
Progressive Authentication in iOS

Genghis Chau, Denis Plotnikov, Edwin Zhang

December 12th, 2014

1 Overview

In today’s increasingly mobile-centric world, more people are beginning to use their smart-
phones for important tasks. This means that many applications will need increased security
in order to prevent any unauthorized access. Especially since applications are often always
logged in, a careless user who leaves his or her phone unlocked is vulnerable to having po-
tentially malicious users easily access sensitive information in apps like mailing or banking
applications. In order to counter this on the iOS platform, we build a framework that al-
lows developers to use per-app authentication. We tackle this problem from the developer’s
perspective, as OS-level modifications are much more difficult due to iOS source code being
unavailable for analysis. Along with the framework, we complement the system with addi-
tional authentication methods, including a server that allows for using one-time passcodes to
log into applications. Finally, we discuss further extensions to our work, and their security
implications.

2 Background

2.1 Design

Our contribution is providing an iOS framework for developers to use in order to force
users to reauthenticate when they browse away from the application. This prevents mali-
cious attackers from having access to all applications if they are able to get past the phone
lock. Currently, a number of authentication schemes are available for use in our framework,
including an alphanumeric password, TouchID, Android-style lock patterns, and one-time
passcodes. We also provide an Django server that will allow users to generate the one-time
passcodes to log into the application. This gives users the ability to use passcodes resistant to
observation, as well as allow authorized users (i.e. friends) to access the application without
having to reveal his or her real password.

2.2 Threat Model

Our system operates under the assumption that the primary attacker will not be able to
compromise the iOS operating system, and cannot tamper with the hardware. However, the

1



reality is that some attackers may have these capabilities, and we address how our system
can be modified to protect against such attackers in potential further work. Our system does
directly address attackers who can gain possession of a device at any time, and can employ
any other tactic aside from the ones addressed above.

We also provide a web server that allows for the generation of time-based one-time pass-
words. We analyze the security of this server by looking at the potential damage an attacker
can do, assuming he or she can compromise the server and access any information stored on
it.

2.3 Code & Notes

The code for our iOS application (which includes an example application that employs our
framework) can be found on Github, and the code for our Django one-time passcode server
can also be found in our repository. (Note that “Github” and “our repository” are links.)

We note that due to an inability to acquire an iOS Developer’s License, the iOS code has
been tested exclusively on an emulator. While this allowed us to test most of the functional-
ity, some of the hardware-based features (for example, the TouchID authentication method),
may need further testing. We also note that the Django server should be deployed with an
appropriate proxy and signed certificates to run on HTTPS. This prevents potential man-
in-the-middle attacks and secures data transmission, but since this functionality lies outside
of the capabilities of Django, we do not address it in our code. A security policy like one
described in ForceHTTPS would also be beneficial.

3 Implementation

3.1 iOS Framework

We implemented a framework to allow app developers to import the framework into their
app and set up progressive authentication on the app. The types of authentication the
framework supports are passwords, TouchID (although it is not tested, due to not having a
Developer’s License), pattern (similar to the Android unlock), and the one-time passcode.
After authentication is set, whenever the app opens, the user will be forced to authenticate
themselves. Too many incorrect guesses will close the app. Each subsequent incorrect guess
will close the app until the user enters the correct password. Whenever the user wants to
change their password, they first need to authenticate themselves by entering their old pass-
word again.

We also implemented a very basic app to demonstrate the integration with our framework.
The app prompts the user to select what kind of authentication they want, and then calls the
appropriate view controller to create the password and then shows them an authenticated
view, where the user has the ability to turning off authentication and resetting their pass-
word. To change authentication methods, the user needs to delete authentication, restart

2

https://github.com/edwinzg/iOSAuthentication
https://github.com/plotnic/cs_security


the app and then set the authentication method on app launch. However, this functionality
is completely on the app side and not related to our framework.

To integrate the framework, the developer needs to import “ProgressiveAuthentication.h”
and call [ProgressiveAuthentication sharedInstance] to initialize it. After that, they specify
what kind of authentications they want and then load the appropriate view controller to
create the password based on the authentication type. They do not, however, need to put
in code to launch the authentication view when the app opens, as the framework does that
automatically.

3.2 One-Time Passcodes

We also give users the ability to generate and use one-time passcodes, which provides users
with the option of having dynamic passwords at the cost of having a trusted server. Since
users will need to register an account with the server, the security of this scheme relies on
the strength of the password chosen on account creation. With the advent of password man-
agers, we advise users to utilize long randomly generated passcodes (to avoid easily-guessable
codes) and password managers to remember them.

