
FyreBox - Encrypted File System 
Natnael Getahun, Michelle Johnson, David Ogutu, Willy Vasquez 

https://github.com/wrv/fyrebox  
December 12, 2014 

 

Introduction 

The main problem that we aim to solve with our proof of concept is that we want to be                   
able to store our data on the server, but we do not trust the server with both the                  
filenames and content of the files. It is important that we have a high level of data                 
confidentiality as we are assuming that the server exists compromised. With that in             
mind, the server cannot read any of the files it is holding. The server still retains                
knowledge of usernames, the files associated with those usernames and the           
permissions that username has on all the files in the system.  
 

System Architecture 

Our file system is made up of 3 components: the client, the server, and a trusted cloud 
service. Figure 1 gives a graphical representation of our architecture. 
 

 

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fwrv%2Ffyrebox&sa=D&sntz=1&usg=AFQjCNG5tQdPtevw0RlaDej-4QN3NeXsSw


Figure 1: General representation of our file system. 

 
Client Side 
On the client side of the application there is a shell that allows the users to do basic                  
operations such as creation, deletion, renaming, and adding of permissions to files and             
directories, uploading of files, and traversion of the file system. There is also a key               
database that stores a user’s files’ symmetric key, encrypted via the hash of the user’s               
password. All encryption and decryption of files is done on the client side.  
 
Upon user registration, a private and public key pair are generated using RSA             
encryption, where the public key is sent to the 3rd party cloud service. When a file or                 
directory is created, the file or directory is first encrypted with a symmetric key and               
then sent to the server over a TLS connection.  
 
Server Side 
The server has a couple of different purposes. The first purpose is to sit there spinning,                
waiting for connections and messages. For each received message, it spins off a new              
thread to handle the connection. Every message that it receives and sends is logged so               
that no action is performed undetected.  
 
The databases that reside on the server are the user credentials, the files database, and               
the permissions database. All data stored on the server side is encrypted and does not               
store any private keys so that in the event that the server is compromised, all user data                 
is protected.  
 
Cloud Service 
The cloud service only stores the public keys of all the users of our application. When a                 
user wants to share a file to other users, the other users’ public keys are pulled from                 
here.  

 

Data Structures & Representation 

Files & Directories 

Both files and directories are both stored on the server’s files database. What separates              
them from the database’s point of view is the field in the table that serves as a flag for                   
the entities. There is a parent ID field in the table to account for subdirectories and                
files nested within a directory. The server has no direct sense of a directory structure.  
 

File Sharing 



In order to assign read and write permissions to another user, one must obtain the               
other user’s public key from the cloud service and use it to encrypt the symmetric key                
of the specified file. This gets stored in the permissions table on the server side.  
When a user wants to read or write to a file, the application checks the permissions                
database to see if the user has the correct permissions to complete the action. In the                
table, there is a field that serves as a flag for which permissions are granted to the user.                  
A value of “True” gives the user read and write permissions for a specific file. A value                 
of “False” only gives the user read permissions. No entry in the table linking a user to a                  
file means that the user has neither read nor write permissions to said file.  
 

Conclusion 

Challenges 
Our biggest challenges were designing the database models and creating a design that             
made renaming files and directories easier. We wanted to limit the number of             
databases our application was using and keep all relationships between the tables as             
simple as possible. We did this by treating directories and files the same,             
differentiating them by a flag in one database. In order to make renaming files and               
directories easier, we linked the files and directories to the ID number of their parent               
directories so that in the event that a directory’s name get’s changed, we would not               
have to rename any of its nested files or subdirectories.  
 
Future Work 

In the future, we would like to add a freshness guarantee to all files so that no user sees                   
remnants of old versions of files. A possible solution to guaranteeing freshness would             
be to use perfect forward secrecy for every write to a file. Another feature we would                
like to add to our file system would be portability so that users could log in from other                  
machines. This could be done by creating a web application for our file system.  
 
 


