
Run-Time Enforcement of Secure JavaScript Subsets

Sergio Maffeis
Imperial College London

maffeis@doc.ic.ac.uk

John C. Mitchell
Dep. of Computer Science

Stanford University
mitchell@cs.stanford.edu

Ankur Taly
Stanford University

ataly@stanford.edu

Abstract

Many Web-based applications such as advertisement,
social networking and online shopping benefit from the
interaction of trusted and unstrusted content within the
same page. If the untrusted content includes JavaScript
code, it must be prevented from maliciously altering pages,
stealing sensitive information, or causing other harm. We
study filtering and rewriting techniques to control untrusted
JavaScript code, using Facebook FBJS as a motivating ex-
ample. We explain the core problems, provide JavaScript
code that enforces provable isolation properties at run-time,
and compare our results with the techniques used in FBJS.

1 Introduction

Many contemporary web sites incorporate untrusted con-
tent. For example, many sites serve third-party advertise-
ments, allow users to post comments that are then served
to others, or allow users to add their own applications to
the site. Although untrusted content can be placed in an
isolating iframe [3], this is not always done because of
limitations imposed on communication between trusted and
untrusted code. Instead, Facebook [18], for example, pre-
processes untrusted content, applying filters and source-to-
source rewriting before the content is served. While some
of these methods make intuitive sense, JavaScript [7, 9]
provides many subtle ways for malicious code to subvert
language-based isolation methods, as shown here and in our
previous work [14].

In this paper, we review some previous filtering methods
for managing untrusted JavaScript [14] and explore ways
of replacing some aspects of these restrictive static code
filters with more flexible run-time instrumentation that is
implementable as source-to-source translation. Our previ-
ous efforts uncovered problems and vulnerabilities with the
then-current versions of FBJS and ADsafe [5], Yahoo’s safe
advertising proposal. We then developed a formal foun-

dation for proving isolation properties of JavaScript pro-
grams [14], based on our operational semantics of the full
ECMA-262 Standard language (3rd Edition) [6], available
on the web [12] and described previously in [13]. The lan-
guage subsets defined in [14] provided a foundation for
code filtering – any JavaScript filter that only allows pro-
grams in a meaningful sublanguage will guarantee any se-
mantic properties associated with it. More specifically, we
developed proofs that certain subsets of the ECMA-262
Standard language make it possible to syntactically identify
the object properties that may be accessed, make it possible
to safely rename variables used in the code, and/or make it
possible to prevent access to scope objects (including the
global object). However, these syntactic subsets are more
restrictive than the solution currently employed by Face-
book, which uses run-time instrumentation to restrict the
semantic behavior of code that would not pass our filters.
In this paper, we therefore focus on subsets of JavaScript
and semantic restrictions that model the effect of rewriting
JavaScript source code with “wrapper” functions. Our main
contribution is the definition of JavaScript code that imple-
ments secure, semantic preserving run-time checks that en-
force isolation of untrusted JavaScript code. We also com-
pare our methods with the solutions employed by Facebook
a the time of our submission. In particular, we describe
a previously unknown Facebook vulnerability that we dis-
covered thanks to our analysis, and the fix adopted in the
current version of FBJS following our disclosure to them.

Related work on language-based methods for isolat-
ing the effects of potentially malicious web content in-
clude [16], which examines ways to inspect and cleanse dy-
namic HTML content, and [24], which modifies question-
able JavaScript, for a more restricted fragment of JavaScript
than we consider here. A short workshop paper [23] also
gives an architecture for server-side code analysis and in-
strumentation, without exploring details or specific methods
for constraining JavaScript. The Google Caja [4] project
follows instead a different approach, based on transpar-
ent compilation of JavaScript code into a capability-based
JavaScript subset, with libraries that emulate DOM objects.

Additional related work on rewriting based methods for
controlling the execution of JavaScript include [11]. Foun-
dational studies of limited subsets of JavaScript and dy-
namic languages in general are reported in [2, 21, 24, 10,
17, 1, 22]; see [13].

2 JavaScript Isolation Problems

In this Section, we summarize the Facebook isolation
mechanism. Over time, several teams of researchers have
discovered flaws in the Facebook protection mechanisms
that were promptly addressed by the Facebook team [8, 15,
14]. Specific handling of $FBJS.ref described below, for
example, is the result of vulnerabilities reported to Face-
book [14]. Based on past evidence, we believe it is impor-
tant to develop a foundation for proving isolation properties.
Without careful scrutiny and reliable semantic methods, it is
simply not possible to reliably reason about a programming
language as complex as JavaScript.

2.1 Facebook JavaScript

Facebook is a web-based social networking application.
Registered and authenticated users store private and public
information on the Facebook website in their Facebook pro-
file, which may include personal data, list of friends (other
Facebook users), photos, and other information. Users can
share information by sending messages, directly writing on
a public portion of a user profile (called the wall), or inter-
acting with Facebook applications.

Facebook applications can be written by any user and
can be deployed in various ways: as desktop applications, as
external web pages displayed inside a frame within a Face-
book page, or as integrated components of a user profile.
Integrated applications are by far the most common, as they
affect the way a user profile is displayed.

Facebook applications are written in FBML [20], a vari-
ant of HTML designed to make it easy to write applications
and also to restrict their possible behavior. A Facebook ap-
plication is retrieved from the application publisher’s server
and embedded as a subtree of the Facebook page document.
Since Facebook applications are intended to interact with
the rest of the user’s profile, they are not isolated inside an
iframe. However, the actions of a Facebook application
must be restricted so that it cannot maliciously manipulate
the rest of the Facebook display, access sensitive informa-
tion (including the browser cookie) or take unauthorized ac-
tions on behalf of the user. As part of the Facebook isolation
mechanism, the scripts used by applications must be written
in a subset of JavaScript called FBJS [19] that restricts them
from accessing arbitrary parts of the DOM tree of the larger
Facebook page. The source application code is checked to

make sure it contains valid FBJS, and some rewriting is ap-
plied to limit the application’s behavior before it is rendered
in the user’s browser.

FBJS. While FBJS has the same syntax as JavaScript, a
preprocessor consistently adds an application-specific pre-
fix to all top-level identifiers in the code, isolating the ef-
fective namespace of an application from the namespace of
other applicantions and of the rest of the Facebook page.
For example, a statement document.domain may be rewritten
to a12345 document.domain, where a12345 is the application-
specific prefix. Since this renaming will prevent application
code from directly accessing most of the host and native
JavaScript objects, such as the document object, Facebook
provides libraries that are accessible within the application
namespace. For example, the libraries include the object
a12345 document, which mediates interaction between the
application code and the true document object.

Additional steps are used to restrict the use of the special
identifier this in FBJS code. The expression this, executed in
the global scope, evaluates to the window object, which is the
global scope itself. Without further restrictions, an applica-
tion could simply use an expression such as this.document
to break the namespace isolation and access the document
object. Since renaming this would drastically change the
meaning of JavaScript code, occurrences of this are replaced
with the expression $FBJS.ref(this), which calls the function
$FBJS.ref to check what object this refers to when it is used.
If this refers to window, then $FBJS.ref(this) returns null.

Other, indirect ways that malicious content might
reach the window object involve accessing certain standard
or browser-specific predefined object properties such as

parent and constructor. Therefore, FBJS blacklists such
properties and rewrites any explicit access to them in the
code into an access to the useless property unknown .
Since the notation o[e] denotes the access to the prop-
erty of object o whose name is the result of evaluat-
ing expression e to a string, FBJS rewrites that term to
a12345 o[$FBJS.idx(e)], where $FBJS.idx enforces blacklist-
ing on the string value of e. Note that this technique is not
vulnerable to standard obfuscation, because $FBJS.idx is run
on the string obtained as the final result of evaluating e.

Finally, FBJS code runs in an environment where prop-
erties such as valueOf, which may access (indirectly) the
window object, are redefined to something harmless.

2.2 Formalizing JavaScript Isolation

FBJS illustrates two fundamental issues with mashup
isolation. (i) Regardless of the technique adopted to enforce
isolation, the ultimate goal is usually very simple: make
sure that a piece of untrusted code does not access a cer-
tain set of global variables (typically the DOM). (ii) While
enforcing this constraint may seem easy, there are a number

2

of subtleties related to the expressiveness and complexity of
JavaScript.

Common isolation techniques include blacklisting cer-
tain properties, separating the namespaces corresponding to
code in different trust domains, inserting run-time checks to
prevent illegal accesses, and wrapping sensitive objects to
limit their accessibility.

In the remainder of this paper, we study how combin-
ing run-time checks (analogous to $FBJS.idx and $FBJS.ref)
with syntactic restrictions leads to expressive and provably
secure subsets of JavaScript. While we use FBJS as a run-
ning example, the ideas illustrated in this paper also apply
to JavaScript isolation in other settings.

3 Syntactic JavaScript Subsets

In this Section, we describe two secure subsets of
JavaScript (first defined in [14]) that enforce isolation ex-
clusively by means of syntactic restrictions, so that the user
code is directly executed in the browser. The informal prop-
erties stated in this section are all fully supported by formal
proofs available in [14]. These earlier results are included
in the present paper both as background for modifications
to them we present in Section 4, and as motivation for more
permissive, run-time checks in the user code.

Two JavaScript Isolation Problems. If we can solve the
problem of determining the set of properties that a piece of
code can access, then we can isolate global variables by a
simple syntactic check.

Our first subset, Jt , is designed to solve this problem
without restricting the use of this. A JavaScript program can
get hold of its own scope by way of this. For example, the
expression var x; this.x=42 effectively assigns 42 to variable
x. In fact, manipulating the scope leads to a confusion of the
boundary between variables (which are properties of scope
objects) and properties of regular object. Hence, Jt code
must be prevented from using as property name any of the
global variable names to be protected. In theory, this does
not constitute a significant limitation of expressiveness. Ef-
fectively, Jt is a good subset for isolating the code of a sin-
gle untrusted application from a library of functions whose
names may be all prefixed by a designated string such as $.
On the other hand, Jt is not suited to run several applica-
tions with separate namespaces, since the sets of property
names used by each one needs to be disjoint.

To better support multiple applications, the next problem
we have to solve is to prevent code from explicitly manip-
ulating the scope, so that variables are effectively separated
from regular object properties. To this end, we propose a
refinement of Jt , which we call Js , that forbids the use of
this. Hence, only the global variable names of each applica-
tion, and of the page libraries, need to be distinct from one

another. Moreover, Js enjoys the property that the seman-
tics of its terms does not change after a safe renaming of
variables. Hence, isolation can be enforced by an automatic
rewriting pass (with suitable side-conditions).

