Perspectives on Security

Butler Lampson
Microsoft Research
Symposium on Operating Systems Principles
October 4, 2015

How did we get here? @

In the beginning, security was by physical isolation (1950-1963)
Easy: You bring your data, control the machine, take everything away
Still do this today with VMs and crypto (+ enclaves if VM host is untrusted)

Timesharing brought the basic dilemma of security: (1963-1982)

Isolation vs. sharing
Hard: Each user wants a private machine, isolated from others
but users want to share data, programs and resources

Since then, things have steadily gotten worse (1982-2015)
Less isolation, more sharing, no central management
More valuable stuff in the computers
Continued misguided search for perfection (following the NSA’s lead)

4 October 2015 Lampson: Perspectives on security 2

Wisdom

If you want security, you must be prepared for inconvenience.
—General B.W. Chidlaw, 12 December 1954

When it comes to security, a change is unlikely to be an improvement.
—Doug Mcllroy, ~1988

The price of reliability is the pursuit of the utmost simplicity.
It is a price which the very rich find most hard to pay.

—Tony Hoare, 1980 (cf. Matthew 19:24)

But who will watch the watchers? She’ll begin with them and buy their silence.
—Juvenal, sixth satire, ~100

3 October 2015 Lampson: Perspectives on security 3

What we know how to do @

Secure something simple very well
Protect complexity by isolation and sanitization
Stage security theatre

What we don’t know how to do

Make something complex secure

Make something big secure if 1t’s not 1solated

Keep something secure when It changes

Get users to make judgments about security
Understand privacy—fortunately not an SOSP topic

3 October 2015 Lampson: Perspectives on security 4

Themes @

Goals: Secrecy (confidentiality), integrity, availability (ciA: ware 1970)
Gold standard: Authentication, authorization, auditing (S&S 1975)

Principals: People, machines, programs, ... (Dennis 1966, DEC 1991)
Groups/roles: make policy manageable (Multics 1968, NIST 1992)
Winne?ppOSItIOnS Loser (in deployment,
Convenience VS. Security not good vs. bad)
Sharing vs. Isolation
Bug fixes vs. Correctness

Policy/mechanisms vs. Assurance
Access control vs. Information flow

3 October 2015 Lampson: Perspectives on security 5

Timeline
Themes Systems
1960s Timesharing; ACLs; access control matrix; CTSS; Multics; CP/CMS; Cal TSS;
VMs; passwords; capabilities; domains; gates Adept-50; Plessey 250

TS; LANs/Internet (e/e security); public key; Unix; VMS; VM/370; IBM RACF;

1970s multi-level sec.; ADTs/objects; least privilege; Clu; Hydra; Cambridge CAP
Trojans; isolation by crypto; amplification; undecidability

Workstations; client/server; Orange Book; Al VMS; SecurelD; Morris worm;

1980s . .

global authentication; Clark and Wilson | X

PCs; Web:; sandboxes; Java security; Browsers; SSL; NT; Linux; PGP;
1990s crypto export; decentralized information flow; Taos

Common Criteria; biometrics; RBAC; BAN: SFI; SET
2000s Web; JavaScript; buffer overflows; DDoS TPM; LSM: SELInux; seL4: HiStar

2010s Web; big data; enclaves; homomorphic crypto Singularity; CryptDB; Ironclad ...

3 October 2015 Lampson: Perspectives on security 6

¥

Foundation: Isolation

A host Isolates an execution environment PR LTI .
The basis for any security. Must trust the host .] -
Many ways to do it (and many bugs): Fost (CLR, karnl
Mechanism Host -
Java/JavaScript sandboxing JVM/JS engine Java 1995
Modules/objects language/runtime Clu 1974
Software fault isolation process Wahbe et al 1993
Processes OS CTSS 1961
Virtual machines hypervisor CP/40 1966
Limited comm (wires or crypto) network DESNC 1985

AlIr gaps: physical separation physu:s 1950; Tempest ~1955

3 October 2015 Lampson: Perspectiv 7

Safe Sharing: Access Control

1. Isolation boundary limits attacks to channels (no bugs)
2. Access Control for channel traffic
3. Policy sets the rules

: I Guard/ -
Principal I monitor Resource

’

Anderson

1. Isolation boundary” report 1972

2. Access control

N ———

3. Policy

Host (CLR, kernel, hardware, VMM, ...)

