers
could also provide a basis for access-control decisions and
thus ameliorate the ills caused by NATs.

Unfortunately, even if these architectures were to be
adopted, proxies may continue to mask client identities.
Proxies generally operate at the session layer, yet most
of these proposals suggest adding a shim header between
the IP and transport layer. Our findings suggest proxies
are widely used for load balancing, caching, anonymiz-
ing, and skirting access controls. It is unclear how mech-

anisms operating below the transport layer address the is-
sue of proxies.

IPv6 [11] confronts the problem of end-to-end client
reachability by using 128-bit addresses. IPv6 also man-
dates support of IPSec, which, with the use of the AH
header, makes middlebox deployment difficult. However,
we believe that even with widespread deployment of IPv6,
NATSs and proxies will continue to persist.

With NUTSS [21], Guha et al. focus on the prob-
lem of end-to-end addressability through NATSs using
SIP [28] (for signaling and long-term, stable identifiers)
and STUN [29] (for NAT punching). While this approach
has made substantial inroads for peer-to-peer applications
such as VoIP, it is not widely used in the client/server
paradigm such as the web, in which clients are largely
anonymous.

NAT and proxy measurement. There are few reliable
methods for detecting unique hosts behind NATs and
proxies. Bellovin presents a technique using the IPid
field in [4]. This approach relies on the host operating
system using unique yet predictable IPids. To be ef-
fective, however, traffic from multiple clients behind the
same NAT must be present within a short time period:
This latter constraint makes this approach impractical for
any but the most popular Internet systems. For exam-
ple, fewer than 5% of the NATs sent multiple hosts to our
collection site over the full 7 month measurement period.
This technique is also ineffective for detecting proxies.

Another approach seeks to identify NATs themselves
by examining packets for specific modifications that oc-
cur as packets traverse some types of layer-3 NATs [27].
However, this technique can not identify the number of
active clients behind the NAT. Thus, such a classification
is not useful for IP-based client identification: as we have
shown in §4.2, while 74% of our clients are located be-
hind NATs, the majority of NAT’d networks are only com-
prised of a few hosts (often just one).

Ganjam and Zhang [19] present measurements of NAT
usage from a deployment of a video broadcast applica-
tion. They observed environments where the percentage
of NATs ranged between 35% and 80%. Their data set
covered 553 hosts.

Effects of dynamic IP renumbering. IP aliasing,
where a unique client is allocated multiple IP addresses
via DHCP over time, has the potential to hinder a server’s
ability to detect unique clients. Bhagwan et al. [5] stud-
ied aliasing in Overnet, a peer-to-peer file sharing system.
They probed 1,468 unique hosts over a period of 7 days
and found that almost 40% used more than one IP ad-
dress. We show that, from a server’s viewpoint, aliasing
does not seriously effect its ability to differentiate clients
nor would result in meaningful collateral damage given
IP-based blacklisting.

7 Conclusions

Conventional wisdom abounds with the drawbacks of us-
ing IP-based identification in the face of NATSs, proxies,
and dynamic IP renumbering. Blacklisting large proxies
or NATSs can result in legitimate clients losing access to
desired services, while whitelisting can give access to un-
wanted clients. The actual extent of the problem, however,
has remained largely a mystery.

Part of the challenge in uncovering the impact of edge
opacity is a lack of practical techniques and deployments
to “peer through the shroud” of middleboxes in the wild
and at scale. In this work, we have developed, de-
ployed, and analyzed a set of techniques that enable such
measurement. Our approach combines active content—
downloaded and executed by unmodified web clients—
with server-side measurements.

We present seven months of measurement results from
nearly 7 million clients across 214 countries. Our results
show that while 74% of clients are behind NATSs or prox-
ies, most NATS are small and follow an exponential distri-
bution. Furthermore, the few exceptional large NATs we
found were easy to characterize from the server’s perspec-
tive. Dynamic renumbering from DHCP generally hap-
pens on the order of days. Indeed, fewer than 2% of the
clients that visited our servers over a week’s period used
more than two IP addresses.

Proxies, on the other hand, service client populations
that may be both larger and geographically diverse. Thus,
poor access control policies for proxies can have greater
negative implications. However, we show that a server
can detect a proxy both in real-time and using historical
analysis, thus enabling a server operator to make more
informed decisions.

That said, this paper’s analysis is only a first step to-
wards understanding the extent and impact of edge opac-
ity on server decisions. We have focused on how edge
opacity affects access control decisions declared over IP
addresses. However, as alluded to earlier, characterizing
edge opacity has implications to other domains, includ-
ing regulatory compliance and fraud detection. To this
end, we are currently integrating our implementation into
Quova’s widely-deployed IP intelligence engine [20] and
plan to explore its utility in these areas.

