
Perspectives on Security

Butler Lampson

Microsoft Research

Symposium on Operating Systems Principles

October 4, 2015

How did we get here?

 In the beginning, security was by physical isolation (1950-1963)

 Easy: You bring your data, control the machine, take everything away

 Still do this today with VMs and crypto (+ enclaves if VM host is untrusted)

 Timesharing brought the basic dilemma of security: (1963-1982)

Isolation vs. sharing
 Hard: Each user wants a private machine, isolated from others

 but users want to share data, programs and resources

 Since then, things have steadily gotten worse (1982-2015)

 Less isolation, more sharing, no central management

 More valuable stuff in the computers

 Continued misguided search for perfection (following the NSA’s lead)
4 October 2015 2Lampson: Perspectives on security

Wisdom

 If you want security, you must be prepared for inconvenience.

—General B.W. Chidlaw, 12 December 1954

 When it comes to security, a change is unlikely to be an improvement.

—Doug McIlroy, ~1988

 The price of reliability is the pursuit of the utmost simplicity.

It is a price which the very rich find most hard to pay.

—Tony Hoare, 1980 (cf. Matthew 19:24)

 But who will watch the watchers? She’ll begin with them and buy their silence.

—Juvenal, sixth satire, ~100

3 October 2015 3Lampson: Perspectives on security

What we know how to do

 Secure something simple very well

 Protect complexity by isolation and sanitization

 Stage security theatre

What we don’t know how to do
 Make something complex secure

 Make something big secure if it’s not isolated

 Keep something secure when it changes

 Get users to make judgments about security

 Understand privacy—fortunately not an SOSP topic

3 October 2015 4Lampson: Perspectives on security

Themes

 Goals: Secrecy (confidentiality), integrity, availability (CIA: Ware 1970)

 Gold standard: Authentication, authorization, auditing (S&S 1975)

 Principals: People, machines, programs, … (Dennis 1966, DEC 1991)

 Groups/roles: make policy manageable (Multics 1968, NIST 1992)

3 October 2015 5

Oppositions
Winner Loser

Convenience vs. Security

Sharing vs. Isolation

Bug fixes vs. Correctness

Policy/mechanisms vs. Assurance

Access control vs. Information flow
Lampson: Perspectives on security

(in deployment,

not good vs. bad)

Timeline

Themes Systems

1960s
Timesharing; ACLs; access control matrix;

VMs; passwords; capabilities; domains; gates

CTSS; Multics; CP/CMS; Cal TSS;

Adept-50; Plessey 250

1970s
TS; LANs/Internet (e/e security); public key;
multi-level sec.; ADTs/objects; least privilege;
Trojans; isolation by crypto; amplification; undecidability

Unix; VMS; VM/370; IBM RACF;

Clu; Hydra; Cambridge CAP

1980s
Workstations; client/server; Orange Book;

global authentication; Clark and Wilson

A1 VMS; SecureID; Morris worm;

IX

1990s
PCs; Web; sandboxes; Java security;
crypto export; decentralized information flow;

Common Criteria; biometrics; RBAC; BAN; SFI; SET

Browsers; SSL; NT; Linux; PGP;

Taos

2000s Web; JavaScript; buffer overflows; DDoS TPM; LSM; SELinux; seL4; HiStar

2010s Web; big data; enclaves; homomorphic crypto Singularity; CryptDB; Ironclad ...
3 October 2015 6Lampson: Perspectives on security

Foundation: Isolation

 A host isolates an execution environment
 The basis for any security. Must trust the host

 Many ways to do it (and many bugs):

3 October 2015 7

Mechanism Host

Java/JavaScript sandboxing JVM/JS engine Java 1995

Modules/objects language/runtime Clu 1974

Software fault isolation process Wahbe et al 1993

Processes OS CTSS 1961

Virtual machines hypervisor CP/40 1966

Limited comm (wires or crypto) network DESNC 1985

Air gaps: physical separation physics 1950; Tempest ~1955
Lampson: Perspectives on security

Safe Sharing: Access Control

1. Isolation boundary limits attacks to channels (no bugs)

2. Access Control for channel traffic

3. Policy sets the rules

Object /
Resource

Guard /
Reference

monitor

RequestSubject /

Principal

Authorization

Audit
log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy
Host (CLR, kernel, hardware, VMM, ...)