3.1 Isolating property names: Jt

The problem of determining the set of properties
names that may be accessed by a piece of code is
intractable for JavaScript in general, because property
names can be computed using string operations, as
in o={prop:42}; m=”pr”; n=”op”; o[m + n], which returns 42.
However, we can determine a finite set containing all ac-
cessed properties if we eliminate operations that can con-
vert strings to property names, such as eval and e[e]. In
doing so, we must also consider implicit access to native
properties that may not be mentioned explicitly in the code.
For example, the code fragment var o = { }; ”an ”+ o causes
an implicit type conversion of object o to a string, by an im-
plicit call to the toString property of object o, evaluating to
the string ”an [object Object]”. (If o does not have the toString
property, then it is inherited from its prototype). Fortu-
nately, the property names that can be accessed implicitly
are only the natural numbers used to index arrays and a fi-
nite set of native property names [13].

Definition 1 The set Pnat of all the property names that
can be accesses implicitly is {0,1,2,...}

⋃
{

toString, toNumber, valueOf, constructor, prototype,
length, arguments, message, Object, Array, RegExp

}
This list is exhaustive for an ECMA-262-compliant imple-
mentation. Other properties may be added to Pnat to ac-
count for browser-specific JavaScript extensions.

Our first subset, called Jt , is designed to make property
access (whether for read or for write) decidable.

Definition 2 Jt is defined as JavaScript minus all terms
containing the identifiers eval, Function, hasOwnProperty,
propertyIsEnumerable and constructor; the expressions e[e],
e in e; the statement for (e in e) s.

Since we consider checking for the existence of a property
as a read access, we exclude from Jt also the e in e and
for (e in e) s statements, even though they cannot be used to
read the actual contents of the corresponding property.

From the usability point of view, the only serious restric-
tions of Jt are the lack of eval, and e[e]. The former, al-
though has practical uses, is commonly considered evil, and
is excluded from most subsets. The latter constitutes the
natural way to access arrays elements. The dynamic subset
Jb of Section 4.1 addresses this limitation.

Jt lends itself naturally to enforce whitelisting of prop-
erties and variable. It can also be used to enforce blacklist-
ing. A Jt piece of code cannot read or write any variable or

3

property, except for those in Pnat, that does not appear ex-
plicitly in its code or in a function pre-loaded in the run-time
environment (Theorem 1 of [14]). A simple static analysis
can be used to screen the actual code for blacklisted proper-
ties. Since the initial JavaScript environment is defined by
the specification, blacklisting can be effectively enforced as
long as the code of any pre-loaded, user-defined function is
known a priori (such is the case for Facebook).

3.2 Protecting the Scope: Js

In ECMA-262-compliant JavaScript implementations
there are three ways to obtain a pointer to a scope object.
The simplest way, supported by all JavaScript implementa-
tions, is by referencing the global object, for example by
evaluating the expression this in the global scope. Another
way to get a pointer to a scope object is by the statement

try {throw (function(){return this})}
catch(get scope){scope=get scope(); ...};

When the code is executed, the function thrown as an ex-
ception in the try block is bound to the identifier get scope
in a new scope object that becomes the scope for the catch
block. Hence, when we call get scope(), the this identifier of
the function is bound to the enclosing scope object, which
we make available to arbitrary code by saving it in variable
scope. Although this behaviour conforms to the ECMA-262
standard, as far as we are aware Safari, Opera and Chrome
are the only browser where this example works. Other
browsers, such as for example Internet Explorer and Fire-
fox bind the global object instead of the catch scope object
to the this of the call to get scope in the catch clause. Finally,
we can get a pointer to a scope object by the expression

(function get scope(x){if (x==0) {return this}
else {scope = get scope(0); ...}})(1)

Here we use a named function expression. As this func-
tion executes, the static scope of the recursive function is a
fresh scope object where the identifier get scope is bound to
the function itself, making recursion possible. When in the
else branch we recursively call get scope(0), then this is once
again bound to the scope object, which is saved in scope for
later usage. Once again, although ECMA-262-compliant,
this example works only in Firefox and Safari. Internet Ex-
plorer, Opera and Chrome instead bind the global object to
the this of get scope in the recursive call.

We now define the subset Js which keeps variables dis-
tinct from property names by preventing manipulation of
explicit scope objects (Theorem 2 of [14]).

Definition 3 The subset Js is defined as Jt minus all terms
containing this, with(e){s} and the identifiers valueOf, sort,
concat and reverse.

First and foremost the subset forbids any use of
this, which can be used to access scope objects as de-
scribed above. Just like in FBJS, we need to remove
also the with construct because it gives another (direct)
way to manipulate the scope. For example, the code
var o = {x:null}; with(o){x=42} assigns 42 to the property o.x.
Since we eliminate this and with, scope objects are only ac-
cessible via internal JavaScript properties which in turn can
only be accessed as a side effect of the execution of other
instructions. For example, the internal scope pointer of a
scope object is accessed during identifier resolution, in or-
der to search along the scope chain. However, its value is
never returned as the result of evaluating a term. Similarly,
the scope pointer stored in a function closure is never re-
turned as a result. The internal @this property is returned
only by the reduction rule for this, which cannot be triggered
in Js , and by the native functions concat, sort or reverse of
Array.prototype, and valueOf of Object.prototype. For example,
the expression valueOf() evaluates to window (which is also
the initial scope). By defining Js as a subset of Jt , we can
blacklist these dangerous properties.

Closure under renaming The goal of variable renaming is
to isolate the namespaces of different applications without
requiring all of the property names to be distinct. There-
fore, we want o.p to be renamed to a12345 o.p, and not to
a12345 o.a12345 p. Due to implicity property access, and
the fact that variables are effectively undistinguishable from
properties of scope objects, the definition of variable renam-
ing in JavaScript is subtle. In particular, one should not
rename all the variables that correspond to native proper-
ties of a scope object, including the ones inherited via the
prototype chain. These properties in fact have a predefined
semantics that cannot be preserved by renaming. For exam-
ple toString() evaluates to ”[object Window]”, but throws a “ref-
erence error” exception when evaluated as a12345 toString()
after renaming.

Since Js does not contain with, only the global object, in-
ternal activation objects or freshly allocated objects (in the
case of try-catch and named functions) can play the role of
scope objects. Hence, the only (non-internal) inherited na-
tive properties are the ones present in Object.prototype, and
the pre-defined properties of the global object. The com-
plete set of properties that should not be renamed, denoted
by PnoRen is:

NaN,Infinity,undefined,eval,parseInt,parseFloat,IsNaN,
IsFinite,Object,Function,Array,String,Number,Boolean,
Date,RegExp,Error,RangeError,ReferenceError, TypeError,
SyntaxError,EvalError,constructor,toString,toLocaleString,
valueOf,hasOwnProperty,propertyIsEnumerable,isPrototypeOf

Bowser implementations contain additional properties such
as document,setTimeout,etc..

4

Let a safe renaming be a partial injective function
that renames identifiers (not in PnoRen) without intro-
ducing clashes. In [14], we prove that the intended
meaning of a Js program does not change under re-
naming. Jt instead does not support the semantics
preserving renaming of variables. The counterexam-
ple try {throw (function(){return this});} catch(y){y().x=42; x;}
is valid Jt code that, according to the JavaScript semantics,
evaluates to 42. If we rename x to $x, in the catch clause is
rewritten to catch(y){y().x=42; $x}which raises an exception
because $x is undefined.

3.3 Comparison with FBJS

A purely syntactic solution to the FBJS isolation prob-
lem, justified by our analysis, is to restrict Facebook ap-
plications to Js . While this could be an attractive solution
for isolating user-supplied applications in contexts where
code is written from scratch, it is more restrictive than the
solutions proposed in Section 4. Since Js preserves safe
renamings, we can separate the namespaces of different ap-
plications, and of the FBJS libraries, without altering their
semantics. Since it is a subset of Jt , a simple syntactic
check on application code guarantees that it cannot escape
its namespace or access blacklisted properties (which need
to include also browser-specific extensions such as caller,

proto , getters, setters, etc.).
FBJS is more expressive than Js , because it includes a

(sanitized) version of this and of the member access e[e]
notation. On the other hand, FBJS does not correctly sup-
port renaming because it does not prevent explicit manipu-
lation of the scope, and because it renames the properties in
PnoRen . The toString and try-catch counterexamples of Sec-
tion 3.2 apply to FBJS as well. In Section 4 we shall propose
better subsets that preserve renaming and are as expressive
as FBJS.

4 Semantic JavaScript Subsets

In this Section, we present three JavaScript subsets that,
by virtue of using run-time checks, are more expressive than
Jt and Js yet still enforce strong insolation properties. The
informal claims put forward in this Section are proven in
the Appendix A.

JavaScript Isolation Problems Revisited. While the sub-
set Jt of Section 3 makes it possible to statically determine
all the properties accessed during execution of given code,
this subset prevents e1[e2], which is often useful in pro-
gramming. We therefore define a subset Jb with modified
semantics (wrapper function) that allows e1[e2] and guar-
antees the weaker property that no program accesses prop-
erties that are explicitly blacklisted.

Our second semantic subset, called Jss , is the semantic
counterpart to Js . It solves the same problem of prevent-
ing the direct manipulation of scope objects, but it is more
expressive, because Jss programs can use this when it does
not evaluate to a scope object. Disallowing this altogether
would break many existing JavaScript libraries, and entail
extensive rewriting.

The last semantic subset of this section, called Jg (first
defined in [14]), solves the problem of isolating the window
object, hence the global scope, while permitting to use this,
even when it is bound to other scope objects. Indeed, we
shall see that for some purposes the ability to explicitly ma-
nipulate the scope can be a desirable.

4.1 Blacklisting Properties: Jb

We now define the subset Jb that prevents user code from
accessing any property included in a blacklist (or excluded
from a whitelist). Note that if a property in Pnat is black-
listed it can still be accessed implicitly as a side effect.

Definition 4 Let B be a set of blacklisted properties. The
subset Jb(B) is defined as Jt plus the construct e[e], minus
all terms containing property names or identifiers in B.

