
M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. IV, LNCS 5430, pp. 1–22, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Hardware Mechanisms for Memory Authentication:
A Survey of Existing Techniques and Engines

Reouven Elbaz1,2, David Champagne2, Catherine Gebotys1, Ruby B. Lee2,
Nachiketh Potlapally3, and Lionel Torres4

1 Department of Computer and Electrical Engineering, University of Waterloo
Waterloo, Canada

{reouven,cgebotys}@uwaterloo.ca
2 Department of Electrical Engineering, Princeton University

Princeton, USA
{relbaz,dav,rblee}@princeton.edu

3 Security Center of Excellence (SeCoE), Intel Corporation
Hillsboro, USA

nachiketh.potlapally@intel.com
4 Department of Microelectronics, LIRMM, University of Montpellier

Montpellier, France
torres@lirmm.fr

Abstract. Trusted computing platforms aim to provide trust in computations
performed by sensitive applications. Verifying the integrity of memory contents
is a crucial security service that these platforms must provide since an adversary
able to corrupt the memory space can affect the computations performed by the
platform. After a description of the active attacks that threaten memory integ-
rity, this paper surveys existing cryptographic techniques – namely integrity
trees – allowing for memory authentication. The strategies proposed in the lit-
erature for implementing such trees on general-purpose computing platforms
are presented, along with their complexity. This paper also discusses the effect
of a potentially compromised Operating System (OS) on computing platforms
requiring memory authentication and describes an architecture recently pro-
posed to provide this security service despite an untrusted OS. Existing tech-
niques for memory authentication that are not based on trees are described and
their performance/security trade-off is discussed. While this paper focuses on
memory authentication for uniprocessor platforms, we also discuss the security
issues that arise when considering data authentication in symmetric multiproc-
essor (shared memory) systems.

Keywords: Security, Trusted Computing, Memory Authentication, Integrity
Trees, Active attacks, Board level attacks.

1 Introduction

The increasing connectivity of computing devices coupled with rapid growth in
number of services these devices offer, has resulted in more and more end users de-
ploying computing platforms for a wide variety of tasks including those which handle

2 R. Elbaz et al.

sensitive data. Examples of sensitive data include bank account number, passwords,
social security number, health information etc. A typical user logs into online ac-
counts using secret passwords almost every day, and procuring services requires the
user to create new accounts (for instance, subscribing to a cable service, and creating
an online account to manage it), and consequently create and store additional pass-
words. Even asking for an online insurance quote might require the user to give out
personal information such as his or her social security number. Thus, going by these
trends, we can say that the amount of sensitive information processed by and stored
on the computing devices is projected to further increase with time. In such online
transactions, users expect their sensitive data to be properly stored and handled by
trusted computer systems of the service provider at the receiving end. However, if this
trust assumption proves to be wrong, then the breach in user confidence can severely
undermine the reputation and profits of the service provider, as was the case in a re-
cent scandal where a computer previously owned by a bank and containing informa-
tion on several million bank customers was sold on eBay [20]. On first glance, this
appears solely to be an issue of data confidentiality and access control. However,
when an attacker gets control of a computing system on which data is encrypted, the
attacker can still compromise security of user transactions by appropriately manipu-
lating the encrypted data. This was illustrated in an attack carried out on a crypto-
processor where an adversary could alter the execution flow of software by corrupting
encrypted code and data in memory to reveal confidential information [5]. Thus, it is
not sufficient to just enforce data confidentiality and access controls, but, it is impera-
tive to also take data integrity into account. Data integrity refers to ability to detect
any adversarial corruption or tampering of data.

Several recent research efforts in academia [1, 2, 3] and industry [4] aim to provide
trust in the computations performed by sensitive applications—e.g., Digital Rights
Management (DRM) client, personal banking application, distributed computing
client—on general-purpose computing platforms. Protecting confidentiality of private
data and detecting any tampering are important features of trusted computing. Since
an adversary corrupting the memory space of an application (through software [21] or
physical attacks [5]) can affect the outcome of its computations, these computing
platforms must provide memory authentication for sensitive applications. Memory
authentication is defined as the ability to verify that the data read from memory by the
processor (or by a specific application) at a given address is the data it last wrote at
this address.

In past work on memory authentication, the main assumption of the trust model is
that only the processor chip is trusted i.e., the trust boundary includes the computing
and storage elements within the processor. A naïve approach to memory authentica-
tion would be to compute a cryptographic digest of contents of the entire external
memory, store it on the trusted area (i.e., the processor chip) and use that digest to
check the integrity of every block read from off-chip memory. Since the digest is
inaccessible to the adversary, any malicious modification of the memory can be easily
detected. However, this solution requires fetching on-chip all external memory con-
tents on every read operation to check the digest, and on every write operation, to
update it; clearly, this generates an unacceptable overhead in memory bandwidth.
Another simple solution (based on the same trust model mentioned above) would be
to keep on-chip a cryptographic digest of every memory block (e.g., cache block)

 Hardware Mechanisms for Memory Authentication 3

written to off-chip memory. Although this strategy greatly reduces memory band-
width overhead compared to the previous solution, it imposes an unacceptable cost in
terms of the amount of on-chip memory required for storing all the digests. To im-
prove on these two extreme solutions (i.e., to reduce memory bandwidth overhead to
a small number of metadata blocks and the on-chip memory cost to a few bytes),
researchers [6, 7, 8] have proposed tree-based structures whose leaves are the memory
blocks to be protected, and the value of the root is computed by successively applying
an authentication primitive to tree nodes starting from the leaves. Thus, the root node
captures the current state of the memory blocks, and it is made tamper-resistant by
being stored on-chip. When the processor reads a datum from external memory, a
dedicated on-chip memory authentication engine computes the root node hash value
by using values stored in internal nodes lying on the path from the leaf (corresponding
to the memory block read) to the root. If the memory block was not tampered, then
the computed root value matches the one stored on-chip else they would differ. On a
write, the authentication engine updates the root hash value to reflect the change in
state of memory due to the newly written value.

This paper surveys tree-based memory authentication techniques. We discuss vari-
ous implementation-based issues raised by the integration of these trees into general-
purpose computing platforms, namely: How can the processor address tree nodes in
memory? Can integrity tree nodes be cached? Do the security properties of the integ-
rity tree hold under Operating System (OS) compromise? To the best of our knowl-
edge, we are not aware of any other work which offers a similar comprehensive
analysis of architectural issues and trade-offs arising from implementing existing tree-
based memory authentication schemes. By connecting theory to implementation, our
work provides insights which will prove useful in designing more efficient memory
authentication schemes, and we consider this to be an important contribution of this
paper. For the sake of completeness, we also describe techniques proposed in litera-
ture that employ non-tree based techniques for verifying memory integrity, and show
how they achieve improved performance at the cost of decrease in system security.
Finally we briefly discuss the issues raised by data authentication in multiprocessor
systems by highlighting the difference with a uniprocessor platform.

