
Usability and Security

A s early as 1975, Jerome Saltzer and Michael
Schroeder argued that usability was an essential
component of secure systems.1 In their seminal
paper, “The Protection of Information in

Computer Systems,” they developed eight basic princi-
ples of information protection, the last of which called for
“psychological acceptability” of information protection
systems. Curiously, many of today’s security systems seem
to ignore this idea.

To be fair, human-computer interaction (HCI) re-
search in 1975 was in its infancy, so few people knew how
to design and evaluate computer systems for usability. Al-
most 30 years later, though, HCI design and evaluation
techniques have left the research lab: corporations regu-
larly use such techniques to assess their products’ usability.
In spite of this advance, researchers and practitioners have
only recently begun applying HCI usability evaluation
techniques to security systems. Their findings show that
end users struggle to comprehend the security decisions
with which they are presented, so they’re more likely to
misconfigure—and thus jeopardize—their security.2

Moreover, users often deliberately disable or ignore secu-
rity to get their work done—for example, Anne Adams
and Angela Sasse found that people often deliberately dis-
close or share passwords to ease system access.3 A lack of
usability causes them, unwittingly or not, to turn secure
systems into highly insecure ones.

Luckily, professionally managed infrastructures such as
corporate firewalls protect most of us while at work.
However, as users take a wider variety of mobile devices
into their homes or out on the road, they increasingly en-
counter security decisions that only they can make, not
their systems administrators back at the office.4 We must

develop technologies that put security
decisions into users’ hands. To address the
challenge of building such technologies, we’ve spent the
past several years working as a combined team of both se-
curity and HCI researchers. In this article, we’ll present
some lessons we’ve learned while building usable, secure
systems; we illustrate these lessons by contrasting two dif-
ferent versions of a public key infrastructure (PKI)-based
secure wireless network.

Usable PKI:
Making the impossible easy
When we first set up a wireless network at the Palo Alto
Research Center (PARC), we opted for a PKI-based so-
lution because it promised better security, the flexibility
of public-key cryptography, and better ease of use than
password-based systems. The idea was to give 200 users
X.509 certificates5 and use the 802.1x Transport Level
Security authentication method of the Extensible Au-
thentication Protocol (EAP-TLS)6,7 to authenticate
them. Once we set up such a network, we can get a high
degree of network security without requiring continued
user (or administrator) intervention.

We knew that setting up a PKI might be tricky. Stud-
ies show that many people find PKI deployment incom-
prehensible, complex, and unusable.8 Consequently,
most organizations currently don’t use PKI technology,
despite the past expectations that PKIs would be in
widespread use by now. Because we’re security re-
searchers with extensive experience with PKI technol-
ogy, we offered to help the administrative staff roll out
the PKI. We thought we could avoid the pitfalls of PKI
deployment. We were wrong.

DIRK BALFANZ,
GLENN DURFEE,
AND D.K.
SMETTERS

Palo Alto
Research
Center

REBECCA E.
GRINTER

Georgia
Institute of
Technology

In Search of Usable Security:
Five Lessons from the Field

PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY 19

A new system reduces the time to enroll in a secure

wireless network by two orders of magnitude, and it also

gets high marks for usability and user satisfaction. This

real-world example reveals five general lessons for usable,

secure system design.

Usability and Security

Experiences with
traditional PKI deployment
In the first version of our wireless LAN, each user had to
request and install an X.509 certificate from an internal
certification authority and then configure the 802.1x
client software provided by the operating system to use
the EAP-TLS authentication protocol. In order to sub-
mit a certificate request, users had to determine and pro-
vide their wireless cards’ media access control (MAC)
address and install the internal certificate authority’s
(CA’s) root certificate.

A team of system administrators and security re-
searchers set up the wireless network and the PKI. The
security researchers spent considerable time configur-
ing and managing the CA software and keys (establish-
ing the corporation’s “root” for the PKI), providing
training for the systems administrators, and then sup-
porting the transition of responsibility to the central
computer support group.

Our next step was to conduct a study to determine
what usability problems the users encountered. Once
the wireless network and the PKI were in place, our HCI
researcher studied eight subjects’ enrollment experi-
ences. All the subjects had advanced degrees, typically
PhDs in computer science and related disciplines, but
the average time it took for them to request and retrieve
their certificates and then configure their systems was
140 minutes.9 More significantly, despite using a fairly
automated Web-based enrollment system (similar to
those used by commercial certificate vendors such as
Verisign) and the GUI-based 802.1x wireless configura-
tion software provided by Microsoft Windows XP, the

process involved a total of 38 steps to complete enroll-
ment. Each step forced the user to make a decision or
take an action (see Figure 1).

