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We present the design and implementation of our encrypted file system, KBox. KBox supports the
functions expected of a normal file system. Users can create, delete, read, write, rename, and share files
and directories. Additionally, users can upload files from their local file system to KBox and download
files from KBox from the client. Users can only view files that are either shared with them or they
create; this guarantee is cryptographically enforced not enforced with access control lists. The server
cannot view the user-given file names, understand the structure of the tree of directories and files, read
the contents of a file, or tamper with a file without being detected.

1 Design

1.1 KNodes

KNodes are abstract constructions that are used to store information in KBox.
On the server, KNode’s are represented by text files. A KNode-file’s name on the server is a hash

of its name, q-bit, and secret: H(s|n|q). A KNode-file can represent a directory, in which case it
contains information about the items contained in that directory. This information includes the item’s
name, information to create the KNode-file’s name, lists of users who can read or write to that item,
and cryptographic data that can allow users with correct keys to access that item. The whole file is
encrypyed under its symmetric key and the cryptographic data is encrypted within that seperately for
each user who can access that element under the public key of that user. A KNode-file can represent a
file, in which case it contains the ecrypted contents of that file.

To reconstruct a user’s file system, the user first finds and decrypts his root KNode. Then, for each
item in this KNode, he now has the name of the file and the name of the corresponding KNode. For each
item, he uses his public key to attempt to decrypt that item’s assymmetric key; if he is successful he
knows that he has access to that file. This is done iteratively until the user has touched all the KNodes
that he has access to.

On the client-side, the KNode python application represents each KNode as a python object, which
will be referred to as the KNode-obj. As the client does the iterative process above to explore KNodes
we create each KNode-obj and add its fields as described in figure 1 for a set of all the attributes of this
object. A tree of these python objects are created with references between them to reconstruct the file
system’s structure.

name: The user given file or directory name.

q: A bit, which is 1 if the KNode represents a directory and 0 otherwise.

secret: A unique secret to identify the file.

ws: The “write secret”, used to prove write access.

key: The AES key to encrypt and decrypt the KNode.

readers: A list of the public keys of users with read access.
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reader list: A list of the key encrypted with the public key of each reader.

writers: A list of the public keys of users with write access.

parent: An identifier of the parent KNode in the final structure.

timestamp: The time corresponding to the most recent modification before the latest pull from the
server. This guarantees freshness up to this timestamp.

contents: The contents of the file or the directory. If the KNode is representing a file, this is just the
contents of the file. If the KNode is representing a directory, the contents is a list of the name,
q-bit, secret, and read list of each file or folder stored in the directory.

name “foo”
q 1
secret s
ws ws
key k
readers [rpk0, rpk1, . . .]
readers list [Erpk0

(k), Erpk1
(k), . . .]

writers [wpk0, wpk1, . . . ]
parent parent
timestamp 11:11:11 12/12/2014
contents [child1, child2, . . .]

Figure 1: A KNode Object

1.2 Signatures

Our KBox system uses signatures to verify the validity of content of files
obtained from the server. Each KNode-file H(s|n|q).enc on the server
has corresponding signature file H(s|n|q).sig contains a signature of
the filename and encrypted contents signed with a client’s private key.
This signature file is updated each time the file is accessed, according
to the type of access (see 1.2).

1.3 Client-Server Protocols

“Client” here refers to a client-side KBox application. In the KBox file
system, it is assumed each user has an RSA public/private key pair.
Users are identified by their public key in the KBox application. The
following protocols are used in combination to achieve functionality for
the KBox API (see KN:API). Users of the client-side KBox application
are not able to explicitly call any of the the following functions (unless
they create their own KNodes), and instead should interact directly
with the API.