In order for Jb(B) to effectively achieve its isolation goal,
B must contain at least the properties eval, Function and
constructor blacklisted also by Jt , and a small number of pri-
vate identifiers beginning with $, as explained below.
Enforcing Jb. The idea is to insert a run-time check in each
occurrence of e1[e2] to make sure that e2 does not eval-
uate to a blacklisted property name. We transform every
access to a blacklisted property of an object into an access
to the property ”bad” of the same object (we assume that B
does not contain ”bad”). A different option, clashing with the
JavaScript silent failure philosophy is to throw an exception
when a blacklisted property is accessed.

A faithful implementation of Jb is complicated by subtle
details of the JavaScript semantics for the expression e1[e2].
In fact, the execution of e1[e2] goes through several steps
involving evaluation of expressions to values, and possibly
type conversions executed in a very specific order. Roughly,
first e1 is evaluated to a value va1, then e2 to va2, then if va1
is not an object it is converted into an object o, and similarly
if va2 is not a string it is converted into a string m:

e1[e2] −→ va1[e2] −→ va1[va2] −→ o[va2] −→ o[m]

Each of these steps, which precede the actual access of
property m in o, may raise an exception or have other side
effects. Therefore, their execution order must be preserved.

The simplest and most efficient faithful implementation
of this run-time check that we could find is to rewrite e1[e2]
to e1[IDX(e2)], where IDX(e2) is the expression

($=e2,{toString:function(){return($=TOSTRING($),FILTER($))}})

5

The IDX code evaluates once and for all e2 to a value va2 that
is saved in the variable $, and returns an object value va so
that effectively the internal execution steps so far are

e1[IDX(e2)] −→ va1[IDX(e2)] −→ va1[va] −→ o[va]

Since va is an object and not a string, its toString method is
invoked next. The expression TOSTRING($), which is de-
fined as (new $String($)).valueOf() converts va2 into a string.
In fact, the most direct way to convert a value into a string
exactly as o[va2] would do, is by passing va2 to the original
String constructor (which we assume to have saved in a vari-
able $String), and invoking the valueOf method of the result-
ing string object. Finally, the expression FILTER($), defined
as

($ == ”$String” ? ”bad” :
($ == ”$” ? ”bad” :

($ == ”constructor” ? ”bad” : $))

uses nested conditional expressions to return the string
saved in $ if it is not in the blacklist B, and ”bad” other-
wise. For this filtering to work $, $String and constructor
must always be blacklisted (and cannot appear as identi-
fiers or property names in the source code). While these
are the only blacklisted properties in the code above, it is
straightforward to nest further conditional expressions to
blacklist other properties. An alternative implementation
of FILTER($) is the expression ($blacklist[$]?”bad”:$), where
$blacklist is a (blacklisted) global variable containing an ob-
ject with the properties to be blacklisted initialized to true.
Note that all the properties of Object.prototype that are not
overridden by $blacklist, and that do not contain values (such
as null,0,””,false) that evaluate to false in a boolean con-
text, will be automatically blacklisted. Hence, in our case
$blacklist should actually be the object

{$:true,$String:true,$blacklist:true,
toString:false,toLocaleString:false,...}

Our run time check is correct with either choice of FILTER.

Claim 1 For every blacklist B containing the property
names $ and $String, and for every JavaScript program P ∈
Jb(B), the program $String=String;Q where Q is obtained
by rewriting every instance of e1[e2] in P to e1[IDX(e2)]
(adapted to include all of B), behaves exactly like P when P
accesses non-blacklisted properties. If P accesses a black-
listed property m of an object o, Q accesses instead o[”bad”].

In many practical cases, one can use simpler variants of
IDX, sacrificing their correspondence to the original seman-
tics of e1[e2].

When the order of the side-effects (including excep-
tions) caused by the evaluation of e1 and e2 can be ignored
(say because the exceptions are not caught, or the expres-
sions are side-effect free) we can simplify IDX(e2) to be
($=TOSTRING(e2),FILTER($)).

If e2 evaluates to an object va2, converting va2 to a string
in the expression o[va2] involves invoking first its toString
method, and if that fails, its valueOf method. The oppo-
site happens when converting va2 to a string by the ex-
pression va2+””. If va2.toString() returns the same value as
va2.valueOf(), or if the latter does not return a string, we can
redefine TOSTRING(e2) in IDX to be the expression e2+””.

Combining these two simplifications, we can define
IDX(e2) as ($=e2+””,($blacklist[$]?”bad”:$)). which is remark-
ably simple and efficient, and in particular implements cor-
rectly the JavaScript semantics in the most common case
when the expression e2 is just a string or a number.

These latest variants of IDX do not enjoy Claim 1 because
there are some (corner) cases in which their behaviour de-
parts from that of e1[e2]. Yet, they are secure, because they
still prevent any blacklisted property from being accessed.

4.2 Protecting the Scope: Jss

In Js , we exclude this because it can be used to obtain a
scope object. Now, we reinstate this and look for dynamic
ways to prevent it to be bound to scope objects.

Definition 5 The subset Jss is defined as Jt minus all terms
containing with(e){s}, the identifiers valueOf, sort, concat and
reverse and property names or identifiers beginning with $.

Jss still excludes valueOf, sort, concat and reverse because
those native functions can return the window object, if called
in the appropriate context.
Enforcing Jss . Unfortunately, it is not possible to en-
force Jss in an ECMA-262-compliant implementation of
JavaScript. In the general case, there is no JavaScript ex-
pression that can detect if an object has an internal scope
pointer, or test for its existence directly. Only code that has
a handle to a scope object that is present in the scope chain
can test such object and detect that it is a scope object. Re-
call the two ways of obtaining a scope object described in
Section 3.2. In the case of the recursive function, the scope
object that we obtain is active in the scope chain just be-
low the activation object of the function returning its this.
Therefore, we can insert a run-time check that detects it and
replaces it with null. In the try-catch case instead the func-
tion returning its this is defined before the scope of the catch
branch is created, so when at run-time the catch scope ob-
ject is bound to the this, it is not active in the (static) scope
chain of the function, and cannot be detected.

Hence, our implementation is useful to prevent direct
scope manipulation in Firefox, which as discussed in Sec-
tion 3.2 returns a scope only in the recursive function case,
but not in Safari or other strictly ECMA-262-compliant im-
plementations, which return the scope also in the try-catch.

To enforce Jss in Firefox all we need to do is to initialize
a global (blacklisted) variable $ with true, and replace each

6

instance of this with the expression NOSCOPE(this), defined
as (this.$=false,$?(delete this.$,this):(delete this.$,$=true,null)).
When this is bound to the global object, the expression
this.$=false overrides the global declaration, which needs to
be restored by the $=true expression in the last branch of the
conditional. In the case of a local scope object, this expres-
sion leaves behind a useless (but unharmful) local binding
of $ to true. In the case of regular objects, the temporary
variable $ is correctly removed.

Claim 2 For every Firefox-JavaScript program P ∈ Jss

that does not contain $, the program $=true;Q where Q
is obtained by rewriting every instance of this in P to
NOSCOPE(this), behaves exactly like P when P never ac-
cesses a this bound to a scope object. If P evaluates the
expression this to a scope object then Q evaluates the same
expression to null.

4.3 Isolating the Global Object: Jg

In Section 4.2 we argued that, in general, it is not pos-
sible to detect a scope object in an ECMA-262-compliant
JavaScript implementation. What we can do instead, is to
prevent this to be bound to the global object. This solution is
effectively equivalent to Jss for Internet Explorer, because
in that browser local scope objects cannot be accessed any-
way, as discussed in Section 3.2. In the other browsers,
keeping at least the global variables separate from generic
property names still supports flexible isolation policies, as
discussed for Js .

Arguably, the ability to manipulate scope objects directly
may be a desirable feature. For example, it can be used to
implement open closures which are a concept that we dis-
covered after understanding direct scope manipulation via
the examples given in Section 3.2. The idea is to write ex-
pressions that return a number of functions sharing some
private state (like normal closures), plus an object that effec-
tively embodies that shared state. A software architecture
may distribute such functions, guaranteeing the encapsula-
tion of the shared state, plus retain a handle to the shared
state itself. In particular, in the case where the functions
participating in the closure return results by updating shared
variables, the shared state is ready to be used as a result ob-
ject, without need to do any copying. For example, given

var oc = (function scope(x){if (x==0) {return this}
else {shared=scope(0);shared.y=7;
return [function(){y+=23},function(){y+=12},shared]}})(1)

the expression oc[0]();oc[1]();oc[2].y evaluates to 42. Tra-
ditional closures could encode less efficiently some of this
behaviour by providing a dedicated function to access and
update the shared state.

The subset Jg contains this and isolates the global object.

Definition 6 The subset Jg is defined as Js plus the this
expression and minus all terms containing property names
or identifiers beginning with $.

Note that Jg still excludes valueOf, sort, concat and reverse,
that can return the window object.

Since the local scope can still be directly manipulated, in
general variables can be confused with property names, and
therefore variable renaming does not preserve the meaning
of programs. Yet, this rarely happens accidentally, and does
not constitute a security problem. On the other hand, since
variables defined in the global scope are effectively sepa-
rated from property names, Jg can be used to isolate the
namespaces of different applications.

Enforcing Jg . In practice, the semantic restriction can be
implemented by rewriting every occurrence of this in the
user code into the expression NOGLOBAL(this) defined as
(this==$?null;this). $ is a blacklisted global variable, initial-
ized with the address of the global object.

Claim 3 For every JavaScript program P ∈ Jg that does
not contain $, the program $=this;Q where Q is obtained
by rewriting every instance of this in P to NOGLOBAL(this),
behaves exactly like P if P does not access a this bound to
the global object. If P evaluates this to the global object then
Q evaluates NOGLOBAL(this) to null.

4.4 Comparison with FBJS

We now compare our run-time checks with the corre-
sponding ones in FBJS. Below, we denote by FBJS v

09 the
version of FBJS deployed on Facebook at the time of our
analysis, in March 2009. The FBJS v

09 $FBJS.ref function
carries out a check equivalent to NOGLOBAL, plus some ad-
ditional filtering needed to wrap DOM objects exposed to
user code (we reserve to study the secure wrapping of li-
braries in future work). Since $FBJS is effectively black-
listed in FBJS v

09 , we are satisfied that ref prevents the this
identifier to be evaluated to the window object, and the check
is semantically faithful in the spirit of Claim 3.

