
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.858 Fall 2015

Quiz I Solutions

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60 70 80

Score (max is 84)

Grade distribution

Histogram of grade distribution

Mean 55.4, Stddev 11.3

1

I Lab 1: buffer overflow

Consider the following code similar to http_serve() from Lab 1, where an adversary can supply arbitrary
input in the string name. Throughout this part, assume a 32-bit x86 system like the Lab VM, and assume no
compiler optimization or ASLR (Address Space Layout Randomization).

void http_serve(int fd, const char *name) {
void (*handler)(int, const char *) = http_serve_none;
char pn[1024];
struct stat st;

getcwd(pn, sizeof(pn));
strcat(pn, name);
if (stat(pn, &st) == 0 && S_ISREG(st.st_mode))

handler = http_serve_file;
handler(fd, pn);

}

1. [6 points]: The figure on the page after the next page shows the stack layout and register values
right after http_serve() invokes handler, but before any instruction in handler is executed. Fill
in the first column (Q1) next to the figure with letters “a” to “f” from the following options. Each letter
indicates the stack content at the corresponding slot. Note that not every option will be used, and
some options may be used more than once.

(a) address of pn

(b) fd

(c) name

(d) handler

(e) return address for http_serve

(f) return address for handler

2

2. [4 points]: Ben Bitdiddle notices that there is a vulnerability in the above code that enables a
return-to-libc attack. In particular, the attacker can overflow buffer pn[], and trick the server into
calling the library function unlink("grades.txt") when http_serve returns. Please show how to
mount this attack by smashing the relevant stack slots. Mark your solution on the second column in the
figure (Q2), using the following notation:

• Write “unlink” if the slot should be replaced with unlink()’s address.

• Write “argument” if the slot should be replaced with the address of the string "grades.txt".

• Write “preserve” if when overwritten, the slot must keep its original value.

• Write “n/a” if the slot cannot be overwritten.

• Write “any” if the slot will be overwritten, but it does not matter what goes in it.

3. [4 points]: Louis Reasoner argues that Ben’s exploit will not work if the server uses a stack
canary. A stack canary is a value that the compiler pushes on stack at function entry, and pops and
checks before return. He figures out a way to delete grades.txt even in the presence of a stack canary.
Louis’ attack overflows pn[], but in a different way than Ben’s attack. Please briefly describe how
should Louis overwrite the stack in this attack.

Answer: Louis can overwrite the handler pointer on the stack, and replace it with the address of
unlink. He also has to pass the argument to unlink by overwriting fd on the stack with the address
to the string "grades.txt"

Alternatively, assuming the stack is executable, Louis can also place a shell code that performs
unlink("grades.txt") in the buffer pn, and overwrite handler to point to the shell code.

3

* Options for Q1:

(a) address of pn (b) fd (c) name (d) handler
(e) return address for http_serve (f) return address for handler

* Options for Q2:

unlink argument preserve n/a any

0xffffffff Q1 Q2
| |
+--------------+
| | 1) __________ 1) __________
+--------------+
| | 2) __________ 2) __________
+--------------+
| | 3) __________ 3) __________
+--------------+

%ebp ---> | saved %ebp | 4) __________
+--------------+
| handler | 5) __________
+--------------+
~ pn[] ~
+--------------+
| st |
+--------------+
| | 4) __________ 6) __________
+--------------+
| | 5) __________ 7) __________
+--------------+

%esp ---> | | 6) __________ 8) __________
+--------------+
| |

0x00000000

4

Answer:

0xffffffff Q1 Q2
| |
+--------------+
| | 1) ____c_____ 1) _argument_
+--------------+
| | 2) ____b_____ 2) ___any____
+--------------+
| | 3) ____e_____ 3) __unlink__
+--------------+

%ebp ---> | saved %ebp | 4) ___any____
+--------------+
| handler | 5) _preserve_
+--------------+
~ pn[] ~
+--------------+
| st |
+--------------+
| | 4) ____a_____ 6) ___n/a____
+--------------+
| | 5) ____b_____ 7) ___n/a____
+--------------+

%esp ---> | | 6) ____f_____ 8) ___n/a____
+--------------+
| |

0x00000000

5

II User authentication

The paper The Quest to replace passwords compares many user authentication mechanisms, ranking them on
Usability, Deployability, and Security.

4. [4 points]: Consider a smartphone-based two-factor scheme that uses text messages as the second
factor (e.g., Google’s two factor login or MIT’s Duo). Compare regular passwords to smartphone-
based two-factor authentication in terms of usability, deployability, and security. (Briefly explain your
answer.)