The paper is organized as follows. Section 2 describes the active attacks threaten-
ing the integrity of the memory contents. Then Section 3 presents the existing tech-
niques providing memory authentication, namely integrity trees; in particular, we
show why all existing memory authentication solutions defending against the attacks
in Section 2 are based on tree structures. Section 4 presents the architectural features
proposed in the literature to efficiently integrate those integrity trees to general-
purpose computing platforms. Section 5 discusses the security of the integrity tree
under operating system compromise and describes an architecture proposed recently
to efficiently deploy an integrity tree on a computing platform running an untrusted
OS. Section 6 describes techniques proposed in the literature to verify memory integ-
rity and not based on tree structures. While this paper focuses on memory integrity for
uniprocessor platforms, we present in Section 7 the additional security issues to con-
sider for data authentication in symmetric multiprocessor (shared memory) systems.
Section 8 concludes the paper.

4 R. Elbaz et al.

2 Threat Model

This section describes the attacks challenging the integrity of data stored in the off-
chip memory of computer systems. Section 2.1 describes the model we consider for
active attacks in the context of physical adversaries. Section 2.2 widens the discussion
by including the cases where these attacks are carried out through a malicious operat-
ing system; we conclude the section by defining two threat models upon which exist-
ing solutions for memory integrity are built.

2.1 Hardware Attacks

The common threat model considered for memory authentication assumes the pro-
tected system is exposed to a hostile environment in which physical attacks are feasi-
ble. The main assumption of this threat model is that the processor chip is resistant to
all physical attacks, including invasive ones, and is thus trusted. Side-channel attacks
are not considered.

The common objective of memory authentication techniques is to thwart active at-
tackers tampering with memory contents. In an active attack, the adversary corrupts
the data residing in memory or transiting over the bus; this corruption may be seen as
data injection since a new value is created. Figure 1 depicts the example of a device
under attack, where an adversary connects its own (malicious) memory to the targeted
platform via the off-chip bus. We distinguish between three classes of active attacks,
defined with respect to how the adversary chooses the inserted data. Figure 2 depicts
the three active attacks; below, we provide a detailed description of each one by rely-
ing on the attack framework in Figure 1:

1) Spoofing attacks: the adversary exchanges an existing memory block with an
arbitrary fake one (Figure 2-a, the block defined by the adversary is stored in
the malicious memory, the adversary activates the switch command when he
wants to force the processor chip to use the spoofed memory block).

2) Splicing or relocation attacks: the attacker replaces a memory block at ad-
dress A with a block at address B, where A≠B. Such an attack may be
viewed as a spatial permutation of memory blocks (Figure 2-b: the adversary
stores at address 5 in the malicious memory the content of the block at ad-
dress 1 from the genuine memory. When the processor requests the data at
address 5, the adversary activates the switch command so the processor reads
the malicious memory. As a result, the processor reads the data at address 1).

3) Replay attacks: a memory block located at a given address is recorded and
inserted at the same address at a later point in time; by doing so, the current
block’s value is replaced by an older one. Such an attack may be viewed as a
temporal permutation of a memory block, for a specific memory location
(Figure 2-c: at time t1, the adversary stores at address 6 in the malicious
memory the content of the block at address 6 from the genuine memory. At
time t2, the memory location at address 6 has been updated in the genuine
memory but the adversary does not perform this update in the malicious
memory. The adversary activates the malicious memory when the processor
requests the data at address 6, thus forcing it to read the old value stored at
address 6).

 Hardware Mechanisms for Memory Authentication 5

Fig. 1. An Example of Framework of Attack Targeting the External Memory of a Computing
Platform

Data @0

?

Spoofing
Data @3

Data @1

Data @2

Data @4

Data @7

Data @5

Data @6

External Memory seen by the SoC ...

…before spoofing ...after spoofing

?

...before splicing ...after splicing

Splicing

Data @0

Data @3

Data @1

Data @2

Data @4

Data @7

Data @5

Data @6

Data @1

Data (@0;t2)

Data (@3;t2)

Data (@1;t2)

Data (@2;t2)

Data (@4;t2)

Data (@7;t2)

Data (@5;t2)

Data (@6;t1)

...after replay at time t2

Replay

Data (@0;t1)

Data (@3;t1)

Data (@1;t1)

Data (@2;t1)

Data (@4;t1)

Data (@7;t1)

Data (@5;t1)

Data (@6;t1)

...before replay at time t1

(a) (b)

(c)

Data (@1;t1)
A genuine block stored at

address 1 at time t1
A malicious memory block

Fig. 2. Three Kinds of Active Attacks: (a) Spoofing, (b) Splicing and (c) Replay

6 R. Elbaz et al.

2.2 Software Attacks

In a software attack, a compromised (or outright malicious) operating system or ap-
plication tries to corrupt the memory space of a sensitive application. To model these
attacks, we subsume all possible attack vectors into a single threat: a malicious, all-
powerful operating system. Such an OS can directly read and write any memory loca-
tion belonging to a sensitive application and can thus carry out any of the splicing,
spoofing and replay attacks presented in the previous section.

In existing work on memory authentication, the threat model either excludes soft-
ware attacks [2, 8, 9, 10, 11, 12, 13, 14] (referred in the following as threat model 1)
or includes software attacks [2, 21] (referred in the following as threat model 2). In
threat model 1, the hardware architecture must protect sensitive applications against
attacks from software; in threat model 2, the hardware does not provide such protec-
tion. When software attacks are not considered (threat model 1), the operating system
(OS) or at least the OS kernel must thus be trusted to isolate sensitive applications
from malicious software. In the other case, the OS can contain untrusted code since
the hardware protects sensitive applications against malicious software.

Conceptually, integrity trees are built and maintained in the same way regardless of
the considered threat model. Section 3 describes existing integrity trees without
specifying the threat model. Section 4 presents the strategies allowing efficient inte-
gration to computing platforms when threat model 1 is considered. Section 5 shows
that threat model 2 requires trees built over the virtual (rather than physical) address
space or, as recently proposed in [21], over a compact version of it.

3 Integrity Trees: Cryptographic Schemes for Memory
Authentication

We consider there are three distinct strategies to thwart the active attacks described in
our threat model. Each strategy is based on different authentication primitives, namely
cryptographic hash function, Message Authentication Code (MAC) function and block-
level Added Redundancy Explicit Authentication (AREA). In this section, we first de-
scribe how those primitives allow for memory authentication and how they must be
integrated into tree structures in order to avoid excessive overheads in on-chip memory.