The FBJS v
09 $FBJS.idx function instead does not pre-

serve the semantics of the member access notation, and as
a result can be compromised. In the context of our expla-
nation of Section 4.1, $FBJS.idx is in fact equivalent to the
expression ($=e2,($instanceof Object||$blacklist[$])?”bad”:$),
where $blacklist is the object {caller:true,$:true,$blacklist:true}.
The main problem is that, differently from our definition
of IDX, the expression $blacklist[$]?”bad”:$ converts va (that
in principle could be an object) to a string two times. The
object

{toString:function(){this.toString=function(){return ”caller”};
return ”good”}}

7

can fool the blacklisting by first returning the good prop-
erty ”good”, and then returning the bad property ”caller”
(we found a similar attack, which has since been fixed,
on [11]). To avoid this problem, FBJS v

09 inserts the check
$ instanceof Object that tries to detect if $ contains an ob-
ject. In general, this check is not sound. According to the
JavaScript semantics, any object with a null prototype (such
as Object.prototype) escapes this check. Moreover, in Firefox,
Internet Explorer and Opera also the window object escapes
the check.

In FBJS v
09 , Object.prototype and window are not accessi-

ble by user code, so cannot be used to implement this at-
tack. We found instead that the scope objects described
in Section 3.2 have a null prototype in Safari, and therefore
we were able to mount attacks on the $FBJS.idx that effec-
tively let user application code escape the Facebook sand-
box. (See [14] for examples of exploit code, and a discus-
sion on the security implications.) Shortly after our notifi-
cation of this problem, Facebook has modified the $FBJS.ref
function to include code that detects if the current browser
is Safari, and in that case checks if this is bound to an object
able to escape the instanceof check described above.

Unfortunately this solution is not very robust, and is un-
necessarily restrictive. First, some browsers may have other
host objects that have a null prototype, and that can be ac-
cesses without using this. Such objects could still be used
to subvert $FBJS.idx, which has not been changed. Sec-
ond, $FBJS.idx prevents objects to be used as arguments of
member expressions. This restriction is unnecessary for the
safety of blacklisting, as shown by our IDX.

Another minor problem with $FBJS.idx is that it deals
inconsistently with the blacklisting of inherited properties
such as toString. While the expression ({}).toString() is
valid FBJS code returning ”[object Object]”, the expression
({})[”toString”]() raises an exception because toString is im-
plicitly blacklisted.This problem can be easily fixed, as de-
scribed in Section 4.1, by setting $blacklist.toString=false.

5 Conclusions

We reviewed previous filtering methods for managing
untrusted JavaScript and developed ways of replacing re-
strictive static code filters with more flexible run-time in-
strumentation that is implementable as source-to-source
translation. We defined a subset with modified semantics
(wrapper functions) that allows e1[e2] and guarantees that
no program accesses properties that are explicitly black-
listed. Our second semantic subset prevents the direct ma-
nipulation of scope objects, but allows programs to use this
when it does not evaluate to a scope object. Our third
semantic subset isolates the window object, and hence the
global scope, while permitting code to use this, even when it
is bound to other scope objects. We have applied our results

to analyze FBJS, which apart from some minor problems
discovered by our analysis, has proven to be a remarkably
sound and efficient practical JavaScript subset. We hope
that our semantics-based study will convince developers of
the value of programming language methods for evaluating
language-based isolation.

Acknowledgments. Sergio Maffeis is supported by EP-
SRC grant EP/E044956 /1. Mitchell and Taly acknowledge
the support of the National Science Foundation.

References

[1] Irem Aktug, Mads Dam, and Dilian Gurov. Provably correct
runtime monitoring. In Proc. of FM 2008, volume 5014 of
LNCS, pages 262–277. Springer, 2008.

[2] C. Anderson, P. Giannini, and S. Drossopoulou. Towards
type inference for JavaScript. In Proc. of ECOOP’05, pages
429–452, 2005.

[3] A. Barth, C. Jackson, and J.C. Mitchell. Securing browser
frame communication. In Proc. of USENIX Security, 2008.

[4] Google Caja Team. Google-Caja: A source-to-source trans-
lator for securing JavaScript-based web. http://code.
google.com/p/google-caja/.

[5] Douglas Crockford. ADsafe: Making JavaScript safe for ad-
vertising. http://www.adsafe.org/, 2008.

[6] ECMA International. ECMAScript language specification.
stardard ECMA-262, 3rd Edition.
http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf,
1999.

[7] B. Eich. JavaScript at ten years. http://www.mozilla.
org/js/language/ICFP-Keynote.ppt.

[8] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer. Talking to
strangers without taking their candy: isolating proxied con-
tent. In Proc. of SocialNets ’08. ACM, 2008.

[9] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly,
2006.

[10] P. Heidegger and P. Thiemann. Recency types for
dynamically-typed, object-based languages. Proc. of
FOOL’09, 2009.

[11] P. H.Phung, D. Sands, and A. Chudnov. Lightweight self pro-
tecting JavaScript. In Proc. of ASIACCS 2009. ACM Press,
2009.

[12] S. Maffeis, J.C. Mitchell, and A. Taly. Complete ECMA
262-3 operational semantics. http://jssec.net/
semantics/.

[13] S. Maffeis, J.C. Mitchell, and A. Taly. An operational se-
mantics for JavaScript. In Proc. of APLAS’08, volume 5356
of LNCS, pages 307–325, 2008. See also: Dep. of Comput-
ing, Imperial College London, Technical Report DTR08-13,
2008.

8

http://code.google.com/p/google-caja/
http://code.google.com/p/google-caja/
http://www.adsafe.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.mozilla.org/js/language/ICFP-Keynote.ppt
http://www.mozilla.org/js/language/ICFP-Keynote.ppt
http://jssec.net/semantics/
http://jssec.net/semantics/

[14] S. Maffeis and A. Taly. Language-based isolation of un-
trusted Javascript. In Proc. of CSF’09, IEEE, 2009. See
also: Dep. of Computing, Imperial College London, Techni-
cal Report DTR09-3, 2009.

[15] J. Pynnonen. Facebook script injection vulnerabili-
ties. http://seclists.org/fulldisclosure/
2008/Jul/0023.html.

[16] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Es-
meir. BrowserShield: Vulnerability-driven filtering of Dy-
namic HTML. ACM Transactions on the Web, 1(3), 2007.

[17] A. Sabelfeld and A. Askarov. Tight enforcement of flexible
information-release policies for dynamic languages. Proc. of
PCC’08, 2008.

[18] The FaceBook Team. FaceBook. http://www.
facebook.com/.

[19] The FaceBook Team. FBJS. http://wiki.
developers.facebook.com/index.php/FBJS.

[20] The FaceBook Team. FBML. http://wiki.
developers.facebook.com/index.php/FBML.

[21] P. Thiemann. Towards a type system for analyzing javascript
programs. In Proc. of ESOP’05, volume 3444 of LNCS,
pages 408–422, 2005.

[22] P. Thiemann. A type safe DOM API. In Proc. of DBPL’05,
pages 169–183, 2005.

[23] K. Vikram and M. Steiner. Mashup component isolation
via server-side analysis and instrumentation. In Proc. of
W2SP’08, 2008.

[24] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript in-
strumentation for browser security. In Proc. of POPL’07,
pages 237–249, 2007.

9

http://seclists.org/fulldisclosure/2008/Jul/0023.html
http://seclists.org/fulldisclosure/2008/Jul/0023.html
http://www.facebook.com/
http://www.facebook.com/
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBML
http://wiki.developers.facebook.com/index.php/FBML

A Appendix: Correctness Proofs

In this Section we formally prove the correctness of our
enforcement mechanisms. In order to prove the correctness,
we make use of the operational semantics of JavaScript.
The main purpose of this appendix is to substantiate the
claims made in Section 4. The reader does not need to read
this Appendix in order to understand the main body of the
paper. Unless otherwise stated, below we assume that the
semantics of JavaScript is compliant with the ECMA-262
standard.

A.1 Operational Semantics of JavaScript

We briefly summarize our formalization of the opera-
tional semantics of JavaScript [12, 13] based on the ECMA-
262 standard [6], and introduce some auxiliary notation and
definitions. In [13], we proved properties of JavaScript
that address the internal consistency of the semantics it-
self, and memory reachability properties needed for garbage
collection, but did not address the kind isolation proper-
ties.Discussion of the relation between this semantics and
current browsers implementations appear in [13]

Our operational semantics consists of a set of rules writ-
ten in a conventional meta-notation suitable for rigorous
but (currently) unautomated proofs. Given the space con-
straints, we describe only the main semantic functions and
some representative axioms and rules.
Semantic Functions and Contexts. Expressions, state-
ments and programs each have a corresponding small-step
semantic relation denoted respectively by e−→ , s−→ , P−→ .
Each semantic function transforms a heap H , a pointer in
the heap to the current scope l, and the current term being
evaluated t into a new heap-scope-term triple.

The semantics of programs depends on the semantics
of statements which in turn depends on the semantics of
expressions which in turn, for example by evaluating a
function, depends circularly on the semantics of programs.
These dependencies are made explicit by contextual rules,
that specify how a transition derived for a term can be used
to derive a transition for a larger term including the former
as a sub-term. The premises of each semantic rule are pred-
icates that must hold in order for the rule to be applied, usu-
ally built of very simple mathematical conditions such set
membership, inequality and semantic function application.

An atomic transition is described by an axiom. For
example, the axiom H,l,(v) −→H,l,v describes that brack-
ets can be removed when they surround a value (as op-
posed to an expression, where brackets are still meaning-
ful). Contextual rules propagate such atomic transitions.
For example, if program H,l,P evaluates to H1,l1,P1 then also
H,l,@FunExe(l2,P) (an internal expression used to evaluate
the body of a function) evaluates to H1,l1,@FunExe(l2,P1).

The rule below shows that: @FunExe(l,−) is one of the con-
texts eCp for evaluating programs.

H,l,P P−→H1,l1,P1

H,l,eCp[P] e−→H1,l1,eCp[P1]

Expressions. We distinguish two classes of expressions:
internal expressions, which correspond to specification ar-
tifacts needed to model the intended behavior of user ex-
pressions, and user expressions, which are part of the
user syntax of JavaScript. Internal expressions include
addresses, references, exceptions and functions such as
@GetValue,@PutValue used to get or set object properties,
and @Call,@Construct used to call functions or to construct
new objects using constructor functions.

