
Facebook Immune System

Tao Stein
Facebook

stein@fb.com

Erdong Chen
Facebook

rogerc@fb.com

Karan Mangla
Facebook

kmangla@fb.com

Abstract
Popular Internet sites are under attack all the time from phishers,
fraudsters, and spammers. They aim to steal user information and
expose users to unwanted spam. The attackers have vast resources
at their disposal. They are well-funded, with full-time skilled labor,
control over compromised and infected accounts, and access to
global botnets. Protecting our users is a challenging adversarial
learning problem with extreme scale and load requirements. Over
the past several years we have built and deployed a coherent,
scalable, and extensible realtime system to protect our users and
the social graph. This Immune System performs realtime checks
and classifications on every read and write action. As of March
2011, this is 25B checks per day, reaching 650K per second at peak.
The system also generates signals for use as feedback in classifiers
and other components. We believe this system has contributed to
making Facebook the safest place on the Internet for people and
their information. This paper outlines the design of the Facebook
Immune System, the challenges we have faced and overcome, and
the challenges we continue to face.

Keywords Machine Learning, Adversarial Learning, Security,
Social Network Security

1. Introduction
The Facebook social graph comprises hundreds of millions of users
and their relationships with each other and with objects such as
events, pages, places, and apps. The graph is an attractive target
for attackers. Attackers target it to gain access to information or to
influence actions. They can attack the graph in two ways: either by
compromising existing graph nodes or by injecting new fake nodes
and relationships. Protecting the graph is a challenging problem
with both algorithmic and systems components.

Algorithmically, protecting the graph is an adversarial learning
problem. Adversarial learning differs from more traditional learn-
ing in one important way: the attacker creating the pattern does not
want the pattern to be learned. For many learning problems the pat-
tern creator wants better learning and the interests of the learner
and the pattern creator are aligned and the pattern creator may even
be oblivious to the efforts of the learner. For example, the receiver
of ranked search results wants better search ranking and may be
oblivious to the efforts being done to improve ranking. The pattern
creator will not actively work to subvert the learning and may even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys Social Network Systems (SNS) 2011 April 10, 2011, Salzburg
Copyright c© 2011 ACM Jan 1, 2011. . . $10.00

voluntarily give hints to aid learning. In adversarial learning, the
attacker works to hide patterns and subvert detection. To be effec-
tive, the system must respond fast and target the features that are
most expensive for the attacker to change, being careful also not to
overfit on the superficial features that are easy for the attacker to
change.

Attacker 
Detects 

Defender 
Responds 

Begin 
Attack 

Initial 
Detection 

Attacker Controls 

Defender Controls 

Attack Detect 

Defense Mutate 

Figure 1. The adversarial cycle.
This diagram shows the adversarial cycle. The attacker controls the upper
phases and the defender controls the bottom phases. In both Attack and De-
tect phases the attacker is only limited by its own resources and global rate-
limits. During Attack, the attack has not yet been detected and is largely
unfettered. During Detect, the attack has been detected but the system is
forming a coherent response. This includes the time to train a model or ex-
pand the set of bad attack vectors and upload the patterns to online classifier
services. The response can form continuously with some models being de-
ployed earlier than others. During Defense, the attack has been rendered in-
effective. The attacker may eventually detect this and begin Mutate to work
around the defense mechanism. This cycle can repeat indefinitely. The de-
fender seeks to shorten Attack and Detect while lengthening Defense and
Mutate. The attacker seeks the opposite, to shorten the bottom phases while
lengthening Attack and Detect. This cycle illustrates why detection and re-
sponse latencies are so important for effective defense.

Adversarial learning is a cyclical process shown in Figure 1.
An example will make the process more concrete. Several years
ago phishers would attack the graph using spammy messages with
predictable subject lines. The messages included links to phishing
sites. They sent out these messages repeatedly from compromised
accounts to hundreds of friends of the compromised accounts. The
predictable text patterns and volume made these straightforward to
detect and filter. To overcome this filtering, attackers obfuscated by
inserting punctuation, HTML tags, and images into their messages.
As well, the attackers varied their distribution channels to evade de-
tection. The system responded to this by using mark as spam feed-



back features, IP address features, and also the presence of other
unusual obfuscation signatures. The IP address features were an ef-
fective response, forcing the attackers to employ botnets and global
proxy networks to attack. This particular attack was destroyed, but
similar attacks happen all the time. The adversarial cycle is an arms
race. As detection and protection improve, the attackers in turn im-
prove their methods.

The phase lengths in the adversarial learning cycle can vary and
the goal of an effective defense is to lengthen phases the defender
controls while shortening phases the attacker controls. Attacks are
destroyed by making them unprofitable. In terms of Figure 1, this
means lengthening the bottom phases Defense and Mutate while
shortening the upper phases Attack and Detect. Together, this raises
the attacker’s costs to participate in the cycle and lowers their
returns.