3.1 Authentication Primitives for Memory Authentication

Hash Functions. The first strategy (Figure 3-a) allowing to perform memory authen-
tication consists in storing on-chip a hash value for each memory block stored
off-chip (write operations). The integrity checking is done on read operations by re-
computing a hash over the loaded block and by then comparing the resulting hash
with the on-chip hash fingerprinting the off-chip memory location. The on-chip hash
is stored on the tamper-resistant area, i.e., the processor chip and is thus inaccessible
to adversaries. Therefore, spoofing, splicing and replay are detected if a mismatch
occurs in the hash comparison. However, this solution has an unaffordable on-chip
memory cost: by considering the common strategy [2, 3, 9, 13] of computing a fin-
gerprint per cache line and assuming 128-bit hashes and 512-bit cache lines, the over-
head is of 25% of the memory space to protect.

 Hardware Mechanisms for Memory Authentication 7

Memoryf : HASH (H)

Function

On-chip Hash storage
Trusted Area: SoC

Memory

M

M

U

Cache

Memories

f : MACk,N

Function

Read / Write bus

COMP

Integrity

Checking

Flag

Nonce

Generator

CPU MUX

R / W?

M

M

U

Cache

Memories

CPU COMP

Integrity

Checking

Flag

M

M

U

Cache

Memories

f : Block-

Level AREA

(Ek,N)
Read / Write bus

COMP
Integrity

Checking

Flag

Nonce

Generator

CPU MUX

R / W?

Trusted Area: SoC

Trusted Area: SoC

Read / Write bus

HASH 1

HASH 2

HASH n

DATA 1

DATA 2

DATA 3

DATA n

HASH 3

DATA 1 MAC1

DATA 2 MAC2

DATA 3 MAC3

DATA n MACn

Nonce 1
Nonce 2
Nonce 3

Nonce n

Nonce 1
Nonce 2
Nonce 3

Nonce n

Memory

C1 = Ek(D1||N1)

C2 = Ek(D2||N2)

C3 = Ek(D3||N3)

Cn = Ek(Dn||Nn)

(a) Hash functions: Hashn = H(DATA n)

(b) MAC functions: MACn = MACk(DATA n)

(c) Block-Level AREA: Cn = Ek(Dn||Nn)

Write Operation Signals

Read Operation Signals

Ek,N : Block Encryption under key K and using a Nonce N (Ek,N(D)= Ek(D||N))

MACk,N : Message Authentication Code Function under key K and using a

Nonce N (MACk,N(D)= MACk(D||N))

H : Hash Function

C : Ciphertext

D : Data

N : Nonce

|| : Concatenation Operator

Fig. 3. Authentication Primitives for Memory Integrity Checking

8 R. Elbaz et al.

MAC Functions: In the second approach (Figure 3-b), the authentication engine
embedded on-chip computes a MAC for every data block it writes in the physical
memory. The key used in the MAC computation is securely stored on the trusted
processor chip such that only the on-chip authentication engine itself is able to com-
pute valid MACs. As a result, the MACs can be stored in untrusted memory because
the attacker is unable to compute a valid MAC over a corrupted data block. In addi-
tion to the data contained by the block, the pre-image of the MAC function contains a
nonce. This allows protection against splicing and replay attacks. The nonce precludes
an attacker from passing a data block at address A, along with the associated MAC, as
a valid (data block, MAC) pair for address B, where A ≠ B. It also prevents the replay
of a (data block, MAC) pair by distinguishing two pairs related to the same address,
but written in memory at different points in time. On read operations, the processor
loads the data to read and its corresponding MAC from physical memory. It checks
the integrity of the loaded block by first re-computing a MAC over this block and a
copy of the nonce used upon writing, and then it compares the result with the fetched
MAC. To ensure the resistance to replay and splicing, the nonce used for MAC re-
computation must be genuine. A naïve solution to meet this requirement is to store the
nonces on the trusted and tamper-evident area, the processor chip. The related on-chip
memory overhead is 12.5% if we consider computing a MAC per 512-bit cache line
and that we use 64-bit nonces.

Block-Level AREA: The last strategy [13, 14] (Figure 3-c) leverages the diffusion
property of block encryption to add the integrity-checking capability to this type of
encryption algorithm. To do so, the AREA (Added Redundancy Explicit Authentica-
tion [22]) technique is applied at the block level:

i) Redundant data (a n-bit nonce N) is concatenated to the data D to authenticate in
order to form a plaintext block P (where P=D||N); ECB (Electronic CodeBook)
encryption is performed over P to generate ciphertext C.

ii) Integrity verification is done by the receiver who decrypts the ciphertext block
C’ to generate plaintext block P’, and checks the n-bit redundancy in P’, i.e., as-
suming P’=(D’||N’), verifies whether N=N’.

Thus, upon a memory write, the on-chip authentication engine appends an n-bit nonce to
the data to be written to memory, encrypts the resulting plaintext block and then writes
the ciphertext to memory. The encryption is performed using a key securely stored on
the processor chip. On read operations, the authentication engine decrypts the block it
fetches from memory and checks its integrity by verifying that the last n bits of the
resulting plaintext block are equal to the nonce that was inserted upon encryption (on
the write of the corresponding data). [13, 14] propose a System-on-Chip (SoC) imple-
mentation of this technique for embedded systems. They show that this engine is effi-
cient to protect the Read-Only (RO) data of an application (e.g., its code) because RO
data are not sensitive to replay attacks; therefore the address of each memory block can
be efficiently used as a nonce1. However, for Read/Write (RW) data (e.g., stack data),
the address is not sufficient to distinguish two data writes at the same address carried
out at two different points in time: the nonce must change on each write. To recover
such a changing nonce on a read operation while ensuring its integrity, [13, 14] propose

1 Note that the choice of the data address as nonce also prevent spoofing and splicing attacks of

RO data when MAC functions are used as authentication primitives.

 Hardware Mechanisms for Memory Authentication 9

storing the nonce on-chip. They evaluate the corresponding overhead between 25% and
50% depending on the block encryption algorithm implemented.

3.2 Integrity Trees

The previous section presented three authentication primitives preventing the active
attacks described in our threat model. Those primitives require the storage of reference
values – i.e., hashes or nonces – on-chip to thwart replay attacks. They do provide
memory authentication but only at a high cost in terms of on-chip memory. If we con-
sider a realistic case of 1GB of RAM memory, the hash, MAC (with nonce) and the
block-level AREA solutions require respectively at least 256MB, 128MB and 256 MB
of on-chip memory. Those on-chip memory requirements clearly are unaffordable,
even for high-end processors. It is thus necessary to “securely” store these reference
values off-chip. By securely, we mean that we must be able to ensure their integrity to
preclude attacks on the reference values themselves.

Several research efforts suggest applying the authentication primitives recursively
on the references. By doing so, a tree structure is formed and only the root of the
tree—the reference value obtained in the last iteration of the recursion—needs to be
stored on the processor chip, the trusted area. There are three existing tree techniques:

i) Merkle Tree [6] uses hash functions,
ii) PAT (Parallelizable Authentication Tree) [7] uses MAC functions with nonces,

iii) TEC-Tree (Tamper-Evident Counter Tree) [8] uses the block-level AREA
primitive.