Pull The pull operation describes how to go from the file representation to the object representation
of a KNode. Suppose a client has access to a KNode-obj representing a directory, and the client
wants to decrypt one of the files contained in the directory. Then, the client has access to the
content of the directory, so the client has access to name, q-bit, secret, and reader list of the file.
So the client can compute H(s|n|q), the name of the file on the server and send an scp request
to fetch the KNode-file. The client also uses their private key to try to decrypt each item in the
reader list until the AES key for the file is found. This enforces that a client can get the contents
of a file only if the client has read access.

Additionally, whenever a client pulls a file from the server, he or she pulls the signature file as
well and verifies that the encrypted file was properly signed by a user with write access. If this
verification fails, the client is alerted that the file may be corrupted.

Note that there is the issue of bootstrapping - a client must have access to some directory in order
to get access to its subdirectories. To this end, we assume that users store locally the information
necessary to construct a root directory. This information is provided when starting the KBox
application.

Populate Populate is the explicit function that iteratively builds the structure of the file system. We first
create the KNode-Obj for the root directory based off local information, this allows us to set all the
fields on that obj except for its children. When we call populate on that obj it requests the KNode-
file for correponding to the root KNode which gives us information to construct KNode-Obj’s for
all the children off the root that are complete except for their children. We then call populate on
each of the children, which repeats the process and iteratively creates the children of each child.
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Note that populate only has an effect when called on a directory, we do not automatically pull the
contents of files from the server to save space. When the user wants to access a file a different
function called fillup() is used.

Write Request Unlike read permissions, enforcing write permissions cannot be done client-side. This
is the purpose of the “write-secret” field in a KNode. The server stores a table mapping filenames
on the server to their respective write-secrets encrypted with the server’s public key. Sending the
write secret for a particular KNode prooves to the server that the client has write access, at which
point the server will allow the client to perform writes.

Push The push operation describes how to go from a KNode-obj to a KNode-file. The KNode-obj is
flattened and then encrypted with the AES key of the keynode. An scp request is sent to the
server to add or overwrite that file. Since this is a request that involves writes, the client must also
send a write request. When a KNode is pushed, the corresponding signature file is update

Delete When a client requests that a file be deleted, the corresponding KNode-file on the server is
actually deleted via ssh request. The contents of the KNode’s parent is updated to show the
deletion, and the parent is pushed. Since both of these actions involve file modification, both must
be performed with a write request. The corresponding signature file remains. The signature is
updated to be a signature of a delete token concatenated with the filename signed with the private
key of the client.

Change Permissions When a client wishes to grant read permissions of a KNode to another client,
the client simply adds the other client’s public key to the list of readers, and adds the encryption of
the AES key of the KNode to the reader list. If the KNode represents a directory, this permission
change is recursively done to all items in the directory.

In order to revoke a client’s permission of a KNode and guarantee that the client will not be able
to view or modify the KNode once their permission has been revoked, it is necessary to change
the secret, key, and write secret of that KNode. This is equivalent to deleting the KNode and
creating a new KNode with the same contents and the appropriate permission lists, so no method
for removing is explicitly specified.

1.4 API and Usage

In order for a user to interact with the application, KBox provides its own shell. The KBox shell supports a
number of unix operations to allow the user to efficiently navigate, view, and modify the files represented
by the existing kNodes. The kBox shell also supports commands to load files from the local filesystem
to the server, and to store local files from the server.

The user can initialize the KBox shell by calling KBox in the command line. The user must specify
the host and port of the file server, as well as the location of a file corresponding to the user’s root
KNode-file. The application pulls the root node, and then recursively populates it, giving the user access
to the full filesystem for which they have permission.

Once initialized, the user can navigate the filesystem using pwd and cd. Both of these work identically
to the identically name unix commands. The KBox shell also supports a number of other unix com-
mands. The user can view the contents of a directory with ls and the contents of a file with cat, which
both take a valid path in the virtual filesystem as an arguent. The user can also make modifications to
the files existing on the server using mkdir, rmdir, rm, cp, and mv.