After a user registers with our Django server, they can register any number of applica-
tions to use one-time passcodes, given that the applications utilize our iOS framework. The
application and server do not need to communicate with one another aside from a synchro-
nization action at application registration. When a user registers the application, the server
randomly generates a secret key (using Python’s urandom function) and encodes it in a QR
code, which the user scans using the application. (Alternatively, we also provide an optional
API to get a new key from the app itself.) This provides a shared secret key between the
application and the server. The QR code is given a random file name on the server, and is
deleted on the first GET request to it. This will reasonably prevent attackers from trying to
guess QR code image names and extracting secret keys - if an attacker somehow manages
to guess a file name before the user loads the image, the user will not see the QR code (as
it has been deleted). While our version of the server does not currently deal with potential
race conditions when the attacker and user access the QR code nearly simultaneously, we
expect this case to be rare, and can also employ file locking to prevent this.

After this initial synchronization step, the secret key is stored in a server database, but
encrypted using AES with the user’s password, which the user must enter whenever an ap-
plication is registered, or a new disposable key is generated. Again, we expect password
managers to improve the user experience with this scheme, and this prevents any plaintext
sensitive data to be stored persistently on the server. Since passwords are hashed with salts
and app-level secret keys are encrypted using the user’s password, an attacker who com-
promises the server and looks through the databases should not be able to figure out users’
passwords nor secret keys.

The actual disposable passcode generation is done by using time-based one-time passcode
generation algorithms. Here, we use HMAC-SHA512 to generate a code using the Unix time

3



(divided by 60, to represent time steps of a minute) and the secret key (decrypted with
the user password, which the user must enter). We represent the result from the HMAC
algorithm in hexadecimal, take the last byte as an offset, and use the next 6 letters as the
disposable passcode. Users can then use this passcode in the application to authenticate
themselves. This is similar to the algorithm described in RFC 42261. This algorithm is
also replicated in the application framework, allowing the application to generate the same
disposable key to verify user input.

From our use of Django, our web server is safe against vulnerabilities such as XSS and CSRF,
preventing attackers from injecting malicious code or tricking users into sending undesired
requests. We also employed password hashing and AES encryption as described earlier, so
that no plaintext secrets are stored persistently and attackers who have compromised the
server cannot learn anything from databases (although they could still wait for users to enter
in their passwords manually and steal them then). We also chose to use HMAC as it allows
us to generate secure passcodes given that the attacker is unable to determine the secret key.

4 Conclusion

Because iOS does not support operating-level modifications to improve application security,
we created a framework for developers to use that would address the problem. By giving
developers an interface to implement progressive authentication, we hope that more sensitive
applications will employ it and provide the additional layer of security for its users. Creating
a server to issue disposable passcodes should also allow security-focused users to better
secure access to their applications, as well as allow friends or family to access applications
temporarily without needing to reveal the main passcode. We also provide the foundation
for further improvements in iOS application security, described in the next section.

4.1 Further Work

An important extension that we can use progressive authentication for is encryption of data
using a user’s password. In order to prevent against any attackers that might have compro-
mised iOS (for example, by jailbreaking the phone), applications can use the user’s password
to encrypt any data that is stored persistently, as well as any data stored in iCloud. This
also prevents attackers who have compromised a user’s iCloud account from extracting all
information stored there - any attacker who tries to do this would be presented with the
authentication screen, as the iCloud data is encrypted.

Additionally, the developer still has to do a some work in terms of figuring out what kind of
view controller is needed for password creation. To fix this, we could create a global func-
tion that only needs the authentication type and launches the appropriate view controller to
create the password, instead of forcing the developer to do this. However, we did not have
time to implement this.

1[RFC4226] M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., and O. Ranen, ”HOTP: An HMAC-
Based One-Time Password Algorithm”, RFC 4226, December 2005.

4



In addition, our framework currently stores some sensitive information (for example, token
generation secret keys) on the phone, which is not ideal (as an attacker can look at persis-
tent data). To help with this, we can instead store this information using iCloud’s Keychain,
which is designed to store sensitive information. While we were not able to implement this in
this version of the framework, modifications should not be difficult. Additionally, the secret
key used for the one-time passcode is not encrypted when it is stored on the device, so if a
user were to figure out the secret key, it would be easy for them to generate valid one-time
passcodes once they figure out our algorithm. This could be fixed by encrypting the secret
key when storing it and then decrypting the key upon retrieval.

Other additional improvements to the framework that we planned to implement, but were
not able to do so in time, include revoking secret keys (which could be done by giving an
authenticated user the ability to delete the secret key), and allowing for user profiles, to
allow multiple users to use differing secret keys on the same application.

5


	Overview
	Background
	Design
	Threat Model
	Code & Notes