In this section, we first present a generic model for the integrity tree, then we de-
scribe the specific characteristics of each existing integrity tree; we finally compare
their intrinsic properties.

Fig. 4. General Model of 2-ary Integrity Tree

10 R. Elbaz et al.

General Model of Integrity Tree. The common philosophy behind integrity trees is to
split the memory space to protect into M equal size blocks which are the leaf nodes of
the balanced A-ary integrity tree (Figure 4). The remaining tree levels are created by
recursively applying the authentication primitive f over A-sized groups of memory
blocks, until the procedure yields a single node called the root of the tree. The arity of
the constructed tree is thus defined by the number of children A a tree node has. The
root reflects the current state of the entire memory space; making the root tamper-
resistant thus ensures tampering with the memory space can be detected. How the root is
made tamper-resistant depends on the nature of f and is detailed next. Note that the
number of checks required to verify the integrity of a leaf node depends on the number
of iterations of f and thus on the number of blocks M in the memory space. The number
of check corresponds to the number of tree levels NL defined by: NL = logA(M).

Tree Authentication Procedure. For each memory block B (i.e., leaf node), there ex-
ists a branch2 – starting at B and ending at the root – composed of the tree nodes ob-
tained by recursive applications of f on B. For instance in Figure 4 for the leaf node at
position P8, the branch is composed of the nodes at positions P3, P1 and the root P0.
Thus, when B is fetched from untrusted memory, its integrity is verified by re-
computing the tree root using the fetched B and the nodes – obtained from external
memory – along the branch from B to the root (i.e., the branch nodes and their sib-
lings; so for the leaf node at position P8, the nodes that need to be fetched are at posi-
tion P7, P3, P4, P1 and P2). We confirm B has not been tampered with during the last
step of the authentication process when the re-computed root is identical to the root
(which has been made tamper-resistant).

Tree Update Procedure. When a legitimate modification is carried out over a memory
block B, the corresponding branch – including the tree root – is updated to reflect the
new value of B. This is done by first authenticating the branch B belongs to by apply-
ing the previous tree authentication procedure, then by computing on-chip the new
values for the branch nodes, and finally by storing the updated branch off-chip – ex-
cept for the on-chip component of the root.

Merkle Tree is historically the first integrity tree. It has been originally introduced by
Merkle [6] for efficient computations in public key cryptosystems and adapted for integ-
rity checking of memory content by Blum et al. [15]. In a Merkle Tree (Figure 5-a), f is
a cryptographic hash function H(); the nodes of the tree are thus simple hash values. The
generic verification and update procedures described above are applied in a straightfor-
ward manner. The root of this tree reflects the current state of the memory space since
the collision resistance property of the cryptographic hash function ensures that in prac-
tice, the root hashes for any two memory spaces differing by at least one bit will not be
the same. With Merkle Tree, the root is made tamper-resistant by storing it entirely on
the trusted processor chip. The Merkle Tree authentication procedure is fully paralleliz-
able because all the inputs required for this process can be made available before the
start of this procedure; however, the update procedure is sequential because the compu-
tation of a new hash node in a branch must be completed before the update to the next
branch node can start. By assuming that all tree nodes have the same size, the memory
overhead MOMT of a Merkle Tree [9] is of:

2 This branch is also called in the following the authentication branch.

 Hardware Mechanisms for Memory Authentication 11

MOMT =
)1(

1

−A
.

The Parallelizable Authentication Tree (PAT) [7] overcomes the issue of non-
parallelizability of the tree update procedure by using a MAC function (with nonces
N) MK,N() as authentication primitive f where K and N are the key and nonce, respec-
tively (Figure 5-b). The memory space is first divided into M memory blocks (in
Figure 5-b, M=4). We begin by applying the MAC function to A memory blocks (in
Figure 5-b, we have A=2) using an on-chip key K and a freshly generated nonce N,
i.e., MACK,N(d1||…||dA) where di is a memory block. Next, the MAC is recursively
applied to A-sized groups formed with the nonces generated during the last iteration
of the recursion. For every step of the recursion but the last, both the nonce and the
MAC values are sent to external memory. The last iteration generates a MAC and a
nonce that form the root of the tree. The root MAC is sent to external memory but the
nonce N is stored on-chip; this way the tree root is made tamper-resistant since an
adversary cannot generate a new MAC without the secret key K stored on-chip or
replay an old MAC since it will not have been generated with the current root nonce.
Verifying a memory block D in a PAT requires recomputing D’s branch on-chip and
verifying that the top-level MAC can indeed be obtained using the on-chip nonce.

Fig. 5. Existing Integrity Trees

12 R. Elbaz et al.

Whenever a block D is legitimately modified, the CPU re-computes D’s branch using
fresh nonces. The tree authentication procedure is parallelizable since all inputs (data
and nonces) are available for all branch node verifications. The tree update procedure
is also parallelizable because each branch tree node is computed from independently
generated inputs: the nonces. In [7] the authors highlight that the birthday paradox
implies the nonce does not need to be longer that h/2, with h the MAC-size. Thus, the
memory overhead MOPAT of PAT is of:

MOPAT =
)1(2

3

1

1

2

1

1

1

−
=

−
+

− AAA

The Tamper-Evident Counter Tree (TEC-Tree). In TEC-Tree [8], the authentication
primitive f is the Block-level AREA. Thus, such authentication primitive tags its input
(dy in Figure 5-c) with a nonce N before ciphering it with a block encryption algorithm
in ECB mode and a secret key K kept on-chip. The block-level AREA is first applied to
the memory blocks to be stored off-chip, and then recursively over A-sized groups of
nonces used in the last iteration of the recursion. The resulting ciphered blocks are
stored in external memory and the nonce used in the ciphering of the last block created
– i.e., the root of the TEC-Tree – is kept on-chip making the root tamper-resistant. In-
deed, an adversary without the key cannot create a tree node and without the on-chip
root nonce he cannot replay the tree root. During verification of a data block D, D’s
branch is brought on-chip and decrypted. The integrity of D is validated if:

i) each decrypted node bears a tag equal to the nonce found in the payload of the
node in the tree level immediately above;

ii) the nonce obtained by decrypting the highest level node matches the on-chip
nonce.

The tree update procedure consists in:

i) loading D’s branch decrypting nodes,
ii) updating nonces
iii) re-encrypting nodes.

TEC-Tree authentication and update procedures are both parallelizable because f
operates on independently generated inputs: the nonces. The distinctive characteristic
of TEC-Tree is that it allows for data confidentiality. Indeed, its authentication primi-
tive being based on a block encryption function, the application of this primitive on
the leaf nodes (data) encrypts them. The memory overhead3 MOTEC of TEC-Tree [8]
is of :

MOTEC =
)1(

2

−A

3 [8] gives a different formula for their memory overhead because they consider ways to opti-

mize it (e.g. the use of the address in the construction of the nonce). For the sake of clarity, we
give a simplified formula of the TEC-Tree memory overhead by considering that the nonce
consists only in a counter value.