Statements. Similarly to the case for expressions, the se-
mantics of statements contains a certain number of inter-
nal statements, used to represent unobservable execution
steps, and user statements that are part of the user syntax
of JavaScript. A completion is the final result of evaluating
a statement.

co ::= ”(”ct,vae,xe”)” vae::=&empty|va xe::=&empty|x
ct ::= Normal | Break | Continue | Return | Throw

The completion type indicates whether the execution flow
should continue normally, or be disrupted. The value of a
completion is relevant when the completion type is Return
(denoting the value to be returned), Throw (denoting the ex-
ception thrown), or Normal (propagating the value to be re-
turn during the execution of a function body). The identifier
of a completion is relevant when the completion type is ei-
ther Break or Continue, denoting the program point where the
execution flow should be diverted to.

Programs. Programs are sequences of statements and
function declarations.

P ::= fd [P] | s [P] fd ::= function x ”(”[x˜]”){”[P]”}”

As usual, the execution of statements is taken care of by a
contextual rule. If a statement evaluates to a break or continue
outside of a control construct, an SyntaxError exception is
thrown (rule (i)). The run-time semantics of a function dec-
laration instead is equivalent to a no-op (rule (ii)). Function
(and variable) declarations should in fact be parsed once
and for all, before starting to execute the program text. In
the case of the main body of a JavaScript program, the pars-
ing is triggered by rule (iii) which adds to the initial heap
NativeEnv first the variable and then the function declarations
(functions VD,FD).

ct < {Break,Continue}
o = new SyntaxError() H1,l1 = alloc(H,o)

H,l,(ct,vae,xe) [P] P−→H1,l,(Throw,l1,&empty)
(i)

10

H,l,function x ([x˜]){[P]} [P1] P−→
H,l,(Normal,&empty,&empty) [P1] (ii)

VD(NativeEnv,#Global,{DontDelete},P) = H1
FD(H1,#Global,{DontDelete},P) = H2

P
P−→H2,#Global,P

(iii)

Native Objects. NativeEnv is the initial heap of core
JavaScript. It contains native objects for representing prede-
fined functions, constructors and prototypes, and the global
object @Global that constitutes the initial scope, and is al-
ways the root of the scope chain. In web browsers, the
global object is called window. For example, the global ob-
ject defines properties to store special values such as &NaN
and &undefined, functions such as eval and constructors to
build generic objects, functions, numbers, booleans and ar-
rays. Since it is the root of the scope chain, its @Scope prop-
erty points to null. Its @this property points to itself. None
of the non-internal properties are read-only or enumerable,
and most of them can be deleted.

A.2 Preliminaries

We now define some notation and state some proper-
ties of the semantics that support the formal analysis of
JavaScript subsets defined in Section 4.

A state S is a triple (H, l, t). We use the notation H(S),
S(S) and T (S) to denote each component of the state. We
denote by H0 the “empty” heap, that contains only the na-
tive objects, and no user code. We use lG to denote the
heap address of the global object #Global. If a heap, a scope
pointer and a term are well-formed then the corresponding
state is also well-formed (see the Appendix of [14] for a
formal definition). In [13], we show that the evaluation of
well-formed terms, if it terminates, yields either a value or
an exception (for expressions), or a completion (for state-
ments and programs). A state S is initial if it is well-formed,
H(S) = H0, S(S) = lG and T (S) is a user term. A re-
duciton trace τ is the (possibly infinite) maximal sequence
of states S1, . . . , Sn, . . . such that S1 → . . . → Sn →
Give a state S, we denote by τ(S) the (unique) trace origi-
nating from S and, if τ(S) is finite, we denote by Final(S)
the final state of τ(S).

To ease our analysis, we add a separate sort mp to dis-
tinguish property names from strings and identifiers in the
semantics. We make all the implicit conversions between
these sorts explicit, by adding the identity functions Id2Prop:
x→ mp, Prop2Id: mp→ x; Str2Prop: m→ mp, Prop2Str: mp→
m. The semantics already contained explicit conversion of
strings to programs: ParseProg, ParseFunction, ParseParams.
In order to keep track of the names appearing in a state S,
we define functions that collect respectively the identifiers

and the property names of the term and the heap of S.

N T
I (S) = {x|x ∈ T (S)} N T

P (S) = {mp |mp ∈ T (S)}
NH
I (S) = {x | x ∈ P, P ∈ H(S)}
NH
P (S) = {mp | ∃l : mp ∈ H(S)(l)}
NI(S) = N T

I (S) ∪NH
I (S) NP (S) = N T

P (S) ∪NH
P (S)

Finally, we define the set of all the identifiers
and property names appearing in a state S by
N (S) = NI(S) ∪ Prop2Id(NP (S)). From these
definitions, follows that for any initial state S0,
N (S0) = N T

I (S0) ∪ NH
P (S). NH

P (S) is the set of
property names present in the initial heap H0. This is a
fixed set, and will henceforth be denoted by N 0

P .
We define meta-call a pair (f, (args)) where f is a se-

mantic function or predicate appearing in the premise of
a reduction rule, and (args) is the list of its actual argu-
ments as instantiated by a reduction step using that rule.
For every state S, we denote by C1(S) the set of the meta-
calls triggered directly by a one step transition from state
S. Since each meta-call may in turn trigger other meta-
calls during its evaluation, we denote by C(S) the set of
all the meta-calls involved in a reduction step. We denote
by FH the set of functions that can read or write to the
heap: FH = {Dot(H, l, mp), Get(H, l, mp), Update(H, l,mp),
Scope(H, l, mp), Prototype(H, l, mp)},

Definition 7 (Property access) For any state S, we define
the set of all property names accessed during a single tran-
sition byA(S) , {mp | ∃f ∈ FH ∃H, l : (f, (H, l,mp)) ∈
C(S)}. In the case of a trace τ , A(τ) ,

⋃
Si∈τ A(Si).

In Sections 3 and 4, we considered syntactic subsets of
JavaScript. A syntactic subset J is essentially a subset of
JavaScript user terms. For a given subset J , we denote by
Initial(J), the set of all well-formed initial states for J . We
denote by J ∗ the set

J ∗ = {t′ | t ∈ J ∧ ∃H, l : H0, lG, t→ H, l, t′}

of all terms that are reachable by reducing terms in J .
We denote by Wf J (S) the well-formedness predicate for
a state in the subset J , defined exactly like Wf (S) except
that Wf T (T (S)) instead of checking if a term is derivable
by the grammar, checks if the term is in J ∗.

A.3 Proof of Claim 1

In this Subsection we prove Claim 1, which states that
given a black list B , for all initial states S0 in the set Jb(B),
for which the T (S0) is appropriately rewritten, no property
from the blacklist B is accessed. We start by giving a few
notations and definitions that will be used in the lemmas and

11

theorems that come later. We define Jbr (B) as the subset
Jb(B) where for every term t ∈ Jb(B), the subexpression
e1[e2] (if it is present in t) is replaced with e1[IDX(e2)]. We
formalize the property that if the execution of a program P
involves accessing property mp of some object then either
mp ∈ Pnat or mp /∈ B as follows:

Definition 8 (Pb) Given a well-formed state S ∈ Jbr (B),
Pb(S) holds iff A(τ(S)) ∩ (B \ Pnat) = ∅

Theorem 1 For all well-formed states S0 in
Initial(Jbr (B)) , Pb(S0) holds.

It is easy to see that theorem 1 proves Claim 1. In this rest
of this Subsection we sketch out the proof of Theorem 1.
We split the proof into the following two main steps

Step 1: We define a state predicate Pbstrong(S) and
show that for all initial states S0 in JavaScript,
Pbstrong(S0)⇒ Pb(S0)

Step 2: For all initial states S0 in the subset Jbr (B),
Pbstrong(S0) holds.

A.3.1 Step (1)

Given a blacklist B we define the following whiteness pred-
icate on states:

Definition 9 (State Whiteness) For a well-formed state S
in the subset Jbr (B)∗, White(S) is true iff (N T

P (S1) ∪
Id2Prop(NI(S1))) ∩ (B \ Pnat) = ∅.

Consider any reduction rule from the operational seman-
tics. The general structure of such a rule is (Premise)

S1→S2
. We

define the following goodness property on rules.

Definition 10 (Rule goodness) A reduction rule of the form
(Premise)
S1→S2

is good iff for all applicable S1, S2

White(S1)⇒White(S2)

Based on the above definition of rule goodness we try to
enumerate the set of good rules. If the initial state is white
and the final state is not white then it is necessarily the case
that some additional property names or identifier names get
dynamically generated during the particular reduction step.
According to our semantics, for most of the reduction rules,
all the property names and identifier names that appear in
the final state are a subset of those that appear in the initial
state. If any identifier present in the final state is not present
in the initial state then it must have been obtained by conver-
sion from a string value present in the initial state. Similarly
if any property name that appears in the final state, does not
appear as a property name or an identifier in the initial state
and also does not appear in the set Pnat, then it must have

been obtained by conversion from a string value present in
the initial state. Therefore we claim that if a rule is good
then it must not involve any of the following conversions:
(1) strings to property names: rule E−ctx−Str−Pname (2)
strings to identifiers: rule N−Funparse−StrId; (3) strings to
programs: rules N−Funparse−StrProg, E−Eval−StrProg.

The rule E−ctx−Str−Pname also includes the context
l[−]. We argue that the context l[−] is not bad if the re-
sult of converting the string to a property name is outside
the blacklist. In order to make the analysis simpler, we split
the rule for the term l∗m in two:

mp = convStrPname(m)
mp !< Blacklist OR mp = ”bad”

H,l,l1[m] −→H,l,l1∗mp
[E−AccGood]

mp = convStrPname(m) AND mp < Blacklist

H,l,l1[m] −→H,l,l1∗mp
[E−AccBad]

Therefore the rule E−AccGood is good as it applies to only
those cases where the resulting property names are outside
the blacklist. We define the set Rgood as all rules minus
the set { E−AccBad, E−ctx−Str−Pname, N−Funparse−StrId,
N−Funparse−StrProg, E−Eval−StrProg}. The detailed de-
scription for these rules is given in Figure 1.

Lemma 1 All reduction rules present in the set Rgood are
good.