To help the subjects enroll, our administrators pro-
duced an elaborate set of instructions that detailed each
step. Almost all the subjects printed out the instructions,
but even those who started the process determined to un-
derstand what they were doing soon abandoned that goal
and instead followed the instructions mechanically. In the
end, many test subjects described the enrollment process
as the most difficult computer task that PARC had ever
asked them to do. They had little, if any, idea of precisely
what they had done to their own computers. Several
commented that if something were to go wrong, they
couldn’t perform even basic troubleshooting, which for
some subjects marked the first time that they had ever ex-
perienced the inability to self-administer their own ma-
chines—not a positive experience. Although PKI tech-
nology secured the subjects’ machines for wireless use, it
simultaneously reduced their ability to configure and
maintain their own machines.

This study’s results surprised us: we thought the expe-
rience would be relatively simple, but the study con-
firmed the conventional wisdom that deploying a PKI is
difficult. Even the commercial software vendors supply-
ing parts of the system expressed surprise that we would
take on the complexity of a PKI-based deployment to
gain added security, rather than opting for a simpler and
less securepassword-based system.

The results also highlighted the hidden costs of mak-
ing PKI work. To compensate for its poor user interface,
we used a combination of documentation and training to

20 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2004

Figure 1. Manual setup. These dialog boxes show eight of the 38 steps required when manually configuring the secure
client setup for a wireless network.

Usability and Security

help users enroll in the wireless network. Such a solution
is painful and hardly practical even in a well-supported
enterprise setting, making it completely infeasible for
smaller home or office networks.

User-friendly PKI deployment
Based on our previous work in designing user-friendly
security technology,10,11 we felt we could do much better.
We posed a difficult challenge: is it possible to build a sys-
tem that lets an average end user join a device to a wireless
network using the strongest, PKI-based security stan-
dards available, simply, easily, and intuitively?

The system we built is described in detail elsewhere,9

but we’ll summarize it here briefly. The setup process is
largely automated—a small wireless setup application
takes care of tasks such as requesting and installing certifi-
cates or configuring the 802.1x client. The setup applica-
tion also collects additional information (user names,
MAC addresses, WLAN service set identifiers [SSIDs],
and so forth).

We introduce new devices to the network using loca-
tion-limited channels.10 The user takes a laptop to an enroll-
ment station and initiates a brief infrared exchange be-
tween the former and the latter (see Figure 2). During
this exchange, enough public information is transmitted
to facilitate a secure wireless connection between the lap-
top and the station. (Sending only public information
over infrared makes it difficult to attack a location-limited
channel.) Over the resulting secure wireless connection,
the laptop requests and later receives its client certificate
(the enrollment station forwards certificate requests to the
same CA we mentioned earlier). Once the laptop re-
ceives the certificate, the setup application automatically
installs it and configures the 802.1x client software. The
(built-in) 802.1x client software then takes over and au-
thenticates the laptop to the wireless network, using the
newly installed certificate.

Two important aspects of this design stand out: first,
we use a gestural user interface to solve the key distribu-
tion, or trust-bootstrapping, problem. By simply point-
ing out the laptop to the enrollment station, the two de-
vices exchange trust information—the gesture captures

the user’s intention to enroll this particular laptop into that
particular enrollment station’s network. We call this idea
gesture-directed automatic configuration. Second, we give the
user an intuitive trust model: our enrollment station is
locked in a room, so only someone who can get into that
room and walk up to the enrollment station can get onto
the wireless network. Such a model ties digital security to
physical security. At PARC, for example, users must pre-
sent their badges to a system administrator before that ad-
ministrator will unlock the enrollment room.

Usability studies demonstrate that this approach is
much simpler and more intuitive to users than setting up
security via traditional methods. It took users an average
of 1 minute and 39 seconds—and a total of four steps—to
add a new device to our secure corporate wireless net-
work using gesture-directed automatic configuration.
We also got much higher marks in user satisfaction and
confidence. Even our systems administrators (who by this
time had become quite familiar with the manual system)
prefer the new system: they now use it exclusively to en-
roll other users’ computers.

Five lessons
After three years of designing, implementing, and de-
ploying secure systems that put usability first, we learned
several lessons that apply across many efforts.

You can’t retrofit usable security
The security community has long argued that security
must be designed into systems from the ground up; it
can’t be “bolted on” to an existing system at the last
minute. The same is true for usability—usability of secu-
rity in particular. Adding explanatory dialog boxes to a
confusing system is not the solution, and forcing a better
GUI onto a fundamentally unusable design is like apply-
ing a Band-Aid to a broken leg. Developers must think
about usability, security, and their interplay during the
very first stages of system design. The decision not to
bother users with passwords, for example, could affect ap-
plications’ protocols or data-protection mechanisms.