Improving the cycle requires work across all phases using mul-
tiple techniques. The Attack phase is shortened by improving de-
tection methods: better user feedback, and more effective unsuper-
vised learning and anomaly detection. The Detect phase is short-
ened by improving methods for quickly building and deploying
new features and models. The defense phases Defense and Mutate
are lengthened by making it harder for the attacker to detect and
adapt their exploit to the defensive response. The Defense phase is
lengthened by obscuring responses and subverting attack canaries.
For example, a suspected phishing account can see their phishing
messages, but others including the target victim cannot. The Mu-
tate phase is lengthened by emphasizing features that are more ex-
pensive for the attacker to change. For example, using IP-related
features instead of text patterns if the former are more expensive
for the attacker to adapt. Shortening the length of attacker control
is especially critical to defending the graph because graph-based
distribution is viral and can grow exponentially. The Immune Sys-
tem is designed to shorten the phases controlled by attackers and
lengthen the phases under defensive control.

The Immune System has two advantages over the attacker; user
feedback and global knowledge. User feedback is both explicit and
implicit. Explicit feedback includes mark as spam or reporting a
user. Implicit feedback includes deleting a post or rejecting a friend
request. Both implicit and explicit feedback are valuable and cen-
tral to defense. In addition to user feedback, the system has knowl-
edge of aggregate patterns and what is normal and unusual. This
facilitates anomaly detection, clustering, and feature aggregation.
The system uses these two advantages in both detection and re-
sponse.

Some of the more traditional machine learning metrics do not
really apply to adversarial learning in our context, or at least are
less important. For example, classifier accuracy. The graph is be-
ing defended across multiple simultaneous attacks using finite re-
sources. The goal is to protect the graph against all attacks rather
than to maximize the accuracy of any one specific classifier. The
opportunity cost of refining a model for one attack may be increas-
ing the detection and response on other attacks. For these reasons,
response and detection latencies can be more important than pre-
cision and recall. Even considering an attack in isolation, spend-
ing more time improving a classifier can be problematic for two
reasons. Damage accumulates quickly. More accounts get compro-
mised and more users get exposed to spam. A 2% false-positive
rate today on an attack affecting 1,000 users is better than a 1%
false-positive rate tomorrow on the same attack affecting 100,000
users. As well, as time progresses attacks mutate and training data
becomes less relevant. Done is often better than perfect.

Protecting the graph differs from email anti-abuse in several
ways. Users tend to trust Facebook identities more than email. The
Facebook user interface has many different channels for communi-
cation, and new ones emerge as the interface evolves. Communi-

cation can move seamlessly between these different channels. As
well, communication on Facebook tends strongly toward the real-
time. These differences all have implications for the design of the
Immune System and will be discussed more in Section 3.

Attacks can mutate quickly, in some cases the Defense and
Mutate phases may be short, and the system must be ready to detect
and respond. Due to the viral distribution of the graph, substantial
damage can happen quickly when the attacker is in control. The
need for a fast response has motivated much of the design described
in this paper. A basic design principle is that all updates are online,
classifier services and feature data providers adapt to new attacks
without going offline or restarting. Responding to new attacks is a
part of normal operation and normal operation should never require
a service restart.

In addition to responding quickly, it is important to target fea-
tures that are difficult for the attacker to detect (Defense) and
change (Mutate). This differs from traditional machine-learning
where the features are chosen solely on how strongly they improve
the accuracy of the classifier. In general, some features of an attack
are much easier and cheaper for an attacker to change than others.
For example, text patterns versus IPs.

The main components of the Immune System will be described
in detail in Section 4. To summarize, these are:

• Classifier services: Classifier services are networked interfaces
to an abstract classifier interface. That abstraction is imple-
mented by a number of different machine-learning algorithms,
using standard object-oriented methods. Implemented algo-
rithms include random forests, SVMs, logistic regression, and a
version of boosting, among other algorithms. Classifier services
are always online and are designed never to be restarted.

• Feature Extraction Language (FXL): FXL is the dynamically-
executed language for expressing features and rules. It is a
Turing-complete, statically-typed functional language. Feature
expressions are checked then loaded into classifier services and
feature tailers1 online, without service restart.

• Dynamic model loading: Models are built on features and
those features are either basic or derived via an FXL expression.
Like features, models are loaded online into classifier services,
without service or tailer restart. As well, many of classifier
implementations support online training.

• Policy Engine: Policies organize classification and features to
express business logic, policy, and also holdouts for evaluat-
ing classifier performance. Policies are boolean-valued FXL
expressions that trigger responses. Policies execute on top of
machine-learned classification and feature data providers. Re-
sponses are system actions. There are numerous responses.
Some examples are blocking an action, requiring an authenti-
cation challenge, and disabling an account.

• Feature Loops (Floops): Classification generates all kinds of
information and associations during feature extraction. The
floops take this data, aggregate it, and make it available to the
classifiers as features. The floops also incorporate user feed-
back, data from crawlers2, and query data from the data ware-
house.

The scalability and latency requirements are challenging. As of
early 2011, there are 25B user read and write actions per day. About
20% of these are write operations. In many cases classification
needs to be synchronous with user actions. In those cases latency

1 Tailers are stream-processing programs. They read and aggregate log file
data in realtime. They are called tailers because they tail logs.
2 Crawlers are processes that take URLs and fetch their web contents.



is kept under 50ms so that the site feels responsive and interactive.
Scaling the Immune System up to cover this load while meeting
latency requirements has been a challenge requiring substantial
engineering ingenuity.

Online updates give advantage across all phases of the adver-
sarial cycle. Online loading of new models, policies, and feature
expressions shorten response time. Better features improve both de-
tection methods and the quality and longevity of response. Feature
selection needs to consider the attacker’s costs. Attackers change
behavior a lot faster than people change their buying patterns.