3 October 2015 8

Anderson

report 1972

Lampson: Perspectives on security

Access Control: The Gold Standard

 Authenticate principals: Who made a request?

 People, but also channels, servers, programs

(encryption implements channels, so the key is a principal)

 Authorize access: Who is trusted with a resource?

 Group principals or resources, to simplify management

▬ Can define a group by a property,

e.g. “type-safe” or “safe for scripting”

 Audit requests: Who did what when?

3 October 2015

9Lampson: Perspectives on security

Policy: What sharing is allowed?

 The guard evaluates a function: permissions = policy(subject, object)
 If functions are too mathematical, call it an access matrix (Lampson 1971)

 Permissions kept at the object are ACLs; at the subject, capabilities
 Capabilities work for short term policy

▬ File descriptors/handles in OS; objects in languages (Unix/Windows; Java, C#)

 ACLs work for long-term policy; tell you who can access the resource
▬ Groups of subjects and objects keep this manageable (Multics 1968)

3 October 2015 10

Subject/principal Object/resource

File foo Database payroll

Alice read, write write paychecks

Bob read -

Lampson: Perspectives on security

Keeping Secrets: Information Flow Control

0. Labels on information
1. Isolation boundary limits flows to channels
2. Flow control based on labels
3. Policy says what flows are allowed

Guard /
Ref mon

Data

+ Label
Subject /
Principal

0. Labels

Authorization Authentication

Audit
log

Policy
1. Isolation boundary

2. Flow control

3. Policy

Send

3 October 2015 11

Adept-50 1969

Orange Book 1985

Compare access control

Lampson: Perspectives on security

Information Flow Control

 Invented to model military classification (Adept-50 1969)

 Label every datum: top secret/nuclear ≥ top secret ≥ secret
▬ Labels form a lattice, and propagate: If d1 is input to d2, then d2’s label is ≥ d1’s

 Enforce with access control: label subjects, containers (Bell/LaPadula 1973)

▬ No read up, write down; can be dynamic or static (Adept-50; Denning 1976)

 Decentralized flow control (Myers and Liskov 1998)

 Anyone can invent labels. If you own a label, you can declassify it
▬ Can do this in a language or in an OS (Jflow 1999; HiStar 2006)

 So far, none of this has been practical

 And then there are covert (side) channels: timing, radiation, power ...

 Abstractions don’t keep secrets (Tempest 1955, Lampson 1972)

3 October 2015 12Lampson: Perspectives on security

Who controls policy? DAC, MAC, RBAC

 How to decide:

 Is the user or the program malicious? Insiders, Trojan horses

 Is the user competent? Policy can be tricky

 Is the user motivated? Security gets in the way of work and play

 Discretionary access control (DAC) : the object’s owner (CTSS 1963)

 Mandatory access control (MAC) : an administrator (1969; 1985)

 MAC ≠ flow control

 Role based access control (RBAC): the app designer (NIST 1992)

 Administrator just populates the roles

3 October 2015 13Lampson: Perspectives on security

Distributed Systems: Cryptography

 Systems communicate, so need secure channels

 Host, secure wire, …, but usually cryptography: it’s general, end-to-end

 Basic crypto functionality: mathematical magic that implements:

 Sign with K-1/ verify with K : integrity

 Seal with K / unseal with K-1: secrecy

 This gives you an end-to-end secure channel

 Public key crypto: K ≠ K-1; I can sign, anyone can verify (RSA 1977)

 Homomorphic crypto: compute on encrypted data (Gentry 2009)

 This is too slow, but you can simulate it (CryptDB 2011)

 Zero knowledge and verifiable computation (Pinocchio 2013)

3 October 2015 14

You can only do it
if you know the key

Lampson: Perspectives on security

Distributed Systems: Understanding Trust

 Systems are decentralized, so we must reason about trust
 We need proofs to justify such reasoning

