
Multi-trace Concolic Execution Framework

Kyel Ok, Joonwon Choi, and Chanwoo Chung

{kyelok, joonwonc, cwchung}@mit.edu

1 Introduction

Concolic execution is a powerful tool to automatically detect bugs that are diffi-
cult to encounter in a normal workflow of an application. Since rarely used parts
of an application is often less tested, an adversary could exploit bugs in such
places by carefully formulating the inputs to the application. Concolic execution
provides an automated way of preventing such attacks by testing many branches
of the system workflow and catching bugs that are rarely encountered otherwise.

While standard concolic execution is great for single-user applications, it
is difficult to achieve high code coverage when testing multi-user applications
due to non-determinism introduced. In a single-user application, the state of
an application, i.e., the path conditions, is only dependent on the inputs of the
single user; by changing the inputs of the user, concolic execution can cover all
the path conditions possible. However, for a multi-user application, the state of
an application is a function of all of the users sharing the same resources. Thus,
without observing the other users, concolic execution performed on a single user
would result in a non-deterministic behavior.

An example of a non-deterministic behavior observed on a multi-client ap-
plication would be when a client tries to register a new user on a web-based
application. If the application was a single-client application, i.e., only accepts
one connection at all times, and if it reset its database before each concolic
execution run, registering the same user would always work deterministically.
However, if there was even one other client having unobservable interactions
with the server, registering the same user may fail if that client registers the
user beforehand.

Non-deterministic behavior in multi-client applications is an artifact of un-
observability of the entire system. Since a computer is a deterministic machine,
there is no true randomness or non-determinism in its applications. There are
only seemingly non-deterministic results that are caused by the lack of the abil-
ity to quantize all of the factors of an event. For example, in the scenario for
user registration discussed earlier, if the concolic execution system knew all the
inputs of the other clients it could deterministically conclude if registering a user
would fail or not. In other words, if a concolic execution system could precisely
observe all the interactions of all the users, it could deterministically define the
current state.

Based on the notion of non-determinism being the direct result of unobserv-
ability, we propose a multi-trace concolic execution framework that can achieve
multi-user observability. We propose to have a high-level process that determines

the number of clients interacting with an application, inputs each client can use,
and the timing difference between the actions of the clients. The path conditions
for the high-level process would expand to include the actions of all the users
and therefore be able to observe the actions of each user.

2 Multi-trace concolic execution framework

2.1 Base framework

Multi-trace concolic execution we propose starts several parallel concolic execu-
tion client threads that interact with a server. The idea is that by having each
thread represent a single client interacting with the server, we can simultaneously
assign and control all the clients sharing the same resources.

We systematically expand the inputs to a multi-client application using four
growing variables.

– Concrete values. A list of possible concrete values for any single client is
congregated when they are discovered from attempting to branch in new
ways as done in Lab 3 1.

– Permutation. Then, using such inputs, we form all possible permutations of
the inputs that can be assigned across the client threads.

– Processes. Once each of the unique permutation has been tested, we increase
the number of the processes, and form a new permutation of the input set
for the bigger number of processes.

– Time offset. Lastly, we try different start times of the client threads for the
exact same inputs to capture the full state of an application.

Since clients interacting with a server may produce different results depending
on the order and the timing of commands executed, including the time variable
is beneficial. Finally, this exponential and infinite growth of the input space is
continuously exploited to explore the states of a multi-client application until
the number of parallel processes reaches a user-defined maximum.

2.2 Heuristics for a speed boost

Removing the time offset The first heuristic we use to speed up the multi-
trace concolic execution system is removing the time difference variable and
executing all the client threads in parallel. We apply our prior knowledge that
most multi-client bugs are caused by a tight race condition between clients.
Thus, it is most likely to reveal a bug when multiple clients execute commands
simultaneously. We confirm this theory by manually adjusting the time offset
between client threads and verifying the number of bugs the multi-trace concolic
execution system finds.

As seen in Fig. 1, the results are non-deterministic as the same offset between
clients may or may not produce bugs. We suspect that the non-determinism is
1 http://css.csail.mit.edu/6.858/2014/labs/lab3.html

caused by the lack of control over precise timing between the threads, i.e., the
best we can do is sleep() on an OS that is not real-time, and the lack of
observability of the CPU scheduler that services all the parallel threads in a
linear fashion.

Fig. 1. Bug occurences and time difference

Constraining the concrete input values Another heuristic we can apply is
to limit the possible input values, i.e. the concrete values a client can use, to
the ones that are more likely to cause a multi-client bug. Since we have prior
knowledge that multi-client bugs are mostly caused by invoking shared resources,
we can limit the inputs to those that include a path to sharing resources. In our
experiments, this limitation results in a large speed boost while still being able
to reveal the bugs found without it.