The kBox shell also provides several commands not found in unix. The command changeperms al-
lows the user to remotely change write permissions on a file, provided the user has write permissions.
changeperms takes as arguments a path to the file to be modified, whether the permissions are to be
added or removed, whether the read or write permissions are to be changed, and the list of new permis-
sions. Since the permissions themselves are public keys, the list of new permissions is specified by the
path to a local file containing the public keys.
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The command down allows the user to move the contents of a specified remote file to a local file. In
the case where file is a directory, this is just the representation of the corresponding kNode.

Finally, the command mkfile allows a user to add a local file or directory to the server. mkfile takes
as arguments a path in the tree of kNodes and the path to a local file and an optional “remote” flag.
If the flag is not set, then mkfile will just encrypt the local file and push it to the server. If the flag
is set, then mkfile will attempt to parse the local file as a kNode-file into a new kNode. Much like in
initialization, the server then attempts to pull and populate the kNode and add it to the local filetree.

2 Security Guarantees

In analyzing the security of this design, we consider a number of different vectors: a malicious KBox
user, an attacker with server access, and an attacker who can intercept packets from the server. For
each of these threats, we must consider both the case where the server is trusted and the case where the
server is untrusted. Finally, we must consider an attack by a malicious server.

2.1 Kbox User

First consider the simple case in which a malicious user wants to read from a file which should be
inaccessible. Recall that read access is granted by putting a user’s public key in the list of readers for
a KNode and putting the encryption of the AES key under the user’s public key in the reader list. In
order to get the AES key necessary to decrypt the file, then, a user without write permission would
have to invert another user’s public key encryption scheme, a cryptographically difficult task. So KBox
guarantees that users without read access will not be able to view the plaintext contents of the file.
Furthermore, for a user without access to the parent directory of a file, it will difficult to know that a
file with a particular name even exists on the server.

In the case of a trustworthy server, the guarantee for write protection is equivalent, since a user
without write permissions would have to invert another user’s public key encryption scheme in order to
recover the write secret. So in the case of a trusted server, KBox guarantees that a users cannot modify
or remove any files without write permissions. However, an untrusted server may leak write permissions,
or just ignore the write-request protocol altogether. In this situation, a malicious user with read access
to a directory may modify the contents of that directory arbitrarily. Like before, it would be difficult for
a malicious user without read access to ascertain whether or not a particular file exists on the server.
Finally, a modification or removal of a file by a malicious user will break the verification of a signature
file, providing valid users with evidence of tampering.

2.2 Server Access

Suppose an attacker is able to gain access to the server hosting the KNode and signature files. Such an
attacker would know the names of all files existing on the server. Since all the decryption is done client
side, such an attacker would only have access to the encrypted contents of each file, and gaining the
plaintext contents would be cryptographically hard. Furthermore, since storage is flat on the server this
attacker would not be able to determine any information even about the structure of the filesystem.

In the case of a trustworthy server, modification require proof of write access so the guarantee is
the same as that for a malicious user. In the case of an untrusted server, the attacker may be able to
modify or delete any files, including the signature files. However, modification of either a KNode file or
a signature file will give valid users evidence of corruption. In order for this attacker to overcome this,
the attacker would have to spoof the signature file, which requires the true name of the file. Hence, the
attacker would have to determine secret for the file and invert the hash function which computes the
file’s name on the server - this is highly unlikely.

2.3 Network Access

Suppose an attacker is able to gain access not only to the server, but is also able to sniff packets being sent
from and received by the server. Since a user’s root KNode is populated whenever that user connects,
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one might worry that the attacker would be able to glean the file structure from the pattern of requests
sent. Such an attack would give the attacker information about what files on the server were associated
with a particular user’s filetree. However, since the attacker does not know how populate actually fills
the file tree, the attacker could only determine possible topological ordering on these files rather than
their true structure. This knowledge would not allow an attacker to get any information regarding the
contents of the files. However, an attacker seeking to do maximal damage may be able to target root
nodes more easily. Although it was not implemented, a possible solution is to create dummy roots.