The next section provides an overview of existing threats to the
graph. Section 3 outlines the requirements to protect the graph. Sec-
tion 4 outlines the basic design of the Immune System. Section 5
outlines some of the related work done on adversarial learning and
traditional spam detection.

2. Threats to the graph
The social graph contains user information and facilitates connec-
tions between people to share information. It has two basic proper-
ties valuable to attackers. It stores information and it is a powerful
viral platform for the distribution of information. By compromis-
ing or controlling portions of the graph the attacker can both access
user information and employ viral graph distribution for spam.

Threats to the social graph can be tracked to three root causes.
These are compromised accounts, fake accounts, and creepers.
The response varies for these three root causes. Compromised
accounts are returned to their legitimate owner and the attacker is
locked out. Fake accounts are deleted. Creepers are educated and
informed about how they can better use the product to not create
problems or spam for others. These three root sources can abuse the
same channels. For example, unwanted friend requests come from
both creepers and fake accounts. Spam is a symptom that stems
from these three root problems. Thinking about the root causes
is necessary for solving the problems on individual channels and
constructing responses.

2.1 Compromised accounts
Compromised accounts are accounts where the legitimate owner
has lost complete or partial control of their credentials to an at-
tacker. The attacker can be a phisher either automated or human, or
a malware agent of some form. Spear phishing does happen where
attackers may for example target the account of a poker player with
many poker chips. Once the user is compromised the attacker can
transfer the chips by losing in a chat room. Blame is difficult to es-
tablish here and this kind of problem generally leads to inflation in
the chip money supply. Our earlier phishing classifiers made heavy
use of features on IP and successive geodistance. Attackers have
responded by using proxies and botnets to log in to their compro-
mised inventory. Malware is a tough problem because the attacker
is operating from the same machine as the legitimate user, so IP
does not provide signal. To combat malware, the most effective
mechanism we have discovered is to target the propagation vector
using user feedback. Attackers can also try to game user feedback
features. That is combatted with reporter reputation and rate limits.

Attackers build social credibility and graph structure around ob-
jects by attaching fake accounts to them. Fake accounts on aver-
age have lower account age than legitimate accounts because the
system detects and disables them. If the attackers cannot use fake
accounts to pull their spammy objects into the graph then they typ-
ically draw from their inventories of compromised accounts. Com-
promised accounts are typically more valuable because they carry
established trust. The attackers will deploy them more carefully.

Phishing Phishing attacks aim to steal the login credentials of
users. They typically spread by hijacking the user trust embedded

 0

 5

 10

 15

 20

 25

 0  5  10  15  20

m
es

sa
ge

s 
se

nt
 (

th
ou

sa
nd

s/
ho

ur
)

time since start of attack (hours)

Figure 2. Timeline of a phishing attack on Facebook.
This illustrates the different phases of an attack cycle and how an attack
can increase in volume rapidly. The graph plots the number of phishing
messages per hour for a coordinated phishing attack. The attack begins at
time 0, with the attacker starting with a small set of accounts, sending out
phishing messages. The messages contain links to a phishing page. Some
users go to the page and reveal their credentials to the attacker who then
gains control of their account and then uses it in the campaign. Initially the
attack is small, but gradually gains accounts. The system detects the attack
in hour 8 and forms a response, applying it immediately and improving the
response to return the accounts to their owners, driving down the attack
volume as the attackers lose their compromised account inventory.

in the graph. Successful phishing attacks are particularly harmful
because attackers gain control over trusted nodes in the graph.
They then exploit these trusted connections for financial gain and
to further their own purposes.

Users are more vulnerable to phishing on social networks than
they are on email. Social network identities have social context,
attached photos and other metadata, and also authentication. At-
tackers use these in social engineering attacks to improve the pull
of their lures. People have been conditioned to be wary of links in
email, but tend to put more trust in social network messages from
their friends and the links within. This trust is a target for manipu-
lation by phishers.

Malware Malware is a software agent that resides on a user’s
computing device and uses that device to piggyback on the user’s
credentials. Once installed on a device, the malware can hijack
the user session and send messages on behalf of the user. These
messages may contain the payload for the virus to replicate itself
or more often a link to a download site that distributes the payload.
Users are often unaware their device is infected with malware. The
agents are often silent and cloak themselves to avoid detection and
cleaning.

Since the attacker controls the physical machine of the user,
it is difficult to both detect and prevent malware. A common re-
sponse to automated attacks is to require Turing tests. For exam-
ple, CAPTCHAs [von Ahn 2003]. However, some malware vari-
ants have found ways around this. For example, Koobface malware
variants have been observed to take the challenge and forward it to
the user on the same machine, enclosed in a window box warning
that the operating system will shut down if the user does not solve
the challenge. Many users comply and Koobface forwards the so-
lution back to Facebook, solving the challenge. Using this method



Koobface has been observed to achieve solve rates comparable to
humans.

As mentioned above, the most effective mechanism against mal-
ware has generally been user feedback on the channel the mal-
ware is using to spread. For example, users marking posts as spam.
This is used in combination with a basic message classifier. Users
are identified as infected when they send many messages marked
sketchy by the classifier and many of their friends mark these as
spam. The user marking as spam is a strong signal in combination
with sparse text features and basic features on embedded URLs.