Proof. We divide the set of good rules into two sets:
Rgood \ {E −AccGood} and {E −AccGood}.
Case 1: Rgood \ {E −AccGood}
For all rules in this set, we make use of Lemma 1 from [14]
which states that all rules of the form (Premise)

S1→S2
in the set

Rgood \ {E −AccGood} have the property:

A(S1) ⊆ N T
P (S1) ∪ Pnat

∧
(1)

NI(S2) ⊆ NI(S1)
∧

(2)

N T
P (S2) ⊆ N T

P (S1) ∪ Id2Prop(NI(S1)) ∪ Pnat (3)

By definition,

White(S1)⇒ (N T
P (S1)∪ Id2Prop(NI(S1)))

⋂
(B\Pnat) = ∅

From conditions (2) and (3) we have,

N T
P (S2) ∪ Id2Prop(NI(S2)) ⊆ N T

P (S1) ∪ Id2Prop(NI(S1))
∪ Pnat

Therefore,

(N T
P (S2) ∪ Id2Prop(NI(S2)))

⋂
(B \ Pnat) ⊆

(N T
P (S1) ∪ Id2Prop(NI(S1)) ∪ Pnat)

⋂
(B \ Pnat) =

(N T
P (S1) ∪ Id2Prop(NI(S1)))

⋂
(B \ Pnat)

12

Figure 1. List of bad reduction rules

StrP() ::= in l | #OPhasOwnProperty.@Exe(l1,) | #OPpropertyIsEnumerable.@Exe(l,)

mp = convStrPname(m)
H,l,StrP(m) −→H,l,StrP(mp)

[E−Ctx−Str−Pname]

ParseFunction(m) = P
H,Function(fun(x˜)P,#Global) = H1,l1

H,l,@FunParse(x˜,m)−→H1,l,l1
[N−FunParse−StrProg]

ParseParams(m1) = x˜
H,l,@FunParse(m1,m2) −→H1,l,@FunParse(x˜,m2)

[N−FunParse−StrId]

ParseProg(m) = P

H,l,#GEval.@Exe(l1,m) −→H2,l,#GEval.@Exe(l1,P)
[E−Eval−StrProg]

mp = convStrPname(m) AND mp < Blacklist

H,l,l1[m] −→H,l,l1∗mp
[E−AccBad]

Hence, using definition of state whiteness we can conclude
that White(S1)⇒White(S2).
Case 2: {E −AccGood}. The rule {E −AccGood} is

mp = convStrPname(m)
mp !< Blacklist OR mp = ”bad”

H,l,l1[m] −→H,l,l1∗mp
[E−AccGood]

Let S1 = H, l, l1[m] and S2 = H, l, l1 ∗ mp. The only
additional property names in
(N T

P (S2)∪Id2Prop(NI(S2)))\(N T
P (S1)∪Id2Prop(NI(S1)))

would be the property name mp. The premise of the rule
ensures that this property is not in the blacklist. Therefore
White(S1)⇒White(S2) follows in this case as well. �

We denote the set of all rules not in Rgood as Rbad. Fi-
nally, given a reduction trace τ , we define R(τ) as the set
of all axioms Ri used to derive the transitions Si → Si+1

in τ (for all i). We are now ready to define the property
Pbstrong(S)

Definition 11 (Pbstrong) For a given state well-formed S
we define Pbstrong(S) as true iffR(τ(S)) ⊆ Rgood .

The above definition basically says that a state has the
property Pbstrong if only reduction rules from the setRgood

are involved during its reduction.

Lemma 2 For all initial states S0 in Jbr , Pbstrong(S0)⇒
Pb(S0).

Proof. If the initial state S0 corresponds to a value then
Pt(S0) is trivially true. Therefore we consider initial states
S0 which have at least one reduction step in their trace. Let
τn(S0) denote the n step partial reduction trace of the state
S0, that is, τn(S0) consists of the first n + 1 terms of the
sequence τ(S0).

In order to prove the above theorem we prove that
Ptstrong(S0) implies the stronger property:-
∀n ≥ 1 : P(S0, n) is true, where P(S0, n) is defined as

A(τn(S0)) ∩ (B \ Pnat) = ∅ (4)
White(Sn) is true. (5)

where we assume (without loss of generality) τn =
S0, S1, . . . , Sn.
Clearly, for all S0 which have at least one reduction step,
∀n ≥ 1 : P(S0, n))⇒ Pt(S0).
Given that Ptstrong(S0) holds, we prove ∀n ≥ 0 :
P(S0, n) by induction over n.

Base Case: n = 1. Let τ1(S0) = S0, S1. By definition
of the subset Jbr , White(S0) holds. Since Ptstrong(S0)
holds, the reduction rule that applies to S0 has to be good.
From goodness property of rules, White(S1) holds. From
our semantics, for all reduction rules (Premise)

S1→S2
we know

that:

A(S1) ⊆ N T
P (S1) ∪ Pnat (6)

Therefore A(S0) ⊆ N T
P (S0) ∪ Pnat. By definition of

state whiteness, it follows that A(S0) ∩ (B \ Pnat) = ∅.
Hence property P(S0, 1) holds.

Induction hypothesis: Assume P(S0, n) is true for n = k.
Therefore we have

A(τk(S0)) ∩ (B \ Pnat) = ∅ (7)
White(Sk) is true. (8)

Induction Step: Consider n = k + 1. Let τk+1(S0) =
S0, S1, . . . , Sk, Sk+1. By definition, A(τk+1(S0)) =
A(τk(S0)) ∪ A(Sk). Using condition (6) we getA(Sk) ⊆

13

N T
P (Sk) ∪ Pnat. Therefore,

A(Sk) ∩ (B \ Pnat) ⊆ (N T
P (Sk) ∪ Pnat) ∩

(B \ Pnat)

This is equivalent to

A(Sk) ∩ (B \ Pnat) ⊆ N T
P (Sk) ∩ (B \ Pnat)

SinceWhite(Sk) is trueN T
P (Sk)∩ (B\Pnat) = ∅. There-

fore we haveA(Sk)∩ (B\Pnat) = ∅. Combining this with
condition (7) we get

A(τk+1(S0)) ∩ (B \ Pnat) = ∅ (9)

From condition (8) we know thatWhite(Sk) is true. There-
fore using Pbstrong and the goodness property of rules,
White(Sk+1) is true. Combining this with condition (9),
we get that the predicate P(S0, k + 1) is true. Therefore
∀n ≥ 1 : P(S0, n) is true by induction. �.

A.3.2 Step (2)

We need to show that for all initial states S0 in the sub-
set Jbr (B)∗, Pbstrong(S0) holds. This is also the basis
on which the subset Jbr (B)∗ was obtained, that is, no
term should ever move to a state where a rule from Rbad

becomes applicable. We prove this property by defining
a ”goodness” property (inductive invariant) on heaps and
terms such that: (1) For all states with a good heap and term,
no reduction rule from Rbad applies. (2) Heap goodness
and term goodness are always preserved during reduction.

Before defining these properties, we state a few no-
tations. Let lFunction, leval, lhOP , lpIE denote the heap
addresses of the constructor Function and methods eval,
hasOwnProperty and propertyIsEnumerable of Object.prototype.

Definition 12 (State goodness for Jbr (B)) We say that a
state S is good, denoted by GoodJbr (B)(S), iff the term is
good and the heap is good. The conditions for term good-
ness and heap goodness are given as follows.

Term goodness:

(1) Structure of t does not contain any property name
or identifier from the set B ∪ {eval, Function,
hasOwnProperty, propertyIsEnumerable constructor }.

(2) $ only appears inside a subexpression of the form
IDX(e) for some e.

(3) Structure of t does not contain any sub terms with
any contexts of the form eforin(), pforin(), cEval(),
FunParse() contexts and any constructs of the form
e in e, for (e in e) s

(4) Structure of t does not contain any of the heap ad-
dresses lFunction, leval, lhOP , lpIE

(5) If Structure of t contains a sub-expression e1[e2]
then for all well-formed states S such that
GoodJbr (B)(H(S)) holds and T (S) = e1[e2]:
Pbstrong(S) is true.

Heap goodness:

∀l, p : H(l).p = lFunction ⇒ p = constructor
∨ p = Function

∀l, p : H(l).p = leval ⇒ p = eval
∀l, p : H(l).p = lhOP ⇒ p = hasOwnProperty
∀l, p : H(l).p = lpIE ⇒ p = propertyIsEnumerable
∀l, p : p ∈ H(l) ∧ ⇒ l = lG

isPrefix($, p)

isPrefix($, p) is true iff $ is a prefix of p. The contexts
pforin() and eforin are internal continuation contexts used to
express the internal states obtained during the reduction of
a for (e in e) s statement. FunParse() is an internal continu-
ation context which is entered during a call to the Function
constructor, in order to parse the argument string. In the
rest of this Section, we will apply the predicate GoodJbr to
heaps, terms and states; the interpretation for each of them
being the corresponding goodness definition.

Lemma 3 For all well-formed states S1 and S2 in the
subset Jbr (B)∗, S1 → S2 ∧ GoodJbr (B)(S1) ⇒
GoodJbr (B)(S2)

Proof. We prove this lemma by an induction over the set of
all reduction rules. Since state goodness holds for the ini-
tial state S1, by Lemma 5 it is sufficient to consider only
the set of good rules (Rgood)). All context rules which
have a reduction in their premise form the inductive cases
and the transition axioms form the base cases. For the
base cases we prove the theorem by a detailed case anal-
ysis. For the inductive case, consider any context rule of
the form S1→S2

C(S1)→C(S2)
(Recall that if S = (H, l, t) then

C(S) = (H, l, C(t))). We divide the set of reduction con-
texts into the following three cases:

(1) C = va[−] For any state S1 = (H1, l1, t1),
T (C(S1)) = va[t 1]. Therefore, by definition
of state goodness, GoodJbr (C(S1)) holds iff
Pbstrong(C(S1)) holds . By definition of Pbstrong,
C(S1 → C(S2) ∧ Pbstrong(C(S1)) ⇒ Pbstrong(S2).
Therefore we have GoodJbr (B)(C(S1)) ⇒
GoodJbr (B)(C(S2))

(2) C =−[e] For any state S1 = (H1, l1, t1), T (C(S1)) =
t 1[e]. Therefore, by definition of state good-
ness, GoodJbr (C(S1)) holds iff Pbstrong(C(S1))

14

holds. By definition of Pbstrong, C(S1 →
C(S2) ∧ Pbstrong(C(S1)) ⇒ Pbstrong(S2). Therefore
we have GoodJbr (B)(C(S1))⇒ GoodJbr (B)(C(S2))

(3) All other reduction contexts. For any term t, t′ and
an appropriate C from this set, we have the following
(easy to prove) propositions.