 Hardware Mechanisms for Memory Authentication 13

Comparison. Table 1 sums up the properties of the existing integrity trees. PAT and
TEC-Tree are both parallelizable for the tree authentication and update procedure
while preventing all the attacks described in the state of the art. Parallelizability of the
tree update process is an important feature when the write buffer is small (e.g., in
embedded systems) to prevent bus contention due to write operation requests that may
pile up. TEC-Tree additionally provides data confidentiality. However, TEC-Tree and
PAT also have a higher off-chip memory overhead when compared to Merkle Tree, in
particular because they require storage for additional metadata, the nonces.

Table 1. Summary of Existing Integrity Trees Properties

 Merkle Tree
PAT (Paralleliz-
able Authentica-

tion Tree)

TEC-Tree (Tam-
per-Evident

Counter Tree)

Splicing, Spoofing,
Replay resistance

Yes Yes Yes

Parallelizability
Tree Authentica-

tion only
Tree Authentica-
tion and Update

Tree Authentica-
tion and Update

Data Confidential-
ity

No No Yes

Memory Overhead 1/(A-1) 3/2(A-1) 2/(A-1)

4 Integration of Integrity Trees in Computing Platforms

In this section we survey the implementation strategies proposed in the literature to
efficiently integrate integrity trees in computing platforms when threat model 1 is
considered (i.e., active physical attacks and trusted OS kernel). We first describe the
tree traversal technique allowing for node addressing in memory. Then, a scheme
leveraging caching to improve tree performance is detailed. Finally, the Bonsai
Merkle Tree concept is described.

4.1 Tree Traversal Technique

One of the issues arising when integrating an integrity tree into a computing platform
is making it possible for the processor to retrieve tree nodes in memory. [9] proposes
a method for doing so with Merkle trees, while [8] adapts it for TEC-Tree. The prin-
ciple of this method is to first associate a numerical position (Px in Figure 3) to each
tree node, starting at 0 for the root and incrementally up to the leaves. The position of
a parent node Pl (at level l in the tree) can be easily found by subtracting one from its
child at position Pl-1 (on level l-1), by dividing the result by the tree arity A and by
rounding down:

⎥
⎦

⎥
⎢
⎣

⎢ −=
−

A

P
P

l
l 11

 (eq. 1)

14 R. Elbaz et al.

Now that we know how to find a parent node position from a child position, the is-
sue is to retrieve a position number from the address of a child or parent node. To
solve this issue, [9] proposes a simplified layout of the memory region to authenti-
cate: the tree nodes are stored starting from the top of the tree (P1 in Figure 4) down
to the leaves, with respect to the order given by positions. By having all tree nodes be
the same size, the translation from position to address or from address to position can
be easily done by respectively multiplying or dividing the quantity to be translated by
the node size.

This method imposes that the arity be a power of 2 to efficiently implement the di-
vision of eq.1 in hardware. Moreover, all data to authenticate must be contained in a
contiguous memory region to allow for the children to parent position and address
retrieval scheme to work.

4.2 Cached Trees

The direct implementation of integrity trees can generate a high overhead in terms of
execution time due to the logA(M) checks required on each load from the external
memory. In [9], Gassend et al. show that the performance slowdown can reach a fac-
tor of 10 with a Merkle Tree. To decrease this overhead, they propose to cache tree
nodes. When a hash is requested in the tree authentication procedure, it is brought on-
chip with its siblings in the tree that belong to the same cache block. This way, those
siblings usually required for the next check in the authentication procedure are al-
ready loaded. However, the main improvement comes from the fact that once checked
and stored in the on-chip cache, a tree node is trusted and can be considered as a local
tree root. As a result, the tree authentication and update procedures are terminated as
soon as a cached hash (or the root) is encountered. With this cached tree solution,
Gassend et al. decreased the performance overhead of a Merkle Tree to less than 25%.
By changing the hash function – from SHA-1[16] to the GCM[17] – [11] even claims
to keep the performance overhead under 5%.

4.3 The Bonsai Merkle Tree

Memory authentication engines based on integrity trees should be designed for effi-
cient integration into computing platforms. The last engine proposed toward this ob-
jective has been presented in [12] and is based on a concept called Bonsai Merkle
Tree.

The idea behind the Bonsai Merkle Tree (BMT) is to reduce the amount of data to
authenticate with a Merkle Tree in order to decrease its height, i.e., reduce the number
of tree levels to obtain a smaller tree that can be quickly traversed (Figure 6). To do so,
[12] proposes to compute a MAC M over every memory block C (i.e., every cache
block) with a nonce, i.e., a counter ctr concatenated with the data address, as extra
input of the MAC function MACK: M = MACK (C, addr, ctr)4. The counter ctr consists
of a local counter Lctr concatenated with a global counter Gctr. Each memory block is
associated with a local counter while each memory page is associated with a global
counter. Each time a given memory block is updated off-chip, the corresponding Lctr

4 The authentication primitive used in [12] is basically the MAC function with nonces presented

in section 3.

 Hardware Mechanisms for Memory Authentication 15

is incremented. When Lctr rolls over, Gctr is incremented. In [12], the authors pro-
posed the use of a 7-bit long Lctr and of a 64-bit long Gctr; this way ctr never rolls
over in practice. ctr counter values are made tamper-evident while stored off-chip
using a Merkle tree, thus making the memory space protected by the MAC-with-nonce
scheme also tamper-evident.

On average, an 8-bit counter is required for 4KB memory pages and 64B cache
blocks. The amount of memory to authenticate with the Bonsai Merkle tree is thus
decreased of a ratio 1:64 when compared to a regular Merkle tree applied directly to
the memory blocks. However, the shortcoming of this scheme is that a full page
needs to be cryptographically processed every time a local counter rolls over. In other
words, in this case the MACs of all memory blocks belonging to the page having Gctr
updated must be recomputed as well as the tree branches corresponding to the tree
leaves containing the updated Gctr and Lctr. Despite this, according to [12], this ap-
proach decreases the execution time overhead of integrity trees from 12.1% to 1.8%
and reduces external memory overhead for node storage from 33.5% to 21.5%.

Duc et al. proposed a similar architecture in [25] except that instead of using a
nonce in the MAC computation, they include a random number; therefore, their archi-
tecture, called CryptoPage, is sensitive to replay with a success probability propor-
tional to the size of the random value.