Acknowledgments. We are very grateful to the illumi-
nati community for contributing data by adding our web-
beacons to their sites. Quova, Inc. provided access to
their IP geolocation database and worked with us to de-
velop and deploy an implementation of this work. Jeffrey
Spehar contributed to our analytics website, and David
Andersen, Nick Feamster, David Mazieres, Dan Wend-
landt, our anonymous reviewers, and our shepherd, Re-
becca Isaacs, provided feedback on earlier versions of this

paper.

Finally, we wish to acknowledge the support of our ad-
visors, David Maziéres and Nick McKeown.

References

[1] AOL. Transit data network. http://www.atdn.net/, 2006.

[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I. Stoica, and M. Walfish. A layered naming architecture for the
internet. In SIGCOMM, Sept. 2004.

[3] BBC News. Bush website blocked outside
http://news.bbc.co.uk/2/hi/technology/3958665.stm, 2004.

[4] S.M. Bellovin. A technique for counting NATted hosts. In Internet
Measurement Workshop, Nov. 2002.

[5] R.Bhagwan, S. Savage, and G. Voelker. Understanding availabil-
ity. In IPTPS, Feb. 2003.

[6] Bluecoat. Blue Coat Systems. http://www.bluecoat.com/, 2006.

[71 M. Casado, T. Garfinkel, W. Cui, V. Paxson, and S. Savage. Op-
portunistic measurement: Extracting insight from spurious traffic.
In HotNets, Nov. 2005.

[8] D. Cheriton and M. Gritter. TRIAD: A new next generation inter-
net architecture. http://www-dsg.stanford.edu/triad/, Mar. 2000.

[9] CoralCDN. http://www.coralcdn.org/, 2006.

[10] Cyota. http://www.rsasecurity.com/node.asp?id=3017, 2006.

[11] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460, Dec. 1998.

Digital Envoy. http://www.digitalenvoy.net/, 2006.

DIMES. http://www.netdimes.org/, 2006.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext transfer protocol - HTTP/1.1. 1999.
B. Ford. Unmanaged internet protocol: Taming the edge network
management crisis. In HotNets, Nov. 2003.

P. Francis and R. Gummadi. IPNL: A NAT-extended internet ar-
chitecture. In SIGCOMM, Aug. 2001.

M. J. Freedman, E. Freudenthal, and D. Maziéres. Democratizing
content publication with Coral. In NSDI, Mar 2004.

M. J. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS:
Anycast for any service. In NSDI, May 2006.

A. Ganjam and H. Zhang. Connectivity restrictions in overlay mul-
ticast. In NOSSDAV, June 2004.

GeoDirectory Server. Quova, Inc. http://www.quova.com/, 2006.
S. Guha, Y. Takeda, and P. Francis. NUTSS: a SIP-based approach
to UDP and TCP network connectivity. In FDNA, Aug. 2004.
HIP. Host Identity Protocol, Internet Draft, 2006.

Linksys. http://www.linksys.com, 2006.

G. G. Lorentz. Bernstein Polynomials. U. of Toronto Press, 1953.
D. Meyer. University of Oregon RouteViews Project.
http://www.routeviews.org/, 2005.

minFraud. MaxMind, Inc. http://www.maxmind.com/, 2006.

pof v2. Passive operating system fingerprinting.
http://lcamtuf.coredump.cx/pOf.shtml, 2006.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peter-
son, R. Sparks, M. Handley, and E. Schooler. SIP: Session Initia-
tion Protocol. RFC 3261, June 2002.

J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN -
simple traversal of user datagram protocol (UDP) through network
address translators (NATs). RFC 3489, Mar. 2003.

Squid Web Proxy Cache. http://www.squid-cache.org/, 2006.

I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet
indirection infrastructure. In SIGCOMM, Aug. 2002.

L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA:
Using hard Al problems for security. In EUROCRYPT, May 2003.
M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,
and S. Shenker. Middleboxes no longer considered harmful. In
OSDI, Dec. 2004.

Us.

[12]
[13]
[14]
(15]
[16]
(17]
(18]
[19]

(20]
[21]

[22]
(23]
(24]
[25]

(26]
[27]

[28]

[29]

[30]
[31]
(32]

(33]

	Introduction
	Background and Limitations
	IP vs. application-level identification
	Other uses for edge opacity detection
	Limitations

	Measurement Overview
	Using active content for measurement
	Data collection methods
	Dataset coverage
	Summary of results

	The Extent of Edge Opacity
	Establishing a comparison set
	NAT characteristics
	DHCP usage characteristics
	Proxy characteristics

	Middlebox Detection
	Real-time proxy detection
	History-based middlebox detection
	Identifying NATs and proxies
	Differentiating NATs and proxies

	Implementation

	Related Work
	Conclusions