2.2 Fake accounts
Facebook is for real people and the Facebook ID is not intended to
be a pseudonym or handle. Each person has at most one account.
The authenticity of user IDs is one of the core premises of Face-
book. Significant numbers of fake accounts undermine this authen-
ticity and corrode user trust in the network. Fake accounts can be
created non-maliciously by people that just want an extra account.
Much more commonly, fake accounts are created by attackers that
want to compromise and influence regions of the graph.

Fake accounts are created by both scripts and raw labor as in-
ventory to attack the graph. Fake accounts are created mainly for
three reasons. Attackers create parallel fake accounts to overcome
rate limits associated with individual accounts. They also use par-
allel accounts to friend or like objects en masse and thereby boost
the reputation or ranking of those objects. Finally, they use fake
accounts as fake identities to phish and spam real users.

Fake accounts have limited virality because they are not central
nodes in the graph and lack trusted connections. They also have
no unique data or history. For these reasons, they are much less
valuable to attackers than compromised accounts. Attackers will
protect their compromised account inventory much more carefully
than their fake account inventory.

Note that the value of a fake account is measured over its life-
time. Catching a fake account early in its lifetime thereby de-
creases its value. By catching fake accounts early before they can
be productive, the Immune System drives down the total resources
the attacker can rationally justify investing. Ideally, this is a self-
reinforcing loop that kills an attack.

2.3 Creepers
Creepers are real users that are using the product in ways that
create problems for other users. One example of this is sending
friend requests to many strangers. This is not the intended use of
the product and these unwanted friend requests are a form of spam
for the receivers. Another example is posting spammy chain letters
in statuses to get broad feed distribution.

Chain letters typically use social engineering to motivate re-
ceivers to repost. The letters claim that if the receiver does not re-
post something bad will happen, like they will lose their account or
if the receiver does repost something good will happen, like money
will be donated to charity. Chain letter volume can explode when
spread using the powerful viral channels of Facebook. In the past,
they have been observed to reach 1-5% of total user communica-
tions in minutes.

Chain letters can cause two problems beyond simply bothering
the receiver. They can motivate users to take damaging actions on
false pretenses and they can create a global misinformation wall
that hides critical or time-sensitive information.

In most cases it seems impossible to trace a chain letter back to
one originator. The memes probably exist elsewhere and enter the
graph through multiple entry points, mutate, leave, re-enter, and
so on. Chain letters exploit social engineering to trick otherwise
well-behaved Facebook users into propagating the attack. As with
other creeper attacks, the best long-term answer is education. In

the short-term other mechanisms can be used against chain letters
specifically. For example, fuzzy n-gram matching or other forms
of locality-sensitive hashing on text. These techniques tend to work
well primarily because chain letters are not adversarial in the strong
sense of say, phishing.

2.4 Spam
Spam is a symptom of these three root problems. The site provides
numerous channels for interaction between users. All of these are
targeted by attackers to distribute spam. They generally flow to the
channel with the least protection and highest reach. Some spam
is obvious and universally spammy. For example, phishing links.
Other spam is more difficult to call. Most of the stuff in this second
category tends to come from creepers. Spam from phished and fake
accounts is straightforward to deal with – block or move to a spam
folder. Creepers on the other hand are often just unaware or acting
on bad information. They can benefit from education and better
information.

In many cases the offender is unaware that their actions are
considered spammy by others. For extreme and persistent cases,
Facebook educates users on how to use the different features of the
site so they send out less unwanted information. For combatting
unwanted friend requests, education has had a substantial positive
impact on user behavior. By definition, spammy friend requests
happen between two users that are not friends. When two users are
friends and the behavior of one is bothering another, ideally the two
can resolve conflict without system involvement. If a user reports a
friend as abusive, under some conditions the system will encourage
the two users to communicate directly to resolve the conflict. User
education can help reform creepers bothering people that are not
their friends, but ideally conflicts between friends can be solved
directly between the two friends.

Defining spam is difficult on a site with a global user base. Dif-
ferent cultures have different social norms around communication.
Acceptable behavior in one region may be interpreted as unwanted
contact in another. This makes a uniform definition of spam dif-
ficult. In general, the working definition of spam is simply inter-
actions or information that the receiver did not explicitly request
and does not wish to receive. Both classifiers and the educational
responses need to be tuned for locale and user. Cultural breadth ne-
cessitates different models and responses with regional and cultural
features.

3. Design principles for protecting the graph
To protect the graph the Immune System runs classifiers to block
and respond and anomaly detection to detect new and mutated at-
tacks. Developing, deploying, and operating these classifiers has
a number of challenges. Attacks mutate across different channels
within a large user-interface surface area. The system must defend
against these attacks while meeting severe scalability and latency
requirements. This section discusses several of the important sys-
tem requirements.

3.1 Detect and respond quickly
The virality of Facebook communication can be used by attacks
to grow quickly. Figure 2 shows the spread of a phishing attack
on Facebook. The attack starts as a low volume attack. Within a
couple of hours, the attack compromises new accounts and grows
exponentially. Once the system detects and blocks the attack, the
number of messages declines. To minimize damage the system
must detect new attacks and respond quickly.