Intermediate
Tree Nodes

DATA (Tree leaves)

Merkle Tree Root
On-Chip and
Trusted
Off-Chip

RAM

Intermediate
Tree Nodes

DATA

Bonsai Merkle
Tree (BMT) Root

Merkle Tree Nodes

Counters, ctr
(BMT leaves)

BMT nodes
and MACs M

(a) Standard Merkle Tree

(b) Bonsai Merkle Tree, BMT

: MAC M of a data cache block concatenated
with its address and a counter
M = MACK (C||addr||ctr)

Off-Chip
RAM

On-Chip and
Trusted

Fig. 6. Bonsai Merkle Tree Principle

5 Memory Authentication with an Untrusted Operating System

In many scenarios, the security policy of a computing platform must exclude the op-
erating system from the trusted computing base. With modern commodity operating
systems in particular, it is practically impossible to verify that no exploitable software

16 R. Elbaz et al.

vulnerability exists in such a large, complex and extendable software system. As a
result, the OS cannot be trusted to isolate a sensitive application from malicious soft-
ware, hence it needs to be considered as untrusted in the threat model (as in our threat
model 2).

The first step towards protecting the memory of a sensitive application running on
an untrusted OS is to build an integrity tree which covers only pages belonging to the
application and which can only be updated when the application itself is running. This
precludes the OS, with certain well-defined exceptions for communication, from
effecting modifications to the application’s memory space that cause the tree to be
updated, i.e., any OS write to the application’s memory is considered as corruption.
Although this approach prevents the OS from carrying out splicing, spoofing and
replay attacks through direct writes to the application’s memory (because such cor-
ruptions would be detected by the integrity tree scheme), [21] shows that the OS can
still perform splicing attacks indirectly, by corrupting the application’s page table.

The Branch Splicing Attack. The page table is a data structure maintained by the
OS, which maps a page’s virtual address to its physical address. On a read operation,
when a virtual-to-physical address translation is required by the processor, the page
table is looked up5 using the virtual address provided by the running process to obtain
the corresponding physical address. The branch splicing attack presented in [21]
corrupts the physical address corresponding to the virtual address of a given memory
block. This causes the on-chip integrity verification engine not only to fetch the
wrong block in physical memory, but also to use the wrong tree branch in verifying
the integrity of the block fetched. [21] shows that with threat model 2, building an
integrity tree over the Physical Address Space (PAS tree) is insecure because it is
vulnerable to the branch splicing attack. In a PAS tree, the physical address deter-
mines the authentication branch to load to re-compute the root during verification. As
a result, the OS can corrupt block A’s virtual-to-physical address translation to trick
the integrity checking engine into using block B’s authentication branch to verify
block B, hence substituting B for A (In Figure 7, substituting data at address @0 for
data at address @4).

Building a Tree over the Virtual Address Space (VAS-Tree). To defend against
this attack, the integrity tree can be built over the Virtual Address Space (VAS tree).
In this case, the virtual address generated by the protected application is used to trav-
erse the tree so page table corruption has no effect on the integrity verification proc-
ess. The VAS tree, unlike a PAS tree, protects application pages that have been
swapped out to disk by the OS paging mechanism since it can span all pages within
the application’s virtual memory space. PAS trees only span physical memory pages:
they do not keep track of memory pages sent to the on-disk page file, hence they re-
quire a separate mechanism to protect swapped out pages [12]. Without such a
mechanism, a PAS tree scheme cannot detect corruption of data that might occur
during paging—i.e. between the time a page is moved from its physical page frame to
the on-disk page file and the time that page is fetched again by the OS, from disk back
into a physical page frame.

5 In modern processor, the page table is cached on-chip in a Translation Lookaside Buffer. This

does not affect the feasibility of the attack described here.

 Hardware Mechanisms for Memory Authentication 17

The VAS tree is not a panacea however, as it presents two major shortcomings: it
must span a huge region of memory and it requires one full-blown tree for each appli-
cation requiring protection, rather than a single tree protecting all software in physical
memory. In addition, this solution requires extra tag storage for the virtual address [2]
in the last level of cache (when implemented) which is usually physically tagged and
indexed. Indeed, on cache evictions, the virtual address is required to traverse and
update the integrity tree.

Fig. 7. The Branch Splicing Attack. (a) The OS tampers with the Page Table and changes the
second entry from physical address @0 to @4. (b) data at @4 are verified instead of data at
@0; however, since the physical address – which is corrupted – is used to retrieved the branch
nodes required to verify the data read, the attack is undetected and data at @4 are considered
genuine.

Impractical VAS-Tree Overheads. The extra security afforded by the VAS tree over
the PAS tree comes at the cost of very large memory capacity and initialization over-
heads. Application code and data segments are usually laid out very far apart from one
another in order to avoid having dynamically growing segments (e.g., the heap and
stack) overwrite other application segments. The VAS tree must thus span a very large
fraction of the virtual address space in order to cover both the lowest and highest vir-
tual addresses that may be accessed by the application during its execution. The span
of the tree is then several orders of magnitude larger than the cumulative sum of all
code and data segments that require protection. In the case of a VAS tree protecting a
64-bit address space, the tree span can be so enormous as to make VAS tree impracti-
cal, i.e., VAS tree is not scalable. Indeed, it not only requires allocating physical page
frames for the 264 bytes of leaf nodes that are defined during initialization, but also

18 R. Elbaz et al.

requires allocating memory for the non-leaf tree nodes, which represent 20% to 100%
of the leaf space size depending on the memory overhead of the underlying integrity
tree [7, 8, 9]. The CPU time required to initialize such a tree is clearly unacceptable in
practice.

The Reduced Address Space. To overcome these problems, [21] introduces a new
processor hardware unit which builds and maintains an integrity tree over a Reduced
Address Space (RAS). At any point in time, the RAS contains only those pages
needed for the application’s execution; it grows dynamically as this application mem-
ory footprint increases. Virtual pages are mapped into the RAS using an index that
follows the page’s translation. The new hardware builds an integrity tree over the
application’s RAS (a RAS tree), carries out the integrity verification and tree update
procedures and expands the tree as the underlying RAS grows. Because the RAS
contains the application’s memory footprint in a contiguous address space segment,
the RAS tree does not suffer from the overheads of the VAS tree, built over a sparse
address space. The value of tree nodes along a block’s verification path is tied to the
block’s virtual address so corruption of the RAS index or the physical address transla-
tion by the OS is detected.

With both the VAS and RAS trees, a full-blown integrity tree must be built and
maintained for every protected application, as opposed to a single PAS tree for all
software. Therefore, a scheme must be designed to manage tree roots for a Merkle
Tree scheme, or the on-chip roots and secret keys for PAT and TEC-Tree. [2] presents
an implementation where the processor hardware manages the roots of several Merkle
Trees stored in dedicated processor registers. To provide some scalability despite a
fixed amount of hardware resources, the authors suggest implementing spill and fill
mechanisms between these registers and a memory region protected by a master in-
tegrity tree. Minimizing the hardware resources required to operate multiple integrity
trees is an open research area.