• Proposition 1 GoodJbr (C(t))⇒ GoodJbr (t)

• Proposition 2 (∃t : GoodJbr (C(t))) ∧
GoodJbr (t′)⇒ GoodJt(C(t′))

From the induction hypothesis we know that

GoodJbr (S1)⇒ GoodJbr (S2). Therefore,

GoodJbr (T (S1))⇒ GoodJbr (T (S2)) and

GoodJbr (H(S1))⇒ GoodJbr (H(S2))

For all states S,

GoodJbr (H(S)) = GoodJbr (H(C(S))). Therefore,

GoodJbr (H(C(S1)))⇒ GoodJbr (H(C(S2))) holds.

As a result we only need to show

GoodJbr (T (C(S1))) ⇒ GoodJbr (T (C(S2))). This
can be shown by using Propositions 1 and 2
and the induction hypothesis: GoodJbr (T (S1)) ⇒
GoodJbr (T (S2)).

�

Lemma 4 For all well-formed expressions e1 and e2 in
the subset Jbr such that GoodJbr (B)(e1), GoodJbr (B)(e2)
holds, and for all well-formed states S such that
GoodJbr (B)(H(S)) holds and T (S) = e1[IDX(e2)];
Pbstrong(S) is true. In other words term goodness holds
for e1[IDX(e2)]

Proof. Let S = (H, l, e1[IDX(e2)]) be any state such that
GoodJbr (B)(H) holds. We need to show that R(τ(S)) ⊆
Rgood . According to our semantics.

H,l,e1
∗−→H1,l1,va1

H,l,e1[IDX(e2)] ∗−→H1,l1,va1[IDX(e2)]
[E−eCgv]

Since GoodJbr (B)(H) and GoodJbr (B)(e1) hold,
GoodJbr (B)(H, l, e1) is true and Pbstrong(H, l, e1) is true.
So all the transition axioms involved in R(τ(H, l, e1))
would be from the set of good rules. By Lemma 3, we get
that GoodJbr (B)(H1) holds. Now we only need to argue
thatR(τ(H1, l1, va1[IDX(e2)])) ⊆ Rgood .
From our semantics we deduce that

H1,l1,e2
∗−→H2,l2,va2

H1,l1,va1[IDX(e2)] ∗−→H2,l2,va1[IDX(va2)]
[E−eCgv]

Again GoodJbr (B)(H1) and GoodJbr (B)(e2) hold, there-
fore GoodJbr (B)(H1, l, e2) is true and Pbstrong(H1, l, e2)
is true. So all the transition axioms involved in
R(τ(H1, l, e2)) would be from the set of good rules. By
Lemma 3, we get that GoodJbr (B)(H2) holds. Now we
only need to argue that R(τ(H2, l2, va1[IDX(va2)])) ⊆
Rgood .
This can be done using a straightforward symbolic execu-
tion based on the operational semantics rules. We deduce
that H2, l2, va1[IDX(va2)]→ H3, l3, l4 ∗mp
where mp ∈ B or mp= ”bad”. In either case the axiom
E−AccGood applies to the state and reduces it to a final
value. Therefore all transition axioms involved in the en-
tire trace are from the set ofRgood . Therefore Pbstrong(S)
is true. �

Lemma 5 For all well-formed states S in the subset
Jbr (B)∗ such that GoodJbr (B)(T (S)) is true, no reduction
rule fromRbad applies to S.

Proof. We prove this result by a detailed case analysis over
the set of rules in Rbad and show that no rule from Rbad is
applicable to any term with the term goodness property. �

Lemma 6 For all well-formed states S0 in
Initial(Jbr (B)), GoodJbr (B)(S0) is true.

Proof. For any initial state S0, H(S0) is the initial heap
and only consists of native objects. Therefore from the
semantics and the definition of heap goodness, we show
that GoodJbr (H(S0)) holds. We show GoodJbr (T (S0)) by
structural induction over the set of user terms in Jbr is con-
tained in the set of user terms Jt . The base case is straight-
forward. For the inductive cases, using the definition of Jbr ,
we can show that conditions (1), (2) and (3) in the defini-
tion of term goodness hold. Condition 4 is trivially true for
all inductive cases except e1[IDX(e2)]. In this case we use
Lemma 4 to argue that term goodness holds for e1[IDX(e2)].
�

Combining Lemmas 2, 3, 5, and 6 we can prove Theo-
rem 1.

Restatement of Theorem 1 For all well-formed states
S0 in Initial(Jbr (B)), Pt(S0) holds.

Proof. From Lemma 2 we obtain, Pbstrong(S0) ⇒
Pb(S0). Therefore proving that Pbstrong(S0) holds is suf-
ficient for proving this theorem. From Lemma 5, good-
ness property for a state implies that no reduction rule from
the set Rbad applies to it. Thus showing that for all states
S ∈ τ(S0), GoodJbr (S) holds is sufficient to prove the
theorem. From Lemma 6, GoodJbr (S0) is true and from
Lemma 3, state goodness is preserved during reduction.

15

Therefore goodness holds for all states in the trace τ(S0).
�

A.4 Proof of Claim 2

In this Subsection we prove Claim 2, which states that if
P is a Firefox-JavaScript program in Jss that does not con-
tain $, the program $=true;Q where Q is obtained by rewrit-
ing every instance of this in P to NOSCOPE(this), behaves
exactly like P if P does not access a this bound to the scope
object. We assume that the Firefox-JavaScript semantics is
the ECMA-262 semantics for javascript with the difference
in the rule for ’this value assignment for function calls’. In
particular, the corresponding operational semantics has the
rule E−CallRefAct modified to the following:

Type(ln∗m) = Reference
isActivation(H,ln) OR isCatch(H,ln)

H,l,ln∗m([va˜]) −→H,l,@Fun(Global,ln∗m[,va˜])
[E-CallRefAct-mod]

where the predicate isCatch(H,ln) is true iff H(ln) is the
”catch-scope” object, the definition for which is elaborated
in section 3.2. If P evaluates this to the scope object then Q
evaluates NOSCOPE(this) to null.

We now formalize this claim in terms of the operational
semantics. The this property is accessed only by the rule
E−This.

Scope(H,l,@this)=l1 H,l1.@Get(@this)= l2

H,l,this −→H,l,l2
[E-This]

For the sake of argument, we replace this rule by the rules
below, that return null if @this points to a scope object, and
the effective value of @this otherwise.

Scope(H,l,@this)=l1
H,l1.@Get(@this)=l2 @scope in H(l2)

H,l,this −→H,l,null
[E-This-KO]

Scope(H,l,@this)=l1
H,l1.@Get(@this)=l2 @scope notin H(l2)

H,l,this −→H,l,va
[E-This-OK]

The property Ps which implies isolation of all scope objects
can be formalized as follows :

Definition 13 (Ps) Given a state S, let S′ = Final(S).
Ps(S) holds iff @Scope is not inH(S′)(V(S′)).

We denote the Firefox-JavaScript semantics along with
the modification for the semantics of this as the ’modified
Firefox-JavaScript semantics’.

Theorem 2 For all well-formed states S0 in Initial(Jss),
Ps(S0) holds for execution with respect to the modified
Firefox-JavaScript semantics

In order to prove this theorem we need some supporting
lemmas and definitions. As in the proof of the earlier claim,
we define a goodness property on the states and show that it
is inductive, and then show that the state goodness property
implies the property Ps .

Definition 14 (State goodness for Jss) We say that a state
S is good, denoted by GoodJss (S), iff it has the following
properties

(1) Structure of T (S) does not contain any of eval,
Function, hasOwnProperty, propertyIsEnumerable,
constructor, valueOf, sort, concat, reverse. Also T (S)
does not contain any identifiers or property names
beginning with $.

(2) Structure of T (S) does not contain any contexts of the
form eforin(), pforin(), cEval() FunParse() or [] contexts
and any constructs of the form e in e, for (e in e) s and
e[e].

(3) Structure of T (S) does not con-
tain any of the heap addresses
lFunction, leval, lhOP , lpIE , lvalueOf , lsort, lconcat
and lreverse.

(4) If a heap address l is present in T (S) such that @Scope
∈ H(S)(l) is true, then l must appear inside one of
the following contexts only : Function(fun([x˜]){P},−);
−.@Put(mp,va); l.@call(−,[va˜]); Fun(−,e[,va˜]);
@ExeFPA(l,−,va); @FunExe(−,P); @with(−ln1,ln2,s);
−∗mp.

Heap goodness

Let H denoteH(S).

∀l, l′, p : H(l).p = l′∧ ⇒ p = @Scope
@Scope ∈ H(l′) ∨ p = this

∨ p = @FScope
∀l, p : H(l).p = lFunction ⇒ p = constructor ∨

p = Function
∀l, p : H(l).p = leval ⇒ p = eval
∀l, p : H(l).p = lhOP ⇒ p = hasOwnProperty
∀l, p : H(l).p = lpIE ⇒ p = propertyIsEnumerable
∀l, p : H(l).p = lvalueOf ⇒ p = valueOf
∀l, p : H(l).p = lconcat ⇒ p = concat
∀l, p : H(l).p = lsort ⇒ p = sort
∀l, p : H(l).p = lreverse ⇒ p = reverse
∀l, p : p ∈ H(l) ∧ ⇒ l = lG

isPrefix($, p)
$ ∈ H(lG)
H(lG).$ = true

isPrefix($, p) is true iff ”$” is a prefix of the property
name p. Observe that if GoodJss (S) holds then there is no
l such that V(S) = l and @Scope ∈ H(S)(l)).

16

Lemma 7 For all well-formed states S1 and S2 in the sub-
set Jss∗, S1 → S2 ∧GoodJss (S1)⇒ GoodJss (S2)

Proof. We prove this lemma by an induction over the set of
all reduction rules. We consider only those reduction rules
that apply to good states. All context rules which have a
reduction in their premise form the inductive cases and the
transition axioms form the base cases. The proof is on same
lines as that of lemma 4 in [14]. �

Lemma 8 For all well-formed states S0 in Initial(Jss),
GoodJss (S0) is true.