3 Experiments

We have run our multi-trace concolic execution system on zoobar application to
automatically detect possible multi-client bugs that were missed in the standard
single-trace concolic execution done in Lab 3.

We have found three new critical bugs and a few similar minor bugs in the
zoobar application. The critical bugs are as extreme as crashing the web server
to having zoobars lost. We omit the full description for minor bugs due to their
similarity to the critical bugs.

3.1 Critical bugs found

Details of these bugs below are explained in appendix A.

– Server crashes when two users try to register with the same userid.
– When user A transfers zoobars to user B twice, only one of them is executed

while both are logged.
– When user A and B transfer zoobars to user C at the same time, zoobars of

A and B are withdrawn while only one of them is credited to user C.

3.2 Timing tests

We have compared the time taken for multi-trace concolic execution with and
without the heuristics discussed earlier. Table 2 shows the results where the
heuristics can result in up to a 1.2 times speed boost. The maximum number of
processes was limited to two for this run.

normal with heuristic
Bug 1 45 seconds 4 seconds
Bug 2 37 seconds 28 seconds
Bug 3 101 seconds 82 seconds

Fig. 2. Speed boost by heuristic

3.3 Attack script

We have developed attack scripts to exploit the bugs found using our multi-trace
concolic execution framework. Using these scripts, we could verify that bugs can
be emulated in the real browser. Details of emulated results are in appendix B.

4 Conclusions

We have developed multi-trace concolic execution to find multi-client bugs in
web applications that allow several users to interact with shared resources. We
used the developed concolic execution framework to uncover three new bugs
in the zoobar applications, and have developed attack scripts to exploit the
automatically found bugs.

A Appendix: bugs found in the Zoobar application

A.1 Registering two users at once

def r e g i s t e r (username , password) :
db = person_setup ()
person = db . query (Person) . get (username)
i f person :

return None
newperson = Person ()
newperson . username = username
newperson . password = password
db . add (newperson)
db . commit ()
return newtoken (db , newperson)

Fig. 3. Registration function in Zoobar

As seen in Fig. 3, Before db.commit() is called, register() is invoked twice
which will add the same user twice withdb.add() this will cause the second
add() to crash the second user’s browser.

A.2 Sending zoobar twice

Suppose user A invokes two transfer() functions before persondb.commit()
is called. As seen in Fig. 4, persondb gets written with the same value twice
and transfer will record two transfers when only one took place. For example, A
invokes transfer of 5 zoobars twice. B receives only 5, but transfer log will show
two instances of sending 5 which means A can claim he/she has sent 10 zoobars
to B while he had only sent 5 zoobars.

A.3 Sending zoobar twice by different users

We could find the other bug in the transfer function in Fig. 4. Suppose user A
starts with 100 zoobars, B starts with 10 zoobars, and C starts with 10 zoobars.
A sends C 100 zoobars. Right before persondb.commit() is called B finishes
get(sender) and get(recipient) which returns 10 zoobars for C and B. Now,
A finishes persondb.commit(), which causes C to be at 110 and A at 0. Now,
B calls persondb.commit() which causes B to go down to 0, and cause C to go
down to 20 zoobars instead of 130. Thus, the resulting zoobar counts would be:

– A: 0 zoobars
– B: 0 zoobars
– C: 20 zoobars

def t r a n s f e r (sender , r e c i p i e n t , zoobars) :
persondb = person_setup ()
senderp = persondb . query (Person) . get (sender)
r e c i p i e n t p = persondb . query (Person) . get (r e c i p i e n t)

sender_balance = senderp . zoobars − zoobars
r e c ip i en t_ba lance = r e c i p i e n t p . zoobars + zoobars

i f sender_balance < 0 or r e c ip i en t_ba lance < 0 :
raise ValueError ()

senderp . zoobars = sender_balance
r e c i p i e n t p . zoobars = rec ip i en t_ba lance
persondb . commit ()

t r a n s f e r = Trans fe r ()
t r a n s f e r . sender = sender
t r a n s f e r . r e c i p i e n t = r e c i p i e n t
t r a n s f e r . amount = zoobars
t r a n s f e r . time = time . asct ime ()

t r an s f e rdb = trans f e r_se tup ()
t r an s f e rdb . add (t r a n s f e r)
t r an s f e rdb . commit ()

Fig. 4. Transfer function in Zoobar

B Appendix: attack result

Fig. 5, 6, and 7 shows the attack results from the bugs we mentioned in appendix
section A.

Fig. 5. Client-side error of bug 1

Fig. 6. Server-side error of bug 1

Fig. 7. Attack result of bug 2