 Principals: people, machines, programs, services, protocols, …

 Accountability: principal says statement
 Alice says read from file Foo

 Trust: principal A speaks for principal B
▬ Alice says Bob@microsoft speaks for Alice
▬ Microsoft says Key63129 speaks for Bob@microsoft
▬ Key63129 says read from file Foo

 Extending this to authorization yields an end-to-end argument
▬ file Foo says Alice speaks for file Foo ACL entry

▬ So Foo says read from file Foo

3 October 2015 15

DEC 1989, 1991

Lampson: Perspectives on security

Does it actually work? Assurance (Correctness)

 Keep it simple—Trusted Computing Base (TCB) (Rushby 1981)

 One way: a security kernel—apps out of the TCB. This works for sharing hardware

 Ideally, you verify: prove that a system satisfies its security spec
 This means that every behavior of the system is allowed by the spec

▬ Not the same as proving that it does everything in the manual

 Today in seL4, Ironclad, … First tried in Gypsy (late 1970s)

 What if the spec is wrong? Keep it simple

 Usually verifying is too hard, so you certify instead
 Through some “independent” agency. Alas, process trumps substance

▬ First by DoD for Orange Book, later international Common Criteria (1985, 1999)

 Or you can verify some properties: isolation, memory/type safety

 Or you can apply bandaids
3 October 2015 16Lampson: Perspectives on security

Bandaids for Bugs (Defense in Depth)

 No guarantees, but at least the bad guy has to work harder
 Firewalls to keep intruders out, look for suspicious traffic (DEC 1988)

 Signature hacks to detect malware (~1990)

 Memory safety hacks to catch writes outside array bounds (Phrack 1996)

 Intrusion detection hacks to look for anomalous behavior (SRI 1986)

 Control Flow Integrity to block jumps not in the normal flow (MSR 2005)

 Taint tracking to keep unsanitized input away from execution (CMU 2005)

 Process to enforce use of the tools (MS SDL 2004)

 “I don’t have to outrun the bear; I just have to outrun you.”
 These are not bad things, but they are hacks

3 October 2015 17Lampson: Perspectives on security

What about my system? Configuration (Policy)

 If the code is correct, the configuration may still be wrong

 You write the code once, but every system has its own configuration

 It’s boring, and it changes. So either it’s small, or it’s wrong.

▬ But it’s not small; there’s always another feature, another plausible scenario

 There are 12 levels of indirection in Windows printing, each with its own security

 And configuration is usually done by amateurs

 With MAC and RBAC at least it’s done by pros

 Conflict: want fine grained policy, but can only manage coarse grain

 Not much work on this, and it remains unsolved

▬ Solution (never adopted): Lower aspirations, budget for complexity

3 October 2015 18Lampson: Perspectives on security

What has worked? What hasn’t?

Worked

 VMs

 SSL

 Passwords—universal

 Safe languages

 Firewalls

 Process—SDL

Failed

 “Secure systems”

 Capabilities (except short term)

 Metrics for security

 MLS/Orange book

 User education

 Intrusion detection

3 October 2015 19

Worked ~ gotten wide adoption

Lampson: Perspectives on security

Why don’t we have “real” security?

 A. People don’t buy it

 Danger is small, so it’s OK to buy features instead

 Security is expensive
▬ Configuring security is a lot of work

▬ Secure systems do less because they’re older

 Security is a pain
▬ It stops you from doing things

▬ Users have to authenticate themselves

 Goals are unrealistic, ignoring technical feasibility and user behavior

 B. Systems are complicated, so they have bugs

 Especially the configuration

3 October 2015 20Lampson: Perspectives on security

What next?

 Lower aspirations. In the real world, good security is a bank vault
▬ Hardly any computer systems have anything like this

▬ At best we can only make simple things secure

 Access control doesn’t work—40 years of experience says so

 Basic problem: its job is to say “No”
▬ This stops people from doing their work, and then they relax the access control

▬ usually too much, but no one notices until there’s a disaster

 Retroactive security: focus on things that actually happened

 rather than all the many things that might happen

 Real world security is retroactive
▬ Burglars are stopped by fear of jail, not by locks

▬ The financial system’s security depends on undo, not on vaults
3 October 2015 21Lampson: Perspectives on security

Biertan fortified church, Romania

Jail Lock