2.4 Malicious Server

At first glance, it might seem like a malicious server could do a fair amount of damage. However, a
malicious server would only be able to access the stored encrypted files and be able to listen to requests
from users. In other words, a malicious server is no more powerful than an attacker with server and
network access, and hence all guarantees from the previous section carry over: a malicious server could
not read plaintext from the stored files, modify the files without alerting the users to corruption, and
can only gain minimal information about the file structure.

3 Use Cases and Performance

3.1 Performance Tradeoffs

While loading, the client loads all directories that the user can access immediately and lazily loads
files when the user requests to view or download them. The first decision results in more time spent
initializing but allows instantaneous movement through directories after it is loaded, the second requires
more time to load files but the alternative, loading all files at start up, would result in prohibitively long
initialization time and would use too much memory.

While adding or modifying a file we must encrypt and push only files to the server: the contents of the
file itself and the knode corresponding to the directory that the file is contained in. This means that the
only delays are encrypting and scping time. The first is unavoidable in any encrypted system and ours
is fast due to the use of assymmetric key encryption for files. The second is minimial because knodes
are generally small, containing only the names of the contents along with metadata and encryption
information.

3.2 Use Case Timing

Our first test case involved uploading a large file to the server and then downloading it. To isolate the
performance of KBox, we compared it to using SCP to transfer the files and ran both the server and
client on the same machine to remove network effects. The upload time for our system includes reading
from disk, generating keys and sending to the server. The download time includes making the request,
waiting for the download, and unencrypting, but does not include initializing the system. Results are
presented in in Figure 2, averages are across 50 trials. We can see that our systems performance is slower
than SCP, but not by much. Additionally, it is capable of handling large files.

System File Size Upload Avg Upload Ratio Download Avg Download Ratio
scp 179 MB 2.36 s 1 2.65 s 1

KBox 179 MB 6.53 s 2.76 5.75 s 2.16
scp 360 MB 4.47 s 1 4.99 s 1

KBox 360 MB 11.37 s 2.54 11.07 s 2.22
scp 502 MB 6.58 s 1 7.23 s 1

KBox 502 MB 17.25 s 2.62 16.44 s 2.27

Figure 2: Timing data for upload and download of single large file. SCP vs KBox.

Our second test demonstrated a particularly interesting aspect of our design. It involved a simulation
of someone storing a set of documents. In this case, we uploaded a folder containing 131 mp3 files
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totaling 504 MB. scp uploads this folder in 7.49 s while kbox is slower, taking 102.1 s. However, once
we uploaded, we could initialize our system in only .93 s which then allows us to navigate through the
folder and then select a song to download, which for a 6 MB file takes only 0.50 s. This means that while
there is a reasonable delay to upload large folders, once they are uploaded the system can quickly open,
move through, and download items from them.

4 Further Work

We designed a challenge protocol for the clients to prove that they had write access in order to prevent
unauthorized users from writing to a file. However, in the way in which we attempted to implement this
protocol, we experienced race condtions which we not able to resolve without introducing a large amount
of latency. In the future, KBox should be modified to guarantee both write protection and efficiency.

Additionally, scp is considerably more efficient when transferring batches of files, rather than trans-
ferring the files individually. This improvement could be integrate into the KBox system by storing
multiple KNode files in a temporary batch folder and using a single call to scp to transfer them all.

Another possible improvement to our system could include an expansion of the idea of lazily fetching
the KNode-files. In our current implementation, directories are populated recursively. Alternatively, we
could optimize the depth of the tree to which we pull initially depending on the experienced latency.

5 Conclusion

KBox allows users to securely store their file on an untrusted remote server with confidence that their
files may not be modified without detection. A notable property is that a malicious server has no more
power to corrupt or steal data than a malicious user.
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