Proof. Similar to the proof for lemma 5 in [14]. Using
the definition of Jss , we show thatGoodJss (T (S0)) is true.
Using the semantics and the definition of heap goodness,
we show that GoodJss (H(S0)) holds for the initial heap. �

Combining lemmas 7 and 8 we have the following proof
for theorem 2.

Proof of Theorem 2 : From lemma 7, the state
goodness property implies that the corresponding term can
never be the address of a scope object. From lemma 8,
state goodness holds for all initial states and from lemma
7, state goodness is preserved under reduction. Combining
these facts, we get that all states present in τ(S0) are good
and therefore the term part for none of them would be an
address of a scope object. �

We will now state and prove Theorem 3, which will show
that rewriting this to NOSCOPE(this) correctly implements
the rules E−This−KO and E−This−OK in terms of the orig-
inal semantics with the rule E−This. These results together
prove our claim.

In order for a rewritten program Q to behave exactly
like the original program but with the modified firefox-
JavaScript semantics we need to define $= true in the be-
ginning. In order to formalize this we define the subset
Initialr(Jss) as the set of states Initial(Jss) but with the
heap having an additional property $ in the global object,
which is set to true.

SinceJs is a subset of Jt , by Theorem 1 of [14], if $ is
not present as an identifier in a program then the property
$ can never get accessed. Using this it is easy to show that
lemmas 7 and 8 and hence theorem 2 are true for the
modified set of initial states- Initialr(Jss).

Theorem 3 For all states S1 = (H1, l1, t1) such that
GoodJss (H1)

∧
T (S1) = NOSCOPE(this), there ex-

ists a state S2 = (H1, l1, va) such that

• S1 →∗ S2 in the unmodified Firefox-JavaScript se-
mantics

• S′1 = (H1, l1, this) → S2 in the modified Firefox-
JavaScript semantics with rules E−This−KO and
E−This−OK

Proof. We prove this theorem by a symbolic execution
of the semantic rules. Due to space considerations we will
sketch out only the main steps of the symbolic execution.
Recall that NOSCOPE(this) is the expression :

(this.$=false,$?(delete this.$,this):(delete this.$,$=true,null))

We consider the following three cases

• Case 1 : this returns the address of a scope object, say
lscp which is along the current scope chain. The mod-
ified Firefox-JavaScript semantics would therefore re-
duce S′1 to (H1, l1, null) by rule E−This−KO.

In the unmodified semantics,

(1) Executing this.$= false would set the property $ of
the object at lscp to false. Therefore the heap af-
ter this statement would be H1

1 = H1[lscp.$ =
false].

(2) The conditional $? in the next step would resolve
to the else branch because the identifier $ would
resolve to lscp ∗ $ since lscp shadows the global
object. The heap after this statement would be
H2

1 = H1
1 .

(3) Within the else branch, delete this.$ will delete
property $ from object at lscp. The next expres-
sion $=true will resolve to lG ∗ $ = true and
therefore this statement will amount to setting the
property $ of the global object back to true. The
heap after this statement would be same as the
original one, that is, H3

1 = H1.

(4) Finally, the value null is returned and so the final
state would be (H1, l1, null).

The final state obtained after the reduction of S′1 un-
der the modified Firefox-JavaScript semantics is also
(H1, l1, null) . Thus the theorem is true in this case.

• Case 2 : this returns the address of a non scope ob-
ject, say lo. The modified Firefox-JavaScript seman-
tics would therefore reduce S′1 to (H1, l1, lo) by rule
E−This−OK.

In the unmodified semantics,

(1) Executing this.$= false would set the property $ of
the object at lo to false. Therefore the heap at this
state would be H1

1 = H1[lo.$ = false].

(2) The conditional $? in the next step would resolve
to the if branch because the identifier $ would re-
solve to lG ∗ $. This is because GoodJss (H1) is

17

true and hence for heapH1
1 = H1[lo.$ = false],

the only object in the current scope chain which
has the property $ would be the global object.
The heap after this statement would be H2

1 =
H1

1 .

(3) Within the else branch, delete this.$ will delete
property $ from object at lo. The next expression
$=true will resolve to lG ∗ $ = true and therefore
this statement will amount to setting the property
$ of the global object back to true. The heap after
this statement would be back to the original one,
that is, H3

1 = H1.

(4) Finally, the value lo is returned and so the final
state would be (H1, l1, lo).

The final state obtained after the reduction of S′1 un-
der the modified Firefox-JavaScript semantics is also
(H1, l1, lo) . Thus the theorem is true in this case.

• Case 3 : this returns the address of a scope object, say
lscp which is NOT along the current scope chain.

According to the original JavaScript semantics the
only case in which this can happen is when the @this
property of the current activation object points to a
”catch scope” object. However as explained earlier
in section 3, in the Firefox-JavaScript semantics this
cannot happen because of the rule E−CallRefAct−mod.
Hence this case does not apply.

�

A.5 Proof of Claim 3

In this Subsection we prove Claim 3, which states that
if P is a JavaScript program in Jg that does not contain $,
the program $=this;Q where Q is obtained by rewriting ev-
ery instance of this in P to NOGLOBAL(this), behaves exactly
like P if P does not access a this bound to the global ob-
ject. If P evaluates this to the global object then Q evaluates
NOGLOBAL(this) to null.

First of all, we need to formalize this claim in terms of
the JavaScript operational semantics. The this property is
accessed only by the rule E−This.

Scope(H,l,@this)=l1 H,l1.@Get(@this)=#Global

H,l,this −→H,l,null
[E-This]

As in the previous section, for the sake of argument, we
replace this rule by the rules below, that return null if @this
points to the global object, and the effective value of @this
otherwise.

Scope(H,l,@this)=l1 H,l1.@Get(@this)=#Global

H,l,this −→H,l,null
[E-This-KO]

Scope(H,l,@this)=l1
H,l1.@Get(@this)=va va!=#Global

H,l,this −→H,l,va
[E-This-OK]

The property Pg which implies isolation of the global
object can be formalized as follows :

Definition 15 (Pg) Given a state S, let S′ = Final(S).
Pg(S) holds iff V(Final(S)) 6= lG.

We denote the ECMA-262compliant JavaScript seman-
tics with the modification for the semantics of this as the
’modified JavaScript semantics’. By Theorem 3 of [14], we
have that in modified JavaScript semantics, no program P
ever evaluates to the global object.

Restatement of Theorem 3 of [14] For all well-formed
states S0 in Initial(Jg), Pg(S0) holds, under the modified
JavaScript semantics.

We will now state and prove theorem 4, which will show
that rewriting this to NOGLOBAL(this) correctly implements
the rules E−This−KO and E−This−OK in terms of the orig-
inal semantics with the rule E−This. These results together
prove our claim.

In order for a rewritten program Q to behave exactly like
the original program but with the modified JavaScript se-
mantics we need to define $= l global in the beginning. In
order to formalize this we define the subset Initialr(Jssr)
as the set of states Initial(Jssr) but with the heap having
an additional property $ in the global object which is set to
the address of the global object.

As in the previous section, we define a goodness prop-
erty on the states and show that the during the execution of
NOGLOBAL(this), goodness of the initial heap implies good-
ness of the final state. We consider the definition of states
goodness GoodJg(S) as mentioned in definition 17 in [14].
We refine this definition by conjuncting it with two condi-
tions :

(1) ∀l : $ /∈ H(l)

(2) T (S) does not contain any identifier or property name
beginning with ”$”.

Since Jg is a subset of Jt , by Theorem 1 of [14], if $ is not
present as an identifier in any program then the property $

can never get accessed. Using this it is easy to show that
lemmas 8,9 and hence theorem 3 in [14] are true even with
the refined definition of state goodness and the modified set
of initial states Initialr(Jg).

Theorem 4 For all states S1 = (H1, l1, t1) such that
GoodJg(H1) holds and T (S1) = NOGLOBAL(this),
there exists a state S2 = (H1, l1, va) such that

• S1 →∗ S2 in the unmodified JavaScript semantics

18

• S′1 = (H1, l1, this) → S2 in the modified JavaScript
semantics with rules E−This−KO and E−This−OK

Proof. We prove this theorem by a symbolic execution
of the semantic rules. Due to space considerations we
will only sketch out the main steps of the symbolic ex-
ecution. Recall that NOGLOBAL(this) is the expression :
(this==$?null;this). $.
We consider the following two cases :

• Case 1 : this returns the address of the global ob-
ject (lG). The modified JavaScriptsemantics would
therefore reduce S′1 to the state (H1, l1, null) by rule
E−This−KO.

In the unmodified semantics

(1) The conditional this==$? would resolve to
this == lG ∗ $. This is because the initial heap
H1 is good and therefore only the global object
will have the $ property set to the address of the
global object. Since this resolves to lG, the con-
ditional would resolve to the if branch. The heap
obtained after this statement would beH1

1 = H1.

(2) Within the if branch, the value returned would be
null and therefore the final state obtained would
be (H1, l1, null).

The final state obtained after the reduction of S′1
under the modified JavaScript semantics if also
(H1, l1, null). Thus the theorem is true in this case.

• Case 2 : this returns the address of an object, say lo,
which is different from the global object. The modified
JavaScriptsemantics would therefore reduce S′1 to the
state (H1, l1, lo) by rule E−This−OK.

In the unmodified semantics,

(1) As in the previous case, the conditional this==$?
would resolve to this == lG ∗$. This is because
the initial heap H1 is good and therefore only the
global object will have the $ property set to the
address of the global object. Since this resolves
to lo, the conditional would resolve to the else
branch. The heap obtained after this statement
would be H1

1 = H1.

(2) Within the else branch, the value returned would
be lo and therefore the final state obtained would
be (H1, l1, lo).

The final state obtained after the reduction of S′1 under
the modified JavaScript semantics if also (H1, l1, lo).
Thus the theorem is true in this case as well.

�

19

	Introduction
	JavaScript Isolation Problems
	Facebook JavaScript
	Formalizing JavaScript Isolation

	Syntactic JavaScript Subsets
	Isolating property names: Jt
	Protecting the Scope: Js
	Comparison with FBJS

	Semantic JavaScript Subsets
	Blacklisting Properties: Jb
	Protecting the Scope: Jss
	Isolating the Global Object: Jg
	Comparison with FBJS

	Conclusions
	Appendix: Correctness Proofs
	Operational Semantics of JavaScript
	Preliminaries
	Proof of Claim 1
	Step (1)
	Step (2)

	Proof of Claim 2
	Proof of Claim 3