3.2 Cover a broad and evolving interface
Another complicating issue is the breadth and complexity of the
user interface. On Facebook users do not only send messages to



each other. They send chats, tag photos, write comments and inter-
act on numerous other channels. New channels develop all the time
as the user interface changes. Not only are there many different
channels for communication and interaction, but users move fluidly
between them. The breadth and fluidity of communication neces-
sitates sharing of feature signals across channels. As well, attacks
can change and develop in unexpected ways as the user interface
changes. Changes in the interface can sometimes break models by
changing the meaning of a feature. The system must monitor model
quality and initiate retraining when necessary.

3.3 Share signals across channels
Facebook has many different channels for communication. For ex-
ample, chat, messages, wall posts, public discussion and friend re-
quests. Users can communicate privately, publicly, or anywhere in
between. Communication can cross between these different forms
and a logical conversation can cross several different channels. Like
users, attacks use many different channels. For the system to be ef-
fective it must share feedback and feature data across channels and
classifiers.

3.4 Classify in realtime
The realtime nature of communication and interaction on Facebook
motivates realtime classification. On Facebook, users communicate
in a pattern more similar to online chat than email. This is facili-
tated and encouraged by the user interface design. A user of an
email client or web portal may check in on their email periodically,
perhaps ranging from a couple times a day to a few times an hour.
In this access pattern there are gap latencies between writes and
reads that give breathing room on classification latency. In contrast
to email, the Facebook user interface integrates email and chat and
also can be configured by the user to push event notifications to
external addresses and devices. For example, users can configure
their account to notify them via SMS on various events. These no-
tifications are popular and decrease the latency on interaction. In-
teraction on the site biases towards realtime, meaning classification
must be realtime to be effective.

Some classification responses can be delayed, batched, and take
longer. However, many classifications do need to be synchronous
with user actions. There are several reasons for this: the communi-
cation itself is synchronous and realtime (like chat), the response
is more meaningful and coherent with immediate action context
(blocking an unwanted friend request), and downstream load would
damage the system without filtering (some actions consume sub-
stantial resources if they pass). The system must meet these real-
time latency constraints.

4. Design
As discussed above in Section 3, a system to protect the graph
has a challenging set of requirements. It must react quickly to new
threats, have realtime access to rich and timely feature data, scale
with low latency, and provide reliable service.

Figure 3 shows the basic architecture of the Facebook Immune
System and describes the flow of a typical user action. The policy
layer evaluates the policies, triggering classification and feature
extraction, then maps to a response. After response, the system
updates historical feature data using the three feature loops.

Policies express classification as a feature function named Clas-
sifyScore. It takes the names of the classifier and corpus as parame-
ters and routes the feature map to the corresponding algorithm and
model. This function evaluates to a certainty value and that value
is used within the policy expression in the same way as any other
feature value. At the level of policies, classification looks like other
features. Policies use classifiers as features, classifiers use features

in their models, and classifiers can use features that are not classi-
fiers. Figure 3 illustrates these component relationships with clas-
sification between policy and feature extraction and also a direct
arrow from policy to extraction.

After classification and policy evaluation complete, the accumu-
lated feature map is passed to a counting step that updates feature
loop counters. Finally, the feature map flows into a log where it
is processed by a set of tailers. These tailers process the stream of
feature maps coming out of the classifiers. They do a number of
different things; anomaly detection, clustering, further feature ex-
traction, and aggregation and summation of features. Finally, the
feature map flows into the data warehouse, to facilitate larger, par-
allel feature synthesis and joins with other tables.

The faster the system responds the less time the attacker has
to compromise accounts, create fake objects, and send spam. New
models are loaded online, training is online, policies are updated
online, and new features are created and updated online. Some of
these operations happen often. For example, some tailers analyze
the feature logs for new patterns and anomalies. They feed data into
online models to train them. Depending on the rate of anomalies
and attacks, the tailers may be adding new data every second or
more frequently. Restarting the services would be infeasible. As
discussed in Section 1, new attacks are a part of normal operation
and normal operation should never necessitate a service restart. Fast
online response drives down the attacker’s yield.

This section elaborates on the design details of the individual
Immune System components.

4.1 Classifiers
The classifier modules are compiled into a Thrift3 service. They
can also be compiled directly in with the client program or run
as a separate service either locally or remotely. One advantage
of running the services remotely is that many clients can share a
smaller number of services, amortizing their memory, CPU and
other resources.

Classifiers have internal state; feature expressions, models, and
policies. Classification state in the form of counters and feature
values is not stored in the services but rather is shared across all
services in a distributed shared memory layer described more in
Section 4.4.1.

4.2 FXL
Classifiers and policies compute decisions on feature values. Fea-
tures are often derived, meaning that they are expressed in terms
of operations on and combinations of other features. Initially, all
features were flat names with static definitions inside the service
code. Responding to attacks, new classifiers or policies were regu-
larly required with new features. This necessitated not only a model
update, but also implementing new features in the service code, re-
viewing that code, testing it, and pushing the new code to thousands
of classifier machines. This imposed substantial overhead, intro-
duced opportunities for error, created redundant code, and slowed
attack response time.