3 October 2015 Lampson: Perspectives on security 8

Access Control: The Gold Standard

Authenticate

principals: Who made a request?

People, but also channels, servers, programs
(encryption implements channels, so the key is a principal)

Authorize

access: Who 1s trusted with a resource?

Group principals or resources, to simplify management

Can define a group by a property,
e.g. “type-safe” or “safe for scripting”

Audit

3 October 2015

requests: Who did what when?

1. Isolation boundary”

2. Access control

Lampson: Perspectives on security

. Guard/ .
Su_bje_ct / rererence—p| ObjeCt/
Principal monitor Resource

7’

3. Policy

[N R _§ - § ®B>§ § § § § § § § 51 8 |

Host (CLR, kernel, hardware, VMM, ...)

9

Policy: What sharing is allowed?

The guard evaluates a function: permissions = policy(subject, object)
If functions are too mathematical, call it an access matrix (Lampson 1971)

Subject/principal Object/resource

File foo Database payroll
Alice read, write write paychecks
Bob read -

Permissions kept at the object are ACLs; at the subject, capabilities
Capabilities work for short term policy
File descriptors/handles in OS; objects in languages (Unix/Windows; Java, C#)

ACLs work for long-term policy; tell you who can access the resource
Groups of subjects and objects keep this manageable (Multics 1968)

3 October 2015 Lampson: Perspectives on security 10

Keeping Secrets: Information Flow Control

0. Labels on information
1. Isolation boundary limits flows to channels Adept-50 1969
2. Flow control based on labels

: Orange Book 1985
3. Policy says what flows are allowed

K | _
1| Data Guard / I _[Subject /
+ Label| |Refmon 1 | Principal
0. Labels '

L : Compare access control
_ A ==
1. Isolation boundary” : ” i‘:i':i":‘::.’%%}?gi Object!
2. FIOW COntrO| I : : : 1. Isolation boundary”/E RN i
i I I II 2. Access control : @ i E i
3. POI'Cy I W W S =1 3. Policy :________=:::::::::__=

3 October 2015 Lampson: Perspectives on security 11

Information Flow Control

Invented to model military classification (Adept-50 1969)

abel every datum: top secret/nuclear > top secret > secret
Labels form a lattice, and propagate: If d, is input to d,, then d,’s label is > d,’s

Enforce with access control: label subjects, containers (Bell/LaPadula 1973)

No read up, write down; can be dynamic or static (Adept-50; Denning 1976)
Decentralized flow control (Myers and Liskov 1998)

Anyone can invent labels. If you own a label, you can declassify it
Can do this in a language or in an OS (Jflow 1999; HiStar 2006)

So far, none of this has been practical

And then there are covert (side) channels: timing, radiation, power ...
Abstractions don’t keep secrets (Tempest 1955, Lampson 1972)

3 October 2015 Lampson: Perspectives on security 12

Who controls policy? DAC, MAC, RBAC

How to decide:
Is the user or the program malicious? Insiders, Trojan horses
Is the user competent? Policy can be tricky
Is the user motivated? Security gets in the way of work and play

Discretionary access control (DAC) : the object’s owner (CTSS 1963)

Mandatory access control (MAC) :an administrator (1969; 1985)
MAC # flow control

Role based access control (RBAC): the app designer (NIST 1992)
Administrator just populates the roles

3 October 2015 Lampson: Perspectives on security 13

Distributed Systems: Cryptography

Systems communicate, so need secure channels
Host, secure wire, ..., but usually cryptography: it’s general, end-to-end
Basic crypto functionality: mathematical magic that implements:

Sign with K-/ verify with K : integrity You can only do it
Seal with K / unseal with K-: secrecy iIf you know the key
This gives you an end-to-end secure channel

Public key crypto: K # K™1; | can sign, anyone can verify (RsA 1977)

Homomorphic crypto: compute on encrypted data (Gentry 2009)
This Is too slow, but you can simulate it (CryptDB 2011)
Zero knowledge and verifiable computation (Pinocchio 2013)

3 October 2015 Lampson: Perspectives on security 14

Distributed Systems: Understanding Trust

Systems are decentralized, so we must reason about trust
We need proofs to justify such reasoning
Principals: people, machines, programs, services, protocols, ...