6 Memory Authentication without a Tree Structure

Several engines that are not based on tree schemes have been proposed in the litera-
ture to ensure memory authentication. In most cases however, these techniques inten-
tionally decrease the security of the computing platforms to cope with the overhead
they generate. This section surveys these techniques.

Lhash. The researchers who proposed the cached tree principle also designed a mem-
ory authentication technique not based on a tree and called Log hash (Lhash [23]).
Lhash has been designed for applications requiring integrity checking after a sequence
of memory operations (as opposed to checking off-chip operations on every memory
access as in tree schemes). Lhash relies on an incremental multiset hash function
(called Mset-Add-Hash) described by the authors in [24]). This family of hash takes
as an input a message of an arbitrary size and outputs a fixed size hash as a regular
hash function, but the ordering of the chunks constituting the message is not impor-
tant. The Lhash scheme has been named after the fact that a write and a read log of
the memory locations to be checked are maintained at runtime using an incremental
multiset hash function and stored on-chip. The write and read logs are respectively
called ReadHash and WriteHash.

 Hardware Mechanisms for Memory Authentication 19

The Lhash scheme works as follows for a given sequence of operations. At initiali-
zation WriteHash is computed over the memory chunks belonging to the memory
region that needs to be authenticated; WriteHash is then updated at runtime when an
off-chip write is performed or when a dirty cache block is evicted from cache. This
way, WriteHash reflects the off-chip memory state (and content) at anytime. Read-
Hash is computed the first time a chunk is brought in cache and updated on each sub-
sequent off-chip read operations. When checking the integrity of the sequence of
operations, all the blocks belonging to the memory region to authenticate and not
present in cache are read to make even the number of chunks added to the read log
and those added to the write log. If ReadHash happens to be different from Write-
Hash, it means that the memory has been tampered with at runtime. Re-ordering at-
tacks are prevented by including a nonce in each hash computation. Authors per-
formed a comparison of Lhash with a cached hash tree (4-ary). They showed that
overhead can be decreased from 33% to 6.25% in term of off-chip memory and from
20-30% to 5-15% at runtime. However, the scheme does not suit threat models such
as the ones defined in this paper since an adversary is able to perform an active attack
before the integrity checking takes place.

PE-ICE. A Parallelized Encryption and Integrity Checking Engine, PE-ICE, based on
the block-level AREA technique was proposed in [13] and [14] to encrypt and authen-
ticate off-chip memory. However, to avoid re-encryption of the whole memory when
the nonce reaches its limit (e.g., a counter that rolls over), the authors propose to re-
place it with the chunk address concatenated with a random number. For each mem-
ory block processed by PE-ICE, a copy of the random value enrolled is kept on-chip
to make it tamper-resistant and secret. The drawback of using a random number is
that a replay attack can be performed with a probability p of success inversely propor-
tional to the bit length r of the random number (p = 1/2r). Since a small random num-
ber is advised [14] to keep the on-chip memory overhead reasonable, the scheme is
likely to be insecure with respect to replay attacks.6

7 Data Authentication in Symmetric Multi-Processors (SMP)

High-end computing platforms are more and more based on multi-processor technol-
ogy. In this section, we highlight the new security challenges related to runtime data
authentication that arise on such shared memory platforms.

We have defined memory authentication as “verifying that data read from memory
by the processor at a given address is the data it last wrote at this address”. However,
in a multiprocessor system with shared memory, the definition of data authentication
cannot be restricted to that of memory authentication: additional security issues must
be considered. First, every processor core of a SMP platform may legitimately update
data in memory; thus each processor must be able to differentiate a legitimate write

6 Note that in [14], the author proposes to build a tree – called PRV-Tree, for PE-ICE protected

Random Value Tree – similar to TEC-Tree except that it uses random numbers instead of
nonces. The purpose of PRV-Tree is to decrease the probability of an adversary succeeding
with a replay attack by increasing the length of the random number, while limiting the on-chip
memory overhead to the storage of a single random number (the root of PRV-Tree).

20 R. Elbaz et al.

operation done by a core of the system from malicious data corruption. Moreover, in
addition to the traditional memory authentication, the data authentication issue in a
SMP platform must also consider bus transaction authentication on cache-to-cache
transfers required in cache coherency protocols (Figure 8). [18] notes that to take into
consideration bus transaction authentication, an additional active attack must be con-
sidered: message dropping. In SMP platforms, when a processor sends a data to an-
other core, it broadcasts the same data to all other SMP’s cores to maintain cache
coherency. Thus, message dropping takes place upon those broadcasting cache-to-
cache communications and consists in blocking a message destined to one of the
processor cores (In Figure 8, CPU2 is temporarily disconnected from the bus to per-
form a message dropping).

CPU0

Shared RAM
Memory

CPU1 CPUnCPU3CPU2

Cache-to-cache transfers,
requiring Bus Transaction Authentication

CPU-Memory Operations,
requiring Memory AuthenticationA message dropping attack

on CPU2 on a cache-to-
cache broadcasting

Fig. 8. Data Authentication Requirements in a Symmetric Multi-Processors (SMP) Platform

[18] and [19] propose solutions for data authentication in SMP platforms. How-
ever, as highlighted in [18], [19] is sensitive to message dropping. Moreover, [18] and
[19] focus on SMP systems with a small number of processors and do not evaluate the
scalability of their solutions. Thus, data authentication at runtime in SMP platforms is
still an open research topic.

Active research efforts [26, 27, 28] are also being carried out in the field of data
authentication in multiprocessor systems with Distributed Shared Memory (DSM).
Data authentication issues in these systems are similar to those mentioned for SMP
platforms, except that designers of security solutions have to deal with additional
difficulties due to the intrinsic characteristics of the DSM processor. First, a typical
DSM system does not include a shared bus that could help synchronization of meta-
data (e.g., counter values) between the processors participating in a given memory
authentication scheme. Also, as mention in [28], the interconnection network that
enables processor-to-memory communications is usually exposed at the back of
server racks, providing an adversary with an easier way to physically connect to the
targeted system compared to a motherboard in an SMP platform

8 Conclusion

In this paper we described the hardware mechanisms to provide memory authentica-
tion, namely integrity trees. We presented a generic integrity tree model, the intrinsic
properties of each existing integrity tree (Merkle Tree, PAT and TEC-Tree) and the
architectural features proposed in the literature to efficiently implement those trees in
computing platforms. We also discussed the impact of operating system compromise

 Hardware Mechanisms for Memory Authentication 21

on hardware integrity verification engine and presented an existing solution for secure
and efficient application memory authentication despite an untrusted OS. Finally, we
showed the additional security issues to consider for data authentication at runtime in
symmetric multi-processors platforms and how they differ from memory authentica-
tion in uniprocessor systems.