As well, experimenting with features was not easy. The incon-
venience of experimentation meant that features were often not as
good as they could be. The quality of features affects the lengths of
all phases of the adversarial cycle. Making feature experimentation
easy encourages exploration and thereby leads to improvements.
Part of building an effective defense structure is making it easy to
experiment and try out ideas quickly, while protecting the system
from the consequences of experimental errors. A low cost barrier to
discerning the good from bad ideas is central to progress. Deploy-

3 Thrift is a network RPC protocol. See thrift.apache.org.



users 
policy 
engine classifiers 

feature 
extraction 

actions 

feature data providers 

response 

FXL FXL 

feature 
value 

FXL 
feature value 

RF 

NB 

Re 

… 

data 
warehouse 

other services and data stores 

features data store 

map of feature values 

tailers 

inner middle outer 

feature loops 

feature 
value 

Figure 3. High-level design of the Immune System.
This diagram outlines how a user action flows through the system. Various classification algorithms are shown with the labels RF (Random Forests), NB (Naive
Bayes), and Re (Regression). Time starts at the top. A user action flows in with some basic feature values. The policy layer runs all relevant policies on the
action. Policy evaluation triggers data fetching. Requests are batched for efficiency. Caching is done with memoization at the language evaluation layer. There
is little locality between actions. Once all the features have been collected, the system evaluates the policy and maps it to a response. This completes the user
action. Following that, realtime counters are updated and the feature map is written to a log. This log flows into tailers and the data warehouse. These feature
loops provide classification history and sharing. The longer feature loops have access to progressively more data, but at increasing latency. Inner (counters)
has latency of 10-15ms, middle (tailers) has latency of 5-10s, and outer (warehouse) has latency of 1 day.

ing features monolithically within the service code made it difficult
to experiment with features, thereby hindering defense of the graph.

FXL was designed to improve response time and make it eas-
ier to develop features. The key observation motivating FXL is that
many features are in fact derived from a smaller set of basic fea-
tures. This means that a language can be used to form new fea-
tures by combining and operating on basic features. FXL allows us
to create and deploy features quickly, makes features engineering
easier, and eliminates redundant code.

FXL is strongly typed to facilitate static checking and functional
to facilitate terse expressions and code reuse. All expressions eval-
uate to typed values and the types are known statically independent
of the runtime values. It has exceptions and a try-catch mechanism
for error handling. Higher-order functions and dynamic function
abstraction (lambdas) facilitate code re-use.

FXL preserves the correctness benefits of compiled code while
allowing features to be loaded online. All expressions are parsed
and type-checked and only loaded online if they pass those checks.
This catches errors early on before they reach production.

A functional language has several advantages for our use. Ex-
pressions can be easily represented as trees. Trees lead to straight-
forward manipulations for execution and parallelization. As well,
the lack of side-effects and global variables enables memoization
of subtrees, eliminating duplicate I/O and computation.

Building a new language from scratch can be risky so we pat-
terned FXL after a well-defined and mature language. We chose
Standard ML because it is strongly-typed and functional and has
many of the features like higher-order functions and lambdas that
are helpful for deriving features quickly and correctly.

Here are some examples of FXL expressions. Here is the max
domain spam scores of all domains in a message text:

Max(Map(DomainSpamScore, ExtractDomains(Text)))

The number of common liked pages between a sender and
receiver is represented as:

Count(Intersect(LikedPages(Sender),
LikedPages(Receiver)))

To make FXL easy to use from anywhere, the interpreter is
accessible directly through the networked classifier services. This
means that clients can make calls to the services to execute these
feature expressions and get values back. If a client is concerned
about the Thrift RPC round-trip cost, it can run a service locally
or bypass the service entirely and statically compile with the FXL
interpreter. A command-line interpreter and web interface also exist
to facilitate feature experimentation.

4.3 Policy layer
The policy layer gives analysts control over how classifiers are ap-
plied and the responses they trigger. Policies are boolean-valued
rules expressed in FXL to leverage all its data access and manipu-
lation primitives.

The decision about how and when to respond can depend on
business or policy considerations. For example, an action in one re-
gion might be more creepy or undesirable than in another region.
Another example would be applying a more aggressive spam classi-
fier to pages depending on their admin preferences. Business logic
or policies of this form do not belong in learned models and would
only damage their performance.

The policy layer also provides a mechanism to evaluate classi-
fier performance. The holdout mechanism divides the affected users
into two groups, a regular group and a holdout group. The hold-
out group can be much smaller. The responses generated from the



rule are applied to the regular group but suppressed for the hold-
out group. Follow-up evaluation can show the differences between
the two groups and how the classifier was performing. For exam-
ple, to what extent where friend requests labeled unwanted by the
classifier actually rejected by the receiver?

Finally, policies give fine-grain control over the application of
the classification hypersphere. This is important because of the
many communication channels. Classification may make sense on
some slice of the channels, but not all. Adding rules to gate classi-
fication on a feature can significantly boost the precision with little
sacrifice on recall. In some cases noisy training data may gener-
ate a classifier with poor accuracy on the general testing data, but
excellent accuracy when narrowed down by a policy.

The following example shows how a policy can be used both
to combine together different classifiers and also to control the
application of those classifiers to one particular channel.

And(IsChannel("messages"),
And(GreaterThan(Count(ExtractURLs(Text)), 0),
And(
GreaterThan(
ClassifyScore("fakers", "2011-03-15"), 0.41),
GreaterThan(
ClassifyScore("bad_urls", "2011-03-14"), 0.74)

)))
=> SpamFolder

This policy will be evaluated on every message send. If it eval-
uates to true, the message is moved to the receiver’s spam folder.
Otherwise, the message passes through to their inbox. If desired,
sampling can be expressed within a policy.