Accountability: principal says statement
Alice sz?ys .read from file Foo o DEC 1989, 1991
Trust: principal A speaks for principal B

Alice says Bob@microsoft speaks for Alice
Microsoft says Key63129 speaks for Bob@microsoft
Key63129 says read from file Foo

Extending this to authorization yields an end-to-end argument
file Foo says Alice speaks for file Foo ACL entry
So Foo says read from file Foo

3 October 2015 Lampson: Perspectives on security 15

Does It actually work? Assurance (Correctness)

Keep It simple—Trusted Computing Base (TCB) (Rushby 1981)

One way: a security kernel—apps out of the TCB. This works for sharing hardware

Ideally, you verify: prove that a system satisfies Its security spec

This means that every behavior of the system is allowed by the spec
Not the same as proving that it does everything in the manual

Today in seL4, Ironclad, ... First tried in Gypsy (late 1970s)
What if the spec is wrong? Keep it simple
Usually verifying iIs too hard, so you certify instead

Through some “independent” agency. Alas, process trumps substance
First by DoD for Orange Book, later international Common Criteria (1985, 1999)

Or you can verify some properties: isolation, memory/type safety
Or you can apply bandaids

3 October 2015 Lampson: Perspectives on security 16

Bandalids for Bugs (Defense in Depth)

No guarantees, but at least the bad guy has to work harder

Firewalls to keep intruders out, look for suspicious traffic (DEC 1988)
Signature hacks to detect malware (~1990)
Memory safety hacks to catch writes outside array bounds (Phrack 1996)
Intrusion detection hacks to look for anomalous behavior (SRI1 1986)

Control Flow Integrity to block jumps not in the normal flow (MSR 2005)
Taint tracking to keep unsanitized input away from execution (CMU 2005)
Process to enforce use of the tools (MS SDL 2004)

“I don’t have to outrun the bear; I just have to outrun you.”
These are not bad things, but they are hacks

3 October 2015 Lampson: Perspectives on security 17

What about my system? Configuration (Policy)

If the code Is correct, the configuration may still be wrong
You write the code once, but every system has its own configuration

It’s boring, and 1t changes. So either it’s small, or 1t’s wrong.

But it’s not small; there’s always another feature, another plausible scenario
There are 12 levels of indirection in Windows printing, each with its own security

And configuration is usually done by amateurs
With MAC and RBAC at least it’s done by pros

Conflict: want fine grained policy, but can only manage coarse grain

Not much work on this, and it remains unsolved
Solution (never adopted): Lower aspirations, budget for complexity a,

3 October 2015 Lampson: Perspectives on security 18

3 October 2015

What has worked? What hasn’t?

Worked ~ gotten wide adoption

Worked
VMSs
SSL
Passwords—universal
Safe languages
Firewalls
Process—SDL

Lampson: Perspectives on security 19

Failed
“Secure systems”™
Capabilities (except short term)
Metrics for security
MLS/Orange book
User education
Intrusion detection

®

Why don’t we have “real” security? @

A. People don’t buy It
Danger iIs small, so it’s OK to buy features instead

Security Is expensive
Configuring security is a lot of work
Secure systems do less because they’re older

Security Is a pain
It stops you from doing things
Users have to authenticate themselves

Goals are unrealistic, ignoring technical feasibility and user behavior

B. Systems are complicated, so they have bugs
Especially the configuration

3 October 2015 Lampson: Perspectives on security 20

What next?

Lower aspirations. In the real world, good security Is a bank vault

Hardly any computer systems have anything like this
At best we can only make simple things secure

Access control doesn’t work—40 years of experience says SO

Basic problem: its job 1s to say “No”
This stops people from doing their work, and then they relax the access control
usually too much, but no one notices until there’s a disaster

Retroactive security: focus on things that actually happened
rather than all the many things that might happen e

Real world security Is retroactive
Burglars are stopped by fear of jail, not by locks P
The financial system’s security depends on undo, not on Vaults

3 October 2015 Lampson: Perspectives on security 21