A gestural user interface lets users intuitively express
their application needs while simultaneously supporting

www.computer.org/security/ � IEEE SECURITY & PRIVACY 21

Figure 2. Gesture-directed automatic configuration. The user briefly aligns a laptop’s infrared ports and an enrollment
station to start a fully automated setup.

Usability and Security

strong security. This intuitive interface stands in strong
contrast to our original, “traditional” interface, which fo-
cused on using friendly GUI components to walk the
user through the process of manually configuring certifi-

cates and wireless network settings. Although we put a
great deal of effort into making that GUI-based approach
easy to use, our effort failed completely. Only by starting
from completely different interaction principles did we
manage to build a usable and secure system. Such funda-
mental design decisions must be made at the very begin-
ning of the development process.

Tools aren’t solutions
Tools such as SSL or IPSec are great resources in the hands
of developers because they mean that we can rely on
proven protocols and implementations to give our appli-
cations certain security properties. What such tools can’t
provide, though, is the solution to a user’s problem:
they’re like Lego bricks, whereas the application that
solves the problem is like a whole building built from
Lego. Using the same Lego brick set can help us either
build a functional, sturdy home or a useless, brittle shack.

Recognizing that available technologies such as SSL or
security APIs are nothing more than tools is only part of
this lesson; the other part is appreciating that our current
portfolio of available tools is rather incomplete. We’re
missing building blocks for the higher layers of application
design. Earlier, we saw a glimpse of what those higher-
level building blocks might be (location-limited channels
such as infrared provide a user-friendly way to bootstrap
trust for collocated devices). Additionally, small applica-
tion-specific PKIs can give us all the benefits of public-key
cryptography without the drawback of a global PKI’s
nonexistence. These tools proved highly successful in the
context of the wireless security application discussed in
this article, but like other good tools, they’re also applica-
ble to a wide variety of other applications.11 We must find
more high-level building blocks that application designers
can employ to create user-oriented solutions.

Mind the upper layers
Security is not something to handle only in the lower lay-
ers of the networking stack or in the depths of the operat-
ing system. If we try to solve the security problem purely
in those lower layers, users inevitably have to deal with

those layers when something goes wrong (such as when
they need to understand a security-related event or want
to change their security settings). If we design security into
all of an application’s layers (in particular, its upper layers),
it becomes implicit and hence much more user-friendly.
For example, in a recent study,11 users created shared vir-
tual spaces for collaborating with each other. They invited
each other to join a space and let members add objects to
the space (such as files, cameras, or speakers). This
metaphor provides a natural basis for security: only users
who are members of a space can access objects in that
space. By making sharing a top-level primitive of the ap-
plication, users can understand what they are sharing and
with whom, and application developers can understand
the security requirements implied by this intuitive model.

In general, the security mechanisms an application im-
plements must be compatible with what the user needs to
accomplish. A user who finds that one of her software’s se-
curity features prevents her from actually getting her job
done is much more likely to turn that security feature off.

Users typically think about security in terms of their
application goals—“I don’t want anyone but the recipient
to read this email,” or “I don’t want my credit-card num-
ber stolen”—not in terms of keys, certificates, or access-
control lists. Where possible, applications should be
designed to make security implicit, to take advantage of
actions a user must take anyway to discover what security
operations must take place.4 In the example we presented
earlier, users wanting to join a particular wireless network
did so by pointing out the enrollment station serving that
network via infrared, as if they were using a remote con-
trol. Software could take advantage of that action to ex-
change authentication information and securely join the
network. The user, however, could focus only on the
high-level goal: getting a particular device onto a particu-
lar wireless network.

Taking advantage of users’ intentions requires an un-
derstanding of the modes of expression a typical user
might employ to indicate his or her intentions and then
piggybacking security actions on those modes, rather
than expecting the user to learn new behavior. However,
this also requires an understanding of the mental models
users employ to reason about their security environment.

This implies that security now becomes the applica-
tion developer’s responsibility, which runs counter to the
traditional approach of abstracting away security in the
lower layers of the system. However, it doesn’t mean that
application developers must now create their own en-
cryption algorithms. They have a rich portfolio of tools at
their disposal, and it’s their job to apply those tools in a
way that solves a user’s particular problem.

Keep your customers satisfied
To put your users’ needs first seems like an obvious lesson,
well understood in other fields of system design. The se-

22 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2004

Security is not something to
handle only in the lower layers
of the networking stack or in the
depths of the operating system.