Answer: Passwords win on usability (you can login when you forgot your phone) and deployability
(no smart-phone needed), but weaker security (attacker needs more than the password)

5. [4 points]: Describe an attack that smartphone-based two factor authentication is vulnerable to,
but RSA SecurID is less vulnerable to.

Answer: Malware is an issue for smart-phone 2FA but less so for RSA SecurID. Interception of the
SMS message with the one-time token.

6

III OKWS

The Bank of Barton provides a web site for their customers to transfer money to each other. The web site
runs on a single server and uses OKWS (see Building Secure High-Performance Web Services with OKWS,
by Maxwell Krohn).

The bank’s original design has two OKWS service processes. The login service handles customer login: it
checks the customer’s password and issues a session cookie. The banking service handles balance requests
and transfers. Both service processes talk to a database proxy via RPC. Each service has its own authentication
token which it sends with every RPC so the proxy knows which service is talking to it.

The database proxy accepts the following RPCs:

CheckPassword(token, username, password) -> ok, session-cookie
CheckCookie(token, session-cookie) -> ok, username
GetBalance(token, username) -> amount
SetBalance(token, username, amount)

The proxy uses the token to ensure that only the login service can use the CheckPassword RPC, and that only
the banking service can call GetBalance and SetBalance. The proxy doesn’t enforce any other restrictions.

6. [4 points]: Does the separation between login and banking services significantly improve security
over a scheme in which they are in the same process? If yes, describe an attack that it prevents; if no,
explain why not.

Answer: Yes: a bug in login doesn’t immediately help steal money, and a bug in banking doesn’t help
you steal passwords. However, can also argue that if login is exploited, attacker can sniff usernames
and passwords.

7

The bank is considering changing their design so that each bank branch has a separate OKWS service process,
and a separate authentication token. Each customer is associated with a single branch, and the web site
handles all of a customer’s balance/transfer requests in that branch’s service. The web site needs to support
bank transfers between customers at different branches.

7. [6 points]: It turns out that the new design won’t help security unless the bank also changes the
proxy RPC interface and/or the restrictions the proxy enforces. Describe a new proxy RPC interface
and/or set of restrictions that would cause the service-per-branch design to significantly improve
security, and outline an attack which your change prevents.

Answer: Have a separate token per branch. The database proxy enforces that a branch can only
perform RPCs as users belonging to same branch. Replace SetBalance with Transfer to avoid
branches needing to know each-other’s tokens. Database proxy must also enforce that transferred
amount is not negative. If a branch is compromised, can only give away money.

8

IV Lab 2: privilege separation

Ben Bitdiddle has been working on a secure email server but is having trouble configuring the proper
permissions, uids, gids, and supplementary groups. The mail server is designed as follows:

The system is managed by a daemon called postld which is analogous to zookld; it starts other daemons
and restarts them if they die. Authentication is managed by the auth service as in the lab.

All incoming mail is received by the smtpd daemon, on port 25 over TCP. When a client connects to smtpd,
it can optionally authenticate as a local user. This means that smtpd must be able to check user credentials
with the auth server. When smtpd receives a mail message, it handles it in one of two ways depending on
the destination address:

A local user: it forwards the message to the mda (mail delivery agent) service for local delivery.

A user on a remote system: it forwards the message to the relayd service for remote delivery if and only
if the client has authenticated as a local user (to avoid relaying spam from untrusted users). This is
why smtpd must be able to authenticate users.

The following processes are involved:

Process User Group Description
postld root root the launch daemon
smtpd smtpd smtpd receives mail from (remote) clients over smtp and forwards them to the

appropriate service if applicable.
relayd relayd relayd receives mail from smtpd and relays it to other mail servers.
mda mda mda receives mail from smtpd and delivers it to local users’ inboxes.
auth auth auth handles authentication.

The directory set up is as follows:

/
+-- jail/

+-- authsvc/
| +-- sock auth server socket
+-- relaydsvc/
| +-- sock relayd server socket
+-- mda/
| +-- sock mda socket
+-- creds/ credentials database directory (format unspecified).
+-- queue/ the relayd’s outbound mail queue (format unspecified).
+-- mail/ user inboxes

+-- user1/ user1’s inbox
+-- user2/ user2’s inbox

9

8. [8 points]: Please fill in the permissions below such that services have the absolute least
permissions necessary to function. There may be multiple correct solutions. Note: A user must have
read/write permissions to a socket to connect to it.

