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Introduction

Password authentication has been around since the epoch time. A system can authenticate its users
in so many ways; “The quest to replace passwords” [1] compares these mechanisms looking at three
major factors: usability, deployability and security. For instance, a system enhanced with a two-factor
authentication (2FA) requires its users to carry a physical proof to login. While this may increase
system security, it decreases usability and on deployability. In addition, the security of the system will
now also depend on the security of the token’s provider. In order to address these issues, we propose
introducing an alternative system that, if necessary, can resort to 2FA. This system analyzes the
users’ keystroke time inputs, essentially using muscle memory as an additional physical proof.

We conducted preliminary analyses to better understand the relationship between users and their
password inputs and to assess the feasibility of such a system. The plots below show results from 2
trials of 2 users each. In each trial, there is one “user” and one “imposter,” both entering the same
password. The axes in these plot are the first two principal components of the typing timing
sequences. Here the boundary denotes a quadratic discriminant analysis (QDA) applied on the first
two principal components. Even with this reduced information, we are able to obtain fairly good
sensitivity as well as specificity in our classification. The intuition for using QDA is that the method
utilizes differences in both mean and variance for classification - a user and an imposter will enter the
password at different typing speeds, meaning the mean of the data will likely be different; and a user
will tend to develop familiarity with the password, making the variance of his/her time sequence data
low, while the variance in an imposter’s data will be high.
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Figure 1: Each point represents a password entry. The black points depict a user’s attempts, and the
red points depict an imposter’s attempts. The black line represents the QDA decision boundary.

The data was collected from the user’s browser using Javascript onkeypress events and “Date.now()”
which returns a timestamp [2]. This preliminary analysis was conducted using R [11].



Related Work

A similar approach was applied to Google’s reCaptcha project [3]. Users now will only need to check
a checkbox instead of guessing distorted text to prove their non-botness [4]. The reCaptcha project
looks at the user's mouse behavior to differentiate a user from a bot. On the other hand, keystroke
password biometric authentication has been around since 1980 [5]. Instead of inputting a password,
the user is required to write a paragraph to authenticate. punchTimeAuth diverges from this
implementation as it looks at identifying a user after inputting a correct password.

Design and Implementation

Upon registration, the user will need to enter a password multiple times to generate a “digital
signature.” This signature consists of confidence intervals for time differences between keystrokes.
Storing this signature as is can reveal the user’s password length if the database was compromised
by an attacker. With this information, an attacker can brute-force a user’s password in a reasonable
amount of time. To prevent this disaster from happening, we dilute the user’s timestrokes by adding a
padding depending on the password’s length, here, we use 50 - N as the padding, where N is the
length of the password. Fig. 2 shows a record from the MongoDB users collection, password is
hashed and salted with bcrypt [8] and the “equation” field stores the time sequences with the padding.

"_id" : ObjectId("5661d437868dcac7@b@a84de"),

"username" : "yoj",

"password" : "$2a$10%y.uZb.6stUNI8GOeLpoll .MlizrdTi7fjMHNLUrYzgrcSONtcDwOq",

"email" : "yoj",

"equation" : "82,106,98,138,218,170,98,18,32,68,153,36,104,16,105,137,73,134,127,
3,65,36,116,55,159,122,93,135,111,116,129,119,96,126,115,112,219,58,123,259,143, 26,209, 26
1,61,84,143,159,112,221,213,246,230, 286,358, 302,222,150, 227,253,249, 197,233,307,236,141, 1
78,283,209,166,229,213,225,245,330,313,217,193,297,168,292, 245,257,224 ,357,282,196,236, 20
1,303,157,259,189,258,191,229,236,145,130,201",

"created" : ISODate("2015-12-04T17:58:15.999Z2"),
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Figure 2: Sample record from MongoDB

Software Stack:

The project was implemented using Node.js and MongoDB on the backend. Fig.3 shows the list of
node modules used extracted from the package.json file. The web server is built with Express.js, a
web application framework for Node.js. We also hardened POST requests against cross-site request
forgery attacks using the csurf module [7].



"dependencies": {

"bcrypt": "0.8.5",
"body-parser": "~1.13.2",
"cookie-parser": "~1,3.5",
“csurf™: “n.38.3",
"debug": "~2.2.0",
"express": "~4,13.1",
"jade": "~1.11.0",
"mongoose”: "4.2.7",
"morgan": "~1.6.1",
"serve-favicon": "~2.3.0"
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Figure 3: Node modules used in the implementation

The client side was built using Javascript. Because in reality, at registration, users may find it difficult
to input “imposter sequences,” the ideal classification scheme would be unsupervised, with no
“imposter” datapoints. A few different methods were attempted, including a distance based approach,
an initial dimensionality reduction using principal components analysis, and a simple outlier-based
approach. In the end, the simple outlier-based approach was used, because yielded the best results
during our “product testing.”

The method is as follows: observations from registration are used to create boundaries outside which
the particular time difference is called an outlier. Then, if over 10% of these time differences are
called outliers, login is refused. These boundaries are (Q1-4*IQR, Q3+4*IQR), where Q1 and Q3 are
the first and third quartiles of the particular time difference, and IQR is the average interquartile range
over all time differences. The quartiles were calculated using the seventh quantile method described
in Hyndman and Fan [11]. This is the default used by R and S.

Figure 4 shows the registration and the authentication forms respectively. A user must enter his
password correctly, 5 times in order to train the model. Upon authentication the classical user
password matching is applied before matching keystrokes data.
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Figure 4: Registration and Authentication forms

Conclusion

In this project we address the practical advantages of using keystroke dynamics as an additional
physical proof for authenticating a user. punchTimeAuth investigated the process of analyzing the
way users type by measuring keyboard input times and authenticating them based on habitual
patterns in typing rhythm.
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