References

1. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz, M.: Ar-
chitectural Support for Copy and Tamper Resistant Software. In: Int’l. Conf. on Architec-
tural Support for Programming Languages and OS (ASPLOS-IX), pp. 168–177 (2000)

2. Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: AEGIS: Architecture for
Tamper-Evident and Tamper-Resistant Processing. In: Proc. of the 17th Int’l. Conf. on Su-
percomputing (ICS) (2003)

3. Lee, R.B., Kwan, P.C.S., McGregor, J.P., Dwoskin, J., Wang, Z.: Architecture for Protect-
ing Critical Secrets in Microprocessors. In: Int’l. Symp. on Computer Architecture (ISCA-
32), pp. 2–13 (June 2005)

4. IBM Extends Enhanced Data Security to Consumer Electronics Products, IBM (April
2006), http://www-03.ibm.com/press/us/en/pressrelease/19527.wss

5. Kuhn, M.G.: Cipher Instruction Search Attack on the Bus-Encryption Security Microcon-
troller DS5002FP. IEEE Trans. Comput. 47, 1153–1157 (1998)

6. Merkle, R.C.: Protocols for Public Key Cryptography. In: IEEE Symp. on Security and
Privacy, pp. 122–134 (1980)

7. Hall, W.E., Jutla, C.S.: Parallelizable authentication trees. In: Preneel, B., Tavares, S.
(eds.) SAC 2005. LNCS, vol. 3897, pp. 95–109. Springer, Heidelberg (2006)

8. Elbaz, R., Champagne, D., Lee, R.B., Torres, L., Sassatelli, G., Guillemin, P.: EC-Tree: A
Low Cost and Parallelizable Tree for Efficient Defense against Memory Replay Attacks.
In: Cryptographic Hardware and embedded systems (CHES), pp. 289–302 (2007)

9. Gassend, B., Suh, G.E., Clarke, D., van Dijk, M., Devadas, S.: Caches and Merkle Trees
for Efficient Memory Integrity Verification. In: Proceedings of Ninth International Sym-
posium on High Performance Computer Architecture (February 2003)

10. Suh, G.E.: AEGIS: A Single-Chip Secure Processor, PhD thesis, Massachusetts Institute of
Technology (September 2005)

11. Yan, C., Rogers, B., Englender, D., Solihin, Y., Prvulovic, M.: Improving Cost, Perform-
ance, and Security of Memory Encryption and Authentication. In: Proc. of the Interna-
tional Symposium on Computer Architecture (2006)

12. Rogers, B., Chhabra, S., Solihin, Y., Prvulovic, M.: Using Address Independent Seed En-
cryption and Bonsai Merkle Trees to Make Secure Processors OS– and Performance–
Friendly. In: Proc. of the 40th IEEE/ACM Symposium on Microarchitecture (MICRO)
(December 2007)

13. Elbaz, R., Torres, L., Sassatelli, G., Guillemin, P., Bardouillet, M., Martinez, A.: A Paral-
lelized Way to Provide Data Encryption and Integrity Checking on a Processor-Memory
Bus. In: Proceedings of the 43rd Design Automation Conference DAC (July 2006)

14. Elbaz, R.: Hardware Mechanisms for Secured Processor Memory Transactions in Embed-
ded Systems, PhD Thesis, University of Montpellier (December 2006)

15. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of
memories. In: Proc. 32nd IEEE Symposium on Foundations of Computer Science, pp. 90–
99 (1991)

22 R. Elbaz et al.

16. National Institute of Science and Technology (NIST), FIPS PUB 180-2: Secure Hash
Standard (August 2002)

17. NIST Special Publication SP800-38D: Recommendation for Block Cipher Modes of Op-
eration: Galois/Counter Mode (GCM) and GMAC (November 2007)

18. Zhang, Y., Gao, L., Yang, J., Zhang, X., Gupta, R.: SENSS: Security Enhancement to
Symmetric Shared Memory Multiprocessors. In: Proc. of the 11th International Sympo-
sium on High-Performance Computer Architecture (2005)

19. Shi, W., Lee, H.-H., Ghosh, M., Lu, C.: Architectural Support for High Speed Protection
of Memory Integrity and Confidentiality in Multiprocessor Systems. In: Proc. of the 13th
International Conference on Parallel Architectures and Compilation Techniques (2004)

20. http://news.bbc.co.uk/2/hi/uk_news/7581540.stm
21. Champagne, D., Elbaz, R., Lee, R.B.: The Reduced Address Space (RAS) for Application

Memory Authentication. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008.
LNCS, vol. 5222, pp. 47–63. Springer, Heidelberg (2008)

22. Fruhwirth, C.: New Methods in Hard Disk Encryption, Institute for Computer Languages,
Theory and Logic Group, Vienna University of Technology (2005)

23. Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Efficient Memory Integrity
Verification and Encryption for Secure Processors. In: Proceedings of the 36th Annual In-
ternational Symposium on Microarchitecture (MICRO 36), San Diego, CA, pp. 339–350
(December 2003)

24. Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incremental multiset hash
functions and their application to memory integrity checking. In: Laih, C.-S. (ed.) ASIA-
CRYPT 2003. LNCS, vol. 2894, pp. 188–207. Springer, Heidelberg (2003)

25. Duc, G., Keryell, R.: CryptoPage: An Efficient Secure Architecture with Memory Encryp-
tion, Integrity and Information Leakage Protection. In: Jesshope, C., Egan, C. (eds.) AC-
SAC 2006. LNCS, vol. 4186, pp. 483–492. Springer, Heidelberg (2006)

26. Rogers, B., Prvulovic, M., Solihin, Y.: Effective Data Protection for Distributed Shared
Memory Multiprocessors. In: Proc. of International Conference of Parallel Architecture
and Compilation Techniques (PACT) (September 2006)

27. Lee, M., Ahn, M., Kim, E.J.: I2SEMS: Interconnects-Independent Security Enhanced
Shared Memory Multiprocessor Systems. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS,
vol. 4671, pp. 94–103. Springer, Heidelberg (2007)

28. Rogers, B., Yan, C., Chhabra, S., Prvulovic, M., Solihin, Y.: Single-Level Integrity and
Confidentiality Protection for Distributed Shared Memory Multiprocessors. In: Proc. of the
14th International Symposium on High Performance Computer Architecture (HPCA)
(2008)

	Hardware Mechanisms for Memory Authentication: A Survey of Existing Techniques and Engines
	Introduction
	Threat Model
	Hardware Attacks
	Software Attacks

	Integrity Trees: Cryptographic Schemes for Memory Authentication
	Authentication Primitives for Memory Authentication
	Integrity Trees

	Integration of Integrity Trees in Computing Platforms
	Tree Traversal Technique
	Cached Trees
	The Bonsai Merkle Tree

	Memory Authentication with an Untrusted Operating System
	Memory Authentication without a Tree Structure
	Data Authentication in Symmetric Multi-Processors (SMP)
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