Usability and Security

curity community, however, often believes that security is
more important than users’ other needs, even when such
dogged devotion results in a system that doesn’t let users
accomplish the tasks for which that system was designed.

Expertise can blind even those most sensitive to user
concerns. As security researchers, we believed we had de-
signed an easy-to-enroll-in traditional PKI deployment.
After all, the design we picked was similar to that chosen
by others in the field (such as Verisign), and when we used
the system ourselves to obtain certificates and configure
machines for the secure wireless network, it took us only a
couple of minutes. Imagine our surprise when usability
studies revealed that it took users an average of two hours
to join the secure wireless network. Other security re-
searchers agreed with our expectations, to the point of
suggesting that our empirical results9 must be incorrect—
it couldn’t possibly take users that long to enroll.

When designing a system, developers must keep in
mind that they aren’t average users, so after they finish the
system, their target audience should test it. Such studies can
often be performed relatively simply—a small population of
subjects will provide much of the information necessary to
evaluate a system12 and can provide the basis for effective it-
eration cycles of design, implementation, and evaluation.
Even simply discussing their experiences with the desig-
nated user population gives security and systems designers
the opportunity to see through the eyes of their end users.

To gain maximal user feedback and discover lingering
usability (and security) flaws, system designers and imple-
menters should follow the system or application through
usability testing and deployment. Support questions pro-
vide another window into what users find difficult or un-
intuitive, and all of this information can feed back into re-
design iterations and implementation and interface
refinement. This data provides a valuable basis for the de-
sign of future systems, applications, and primitives.

Another somewhat surprising aspect of this lesson is
that usability failures sometimes hide behind apparent
success stories. After all, the test subjects at PARC used
our manual enrollment scheme, and we successfully
managed to deploy a PKI-based wireless security solu-
tion. Yet, our usability study revealed many problems be-
hind that success. Outright failures might present tempt-
ing problems for the HCI community and security
researchers interested in making secure and usable sys-
tems, but torturous successes such as the one described
earlier also have much to offer this same group. Usability
studies can focus on the work all participants performed
in designing, deploying, and using the system; it can also
help interested parties find obvious places to reduce the
effort required.

Think locally, act locally
Application security often seems to require generic, uni-
versal solutions to problems—solutions that don’t exist in

practice. Many academic papers on novel cryptographic
protocols, for example, assume that all players in the pro-
tocol reliably know each other’s public keys. Secure
email, to this day, relies on a global PKI. (To be fair, Pretty
Good Privacy [PGP] does not. However, the trust model
underlying it is even more convoluted than that of a tradi-
tional X.509-based PKI, which is one reason why it’s
even more marginalized.)

The lack of a global PKI renders all applications re-
quiring one immediately unusable, but even if we all par-
ticipated in a global PKI, this PKI—necessarily being
generic in nature—would be part of the plumbing, the
underlying security system that application security is
built atop. Unfortunately, users would be exposed to de-
tails of this plumbing—to send an encrypted email to a
friend, you would first need to get a certificate, which is
not something the average user will comprehend.

We found that by thinking locally, we could avoid
much of the exposure to global plumbing. In our current
example, we rolled our own mini-PKI for a wireless net-
work; in another study,13 every Web site acted as its own
CA. As a result, in both cases, we could completely hide
from the user the fact that certificates were being re-
quested, installed, and used.

On the contrary, if a certificate is a generic tool that
can be used independently of applications, it also be-
comes an entity that users must deal with directly, outside
of the application’s context. We (and others14) learned
that this profoundly confuses users. Systems that follow
the “think locally” principle are also often easier to de-
ploy, because they don’t require administrators to coordi-
nate with some larger infrastructure or organization. As a
result, they can offer greater opportunities for automatic
configuration—for example, we built a standalone ver-
sion of our secure wireless enrollment system that incor-
porates gesture-based enrollment, a CA, and a wireless
access point in one box.9 Such a device can automatically
configure itself, creating a highly secure wireless network
and a small PKI that can be used transparently, even in a
home setting.

I nterest in the usability of information security has fi-
nally picked up in the research community. Informa-

tion security often fails because of the lack of usability:
users either misunderstand the security implications of
their actions, or they consciously turn off security features
to “fix” usability problems.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 23

We must design systems that are
simultaneously usable and secure.

Usability and Security

To rectify this situation, we must design systems that
are simultaneously usable and secure. Not only will this
better protect users, it will actually enable them to ac-
complish tasks they couldn’t accomplish before due to the
lack of a trustworthy infrastructure.