4.4 Feature Data Providers (Providers)
Classifiers benefit from high-quality data, lots of data, and recent
data. Feature selection can improve classifier accuracy more than
picking the best algorithm. Accuracy benefits from clean, relevant,
and timely feature data.

Getting feature values in realtime can be challenging. Data may
be located in a data warehouse, in an online database, behind a ser-
vice, or in some form of distributed shared memory cache. There
may be cross-language issues with the data service written in one of
many languages. The data may even be distributed and unsynthe-
sized and require aggregation before use. The feature data provider
interface abstracts these different data sources. It gives the FXL
runtime a standard interface through which to efficiently fetch data.
Cross-language issues are solved by the provider implementation
either using a foreign-function interface or communicating with the
data provider over Thrift, an RPC protocol.

There are a number of implemented feature providers. The
entire Facebook PHP codebase is compiled and statically linked
behind this interface using the HipHop4 compiler. This gives FXL
access to any data represented in the site’s PHP frontend code.
Other providers in production include interfaces to search indices,
various Memcache5 data layers, Thrift services, and data generated
by large Hive6 queries running on the data warehouse. As well,
there are providers for realtime counters on IPs and other features.
Together these providers provide FXL with the basic feature values.
FXL expressions build derived features on these basic values using
functional folds, maps, and various other operators, as discussed
above.

4 https://github.com/facebook/hiphop-php/wiki/
5 Memcache is a distributed memory object caching system.
See memcached.org.
6 Hive is a data warehousing infrastructure and query language built on top
of Hadoop. See hive.apache.org.

The provider interface makes it easy to integrate new providers
of feature data, but not all providers are the same. Latency and
reliability can vary. Section 4.5 describes how the Immune System
deals with performance and reliability heterogeneity across data
providers.

4.4.1 Feature Loops (Floops) provide history
To effectively combat mutating attacks, the system must be able to
track and store new features dynamically. Every action may trigger
multiple classifications. For each classification the Immune System
extracts a wide variety of data about the action. Feature loops
aggregate feature data across actions and store it as features for
classification. Conceptually, they provide classifiers with a shared
memory about past observations and classifications.

The Immune System implements three related mechanisms to
aggregate features for actions. To keep the Attack phase short, ag-
gregate features should be available for classification quickly. Ag-
gregation across larger data sets and application of complex oper-
ators extend the Mutate phase by making it harder for attackers to
adapt to these features. As the data set and operator complexity in-
creases and spans more data, feature aggregation latency rises. The
three feature loops vary across the spectrum of feature complexity
and latency.

Inner The inner loop contains low-latency increment and decre-
ment counters. It provides a mechanism to count on values of any
subset of features. A subset of feature names is specified for count-
ing. The counters store the number of occurrences of each possi-
ble combination of values for these features for a defined period of
time. For example, the number of times a URL has been posted on a
channel in the past hour. The rate of posting can be used as a feature
in classification. On every classification call the appropriate coun-
ters are read from a Memcache tier shared across services, updated
and written back to Memcache. For classification this data can be
extracted using FXL with the Memcache tier as the data provider.

Latency between an classification and the appropriate counter
values being updated is within 10-15 ms. The updates themselves
are not computationally expensive allowing a large number of
counters to be maintained. Currently the Immune System stores
counts on 500 separate feature sets.

Middle The middle loop provides a mechanism to apply more
powerful and complex operations on the feature logs beyond main-
taining counts. This is implemented as an FXL extension which
can talk to Memcache allowing easy addition of new information
that can be later extracted for classification. Memcache is used to
store a set of features about IPs and URLs. On every classifica-
tion FXL expressions are executed which generate new values for
these features. The new values are written back to Memcache for
use in classification. To avoid race conditions all updates related to
a specific IP or URL are sent to the same machine for processing.
Routing data to the appropriate machine and evaluating the FXL
expressions introduces latencies of 5-10 s.

Outer Some features require applying aggregate functions across
many actions. For example, a useful feature for detecting suspicious
URLs is the unique number of users who have posted the URL.
To compute this feature all posts from the previous day need to
be aggregated. The Immune System uses Hive to process data
for all actions daily and extract useful features. These features
are uploaded into Memcache to be used in realtime classification.
Feature latencies are typically up to a day for these features.

4.5 Reliability and performance
The provider layer has been one of the major challenges for Im-
mune System reliability. FXL execution depends on the provider



systems. These systems can fail or return invalid feature data. Fail-
ure and periodic anomalies are something of a fact of life in a com-
plex distributed system, and even more so in one scaling so quickly.

The system has several mechanisms for detecting and protecting
the system from these faults. Unit tests run on code changes before
they are committed to trunk. All the unit tests run every night
after the nightly build of the entire world. Dynamic checks run
every few minutes checking that providers return correct expected
values. Realtime counters on every basic feature monitor whenever
a provider fails to return data. Finally, feature engineers and model
designers have control over failures. FXL has a try-catch exception
mechanism. If a provider fails to return a requested feature value,
FXL throws a FeatureNotFound exception. This exception can be
caught by the expression. From the catch, the expression can use a
default value, another feature, or rethrow the exception. Together,
these mechanisms detect and control feature failure.