Directory user group permissions (mode)
--
+-- jail/ root root 0755

+-- authsvc/ auth
| +-- sock auth
+-- relaydsvc/ relayd
| +-- sock relayd
+-- mda/ mda
| +-- sock mda
+-- creds/ auth
+-- queue/ relayd
+-- mail/ root root 0755

+-- user1/ user1
+-- user2/ user2

Answer: Slightly weaker permissions are allowed, but this is the answer.
Directory user group permissions (mode)
--
+-- jail/ root root 0755

+-- authsvc/ auth smtpd 0710
| +-- sock auth smtpd 0660
+-- relaydsvc/ relayd smtpd 0710
| +-- sock relayd smtpd 0660
+-- mda/ mda smtpd 0710
| +-- sock mda smtpd 0660
+-- creds/ auth auth 0700
+-- queue/ relayd relayd 0700
+-- mail/ root root 0755

+-- user1/ user1 mda 0770
+-- user2/ user2 mda 0770

10

V Capsicum

You have a job at a hedge fund evaluating portfolios: deciding which collections of stocks will likely yield
the highest returns. On the Web you find a nifty open-source electronic portfolio optimization program called
epopt. The program’s documentation says that it reads a file containing the amounts of each stock in a
portfolio, computes a better portfolio, and then overwrites the file with the new portfolio. The documentation
says that the only input it needs is the portfolio file. epopt expects the file on the command line, like this:

epopt /usr/rtm/my-portfolio

The code for epopt is millions of lines, and you don’t have time to inspect it all carefully. You are thinking
of using Capsicum to improve the security of epopt (see the paper Capsicum: practical capabilities for
UNIX by Watson et al.).

For each of the following scenarios, indicate whether Capsicum can be used to protect against it. If yes,
briefly outline how; if no, briefly explain why not.

9. [3 points]: Can Capsicum prevent epopt from sending a copy of the input portfolio file to your
competitor over the Internet?

Answer: Yes. Don’t give capability for accessing the network.

10. [3 points]: Can Capsicum prevent epopt from modifying your portfolio file to contain a
lower-quality set of stocks?

Answer: No. Capabilities are for file-descriptor like things.

11. [3 points]: Can Capsicum prevent epopt from writing a copy of your portfolio into the file
/tmp/.hidden?

Answer: Yes. Don’t give capability to access tmp directory

12. [3 points]: Can Capsicum prevent an exploit in which you download a portfolio file from
somewhere on the web, and give it to epopt as input, but the file contains cleverly-crafted contents
that trigger a buffer overflow bug in epopt?

Answer: No. Capsicum may make the application hard to exploit, but you were not required to say
this.

11

VI Native Client

Native Client runs untrusted assembly code inside a sandbox using software fault isolation. The sandboxed
module is located in the address range 0 to 256 Mbyte. Through a trampoline, the sandboxed module can call
into a service runtime, which is located above the address 256 Mbyte. The service runtime is trusted and
provides functions for I/O etc. Two of the service functions available to the sandboxed module are mmap(dst,
src, len) and munmap(addr, len). mmap allocates len bytes of memory and maps the memory into the
virtual address range specified by dst and len, first initializing it by copying len bytes starting from src.
munmap allows the module to remove the specified address range from the process’ address space. Native
client checks that the module doesn’t mmap memory outside of its sandbox.

13. [6 points]: How can an attacker use mmap and munmap to break out of a module’s sandbox?
(Outline an attack in enough detail so that we can decide if it works. Several attacks possible; you have
to give only one.)

Answer: Make a module that jumps to some address v that that meets the requirements of the verifier
(e.g., 64-byte aligned etc.). Store unvalidated instructions into some buffer. Before jumping to v ask
the service runtime to unmap the region at v, and then mmap the buffer with unvalidated instructions to
the address v inside the inner sandbox. Then, jmp to v, which will execute the unvalidated instructions
in the buffer. (See Ben Hawkes exploiting native client).

12

VII Intel SGX

Ben develops a password manager for a bank using SGX’s secure attestation features. The bank distributes
the password manager to its customers, and they install it on their SGX-enabled computers. When a customer
logs into the bank, the bank verifies that Ben’s code is running inside the enclave before sending any secret to
the enclave.

14. [6 points]: The string library that runs inside the enclave and is used by code inside the enclave
turns out to have a buffer overrun exploit. Ben’s friend Sam says that SGX is so powerful that exploiting
buffer overflows is not possible and that Ben doesn’t have to worry about them. Explain why Sam is
wrong. (Give a scenario in which an attacker can exploit a buffer overrun and explain why attestation
doesn’t prevent this attack.)