The lessons we’ve described here are applicable to us-
able secure system design in general, and we encourage
the community to draw from and refine them.

References
1. J.H. Saltzer and M.D. Schroeder, “The Protection of

Information in Computer Systems,” Proc. IEEE, vol. 63,
no. 9, 1975, pp. 1278–1308.

2. A. Whitten and J.D. Tygar, “Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0,” Proc. 8th Usenix Secu-
rity Symp., Usenix Assoc., 1999, pp. 169–184.

3. A. Adams and M.A. Sasse, “Users Are Not the Enemy:
Why Users Compromise Computer Security Mecha-
nisms and How to Take Remedial Measures,” Comm.
ACM, vol. 42, Dec. 1999, pp. 40–46.

4. D.K. Smetters and R.E. Grinter, “Moving from the
Design of Usable Security Technologies to the Design of
Useful Secure Applications,” Proc. New Security Paradigms
Workshop 02, ACM Press, 2002, pp. 82–89.

5. Recommendation X.509: The Directory/Authentication Frame-
work, Consultative Committee on Int’l Telegraphy and
Telephony, 1988; www.itu.int/publications/index.html.

6. B. Aboba and D. Simon, “PPP EAP TLS Authentication
Protocol (EAP-TLS),” IETF RFC 2716, Oct. 1999;
www.ietf.org/rfc/rfc2716.txt.

7. ANSI/IEEE Std. 802.1x, Port-Based Network Access Con-
trol, IEEE, 2001.

8. P. Doyle and S. Hanna, “Analysis of June 2003 Survey
on Obstacles to PKI Deployment and Usage,” 2003;
www.oasis-open.org/committees/pki/pkiobstaclesjune
2003surveyreport.pdf.

9. D. Balfanz et al., “Network-in-a-Box: How to Set up a
Secure Wireless Network in Under a Minute,” Proc. 13th
Usenix Security Symp., Usenix Assoc., 2004, pp. 207–221.

10. D. Balfanz et al., “Talking to Strangers: Authentication in
Ad Hoc Wireless Networks,” Proc. 2002 Network and Dis-
tributed Systems Security Symp. (NDSS ‘02), Internet Soc.,
2002, pp. 23–35.

11. W.K. Edwards et al., “Using Speakeasy for Ad Hoc Peer-
to-Peer Collaboration,” Proc. ACM 2002 Conf. Computer
Supported Cooperative Work (CSCW ‘02), ACM Press,
2002, pp. 256–265.

12. J. Nielsen and T.K. Landauer, “A Mathematical Model of
the Finding of Usability Problems,” ACM Conf. Human
Factors in Computing Systems (INTERCHI ’93), ACM
Press, 1993, pp. 206–213.

13. D. Balfanz, “Usable Access Control for the World Wide
Web,” Proc. Ann. Computer Security Applications Conf.,
IEEE CS Press, 2003, pp. 406–415.

14.P. Gutmann, “Plug-and-Play PKI: A PKI Your Mother
Can Use,” Proc. 12th Usenix Security Symp., Usenix Assoc.,
2003, pp. 45–58.

Dirk Balfanz is a security researcher at the Palo Alto Research
Center. His technical interests include end-to-end security and
ubiquitous computing. He received a PhD in computer science
from Princeton University. Contact him at balfanz@parc.com.

Glenn Durfee is a security researcher at the Palo Alto Research
Center. His technical interests include applied cryptography,
usable security, and security for mobile and wireless devices. He
received a PhD in computer science from Stanford University.
Contact him at gdurfee@parc.com.

Rebecca E. Grinter is currently an associate professor at the Col-
lege of Computing, Georgia Institute of Technology, but she
worked at the Palo Alto Research Center at the time of this study.
Her technical interests include computer-supported cooperative
work, human-computer interaction, security, and ubiquitous
computing. She received a PhD in information and computer
science from the University of California, Irvine. She is a mem-
ber of the ACM. Contact her at beki@cc.gatech.edu.

D.K. Smetters is a senior member of the research staff at the
Palo Alto Research Center. Her technical interests include secu-
rity for mobile and wireless devices, usable security, and applied
cryptography. She received a PhD from the Massachusetts Insti-
tute of Technology. She is a member of IACR, Usenix, and the
ACM. Contact her at smetters@parc.com.

24 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2004

Join a community that targets your discipline.

In our Technical Committees, you’re in good company.

www.computer.org/TCsignup/

Looking for a community targeted to your area of
expertise? IEEE Computer Society Technical
Committees explore a variety of computing niches

and provide forums for dialogue among peers. These
groups influence our standards development and offer
leading conferences in their fields.

JOIN A
THINK
TANK