Dynamic model and feature loading complicates reliability.
Adding new models to the system can change the number of fea-
tures required by classification. This can impact CPU utilization
and classification latency in unexpected ways. Latency for ac-
cessing a feature can vary by several orders of magnitude, from
microseconds to milliseconds. Some providers store data locally,
some in Memcache, some in Thrift services, and some even access
databases. In the case of the HipHop PHP provider, the latency can
be opaque and difficult to predict statically. For example, the PHP
code might do some computation or access Memcache or even is-
sue a database query. The system provides a staging environment
called P1 to test changes before deployment to production. P1 con-
tains an independent tier of online classifier services. A fraction of
classification traffic is sent to P1 asynchronous with user actions.
This fraction can be tuned to evaluate the impact of load changes.
P1 measures the latency and reliability of each feature. These ob-
servations are used by model designers to test the performance of a
classifier before deployment and decide whether a model or feature
should be added to the main production tier.

5. Related Work
This paper has outlined the threats to the graph and the system
we have built to protect it. Protecting traditional email systems
has been studied for some time. Blanzieri [Blanzieri 2008] pro-
vides an overview. Some research has investigated improved ma-
chine learning methods or features. Carreras and Marquez [Car-
reras 2001] show how Boosting Trees can improve classification.
Hao et. al. [Hao 2009] explore non-text features for improving
email reputation systems.

As social media has become more popular it has been increas-
ingly targeted by sophisticated attackers. Unlike traditional email
abuse, attacks on social media use multiple channels. Heymann
et al. [Heymann 2007] overview approaches to the problems of
spam in social media. Malware is one of the most difficult prob-
lems. Koobface was one of the first social malware variants to
emerge, spreading via Facebook, Twitter, and other sites. Thomas
et al. [Thomas 2010] analyze Koobface and the general problem of
social malware.

Protecting the graph is an adversarial learning problem. Dalvi
et al. [Dalvi 2004] and Lowd and Meek [Lowd 2005] discuss
methods for adversarial learning and classification. Ma et al. [Ma
2009] and Whittaker et al. [Whittaker 2010] address the problem
of optimizing classification methods or reducing feature spaces
to improve the classification latency. However, neither consider
the performance and reliability issues of fetching features from
numerous heterogeneous data sources. Ma et al. [Ma 2009] use
lexical and host-based features of the URL and discuss lightweight
classification methods.

6. Conclusion
This paper overviews the threats to the graph and describes the
system currently in production protecting the Facebook graph. The
main contribution of this work is an integrated system for machine
learning on an adversarial problem. The system is scalable and
responsive. New models and new features can be added online, and
the system generates many signals that can be used as feedback in
classifiers or in external systems.

Other anti-abuse and adversarial learning problems are likely
to benefit from the ideas behind the Facebook Immune System,
primarily the focus on fast detection and response, sharing data
across channels, and the integrated feature feedback loops. Adver-
sarial learning is challenging because attackers can detect defenses
and mutate their exploits quickly. There is more work to be done
improving mechanisms to lengthen defense control and shorten at-
tacker control. An appealing future direction lies in realtime train-
ing of machine learning models that better leverage both user feed-
back and anomaly detection.

Acknowledgments
Many Facebook engineers have contributed to the systems de-
scribed in this paper. In addition to the authors, substantial con-
tributions have been made by Bhal Agashe, Zhimin Chen, Daniel
Gibson, Pedram Keyani, Clément Genzmer, Mark McDuff, Al-
lan Stewart, Hossein Bokharaei, Jon Coens, and other members
of Facebook’s Site Integrity team. Mukund Narasimhan, Carlos
Bueno, Yoann Padioleau, and David Molnar gave helpful feedback
on drafts of this paper.

References
[Blanzieri 2008] E. Blanzieri and A. Bryl. A survey of learning-based

techniques of email spam filtering. Artif. Intell. Rev., 29:63–92, March
2008.

[Carreras 2001] X. Carreras and L. Márquez. Boosting trees for anti-spam
email filtering. In Proceedings of RANLP-01, 4th International Con-
ference on Recent Advances in Natural Language Processing, Tzigov
Chark, BG, 2001.

[Dalvi 2004] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma.
Adversarial classification. In Proceedings of the tenth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, KDD
’04, pages 99–108, New York, NY, USA, 2004. ACM.

[Hao 2009] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser.
Detecting spammers with snare: spatio-temporal network-level auto-
matic reputation engine. USENIX Security Symposium, page 101118,
2009.

[Heymann 2007] P. Heymann, G. Koutrika, and H. Garcia-Molina. Fighting
spam on social web sites: A survey of approaches and future challenges.
IEEE Internet Computing, 11:36–45, November 2007.

[Lowd 2005] D. Lowd and C. Meek. Adversarial learning. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, KDD ’05, pages 641–647, New York, NY,
USA, 2005. ACM.

[Ma 2009] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying
suspicious URLs: an application of large-scale online learning. In
Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 681–688, New York, NY, USA, 2009. ACM.

[Thomas 2010] K. Thomas and D. M. Nicol. The Koobface botnet and
the rise of social malware. In Proceedings of the 5th International
Conference on Malicious and Unwanted Software (MALWARE), pages
63–70. IEEE, October 2010.

[von Ahn 2003] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In EuroCrypt, 2003.

[Whittaker 2010] C. Whittaker, B. Ryner, and M. Nazif. Large-scale
automatic classification of phishing pages. In NDSS, NDSS ’10, 2010.