Answer: If the enclave software takes input from the user at any point (which it is likely to do), for
example through a read system call, an attacker can supply a very long, malicious input, exploiting
the vulnerable code through a buffer overflow. SGX does not do anything to prevent this. Attestation
does not prevent the attack, since it only verifies that the initial state of the enclave matches what the
remote party expects. If the application contains bugs that makes the application behave differently
from what the programmer intended, this is not detected by SGX (i.e., SGX does not verify that the
given code is correct). The reason Ben should be worried is that the attacker now controls the behavior
of the application, but the bank still trusts the application; an attacker could exploit this trust and, for
example, leak the user’s passwords.

13

VIII Symbolic Execution

Recall from the EXE paper (EXE: Automatically Generating Inputs of Death) that, under certain circum-
stances, EXE forks execution in order to explore different paths (see the EXE paper’s Section 2). For each of
the two functions below, how many forks would each cause in total? The argument x is symbolic. Assume
that the compiler does not optimize the code, and that EXE has enough time to follow all paths.

int
f1(int x)
{
int z = 0;
int i;
for(i = 0; i < 10; i++){
if(x == i){
z += 1;
break;

}
}
return z;

}

Note the break inside the if statement, which causes the loop to terminate if the if condition is true.

15. [4 points]: How many forks for f1() above?

Answer: 10. Each if statement causes a fork; one branch continues the loop (and forks more), the
other does not.

14

int
f2(int x[10])
{
int z = 0;
int i;
for(i = 0; i < 10; i++){
if(x[i] == 1){
z += 1;

}
}
return z;

}

Note that x is an array of symbolic integers, and that there is no break inside the if statement.

16. [4 points]: How many forks for f2() above?

Answer: 1023. First iteration forks once, second forks twice (once for each previous fork), third
forks four times, and ith forks 2i−1 times. Since there are ten iterations, total number of forks is
20 +21 + . . .+29, which is the same as a number with the first ten bits set, which is 1023. There will
be 1024 processes if you count the original.

Suppose you have a server with a secret (in theSecret) that it should only reveal under certain circumstances.
Your server contains this code that calls authCheck() to decide if the client input implies that it’s OK to
reveal the secret, and (if yes) it calls emit() to send the secret to the client.

if(authCheck(input))
emit(theSecret);

The input variable holds a complete HTTP request (URL, cookies, and other HTTP headers). You are
worried that there might be logical bugs in authCheck() that cause it to return true in situations where
theSecret should not be revealed.

17. [4 points]: Outline how you could use EXE to help you gain confidence that authCheck()
works correctly.

Answer: Puts some manual asserts in the code and run exe to see if the asserts are triggered. These
asserts can either be in authCheck itself, or you could place an assert that checks that input is indeed a
valid authentication request inside the if branch, and inspect the counter-example produced by EXE.

15

IX Android security

Consider the Friend application described in the paper Understanding Android Security. The FriendTracker
application defines the permissions READ_FRIENDS and WRITE_FRIENDS, which are used to limit access to
the FriendProvider component in the FriendTracker application.

18. [4 points]: Does the Android security system ensure that no other application than the
FriendViewer application can read from the FriendProvider component? (Briefly explain your answer.)

Answer: No. Any application that the user installs can ask for that permission, and the user may give
the permission to that application.

16

X 6.858

We’d like to hear your opinions about 6.858. Any answer, except no answer, will receive full credit.

19. [2 points]: Are there things you’d like to see improved in the second half of the semester?

Answer: 9x Better Q&A in lectures, 8x Reading questions due later, 7x More attack-oriented topics,
7x Show real attacks, 7x More current security research, 7x Better practice Qs, 6x More guest lectures,
6x Grades sooner, 4x Lab 4 is cool!, 4x Lab 1 is too hard (gdb, gcc, etc), 4x Lectures are too similar to
reading, 4x More background information, 3x Fewer papers, 3x Labs too easy, 3x More recitations, 3x
More OH, 3x Better lab documentation, 3x Cover labs in lecture, 2x 1-190 needs loudspeakers, 2x
Labs more based on papers, 2x Video recordings of lectures, 2x Cover papers better during lecture, 2x
Better lecture notes,

20. [2 points]: Is there one paper out of the ones we have covered so far in 6.858 that you think we
should definitely remove next year? If not, feel free to say that.

Answer: 26x Haven, 16x SGX, 11x Ur/Web, 10x Capsicum, 8x Tangled Web, 8x Password Alterna-
tives, 5x Android, 3x EXE, 2x NaCl, 2x Confused Deputy, 2x Baggy Bounds, 1x OKWS

End of Quiz

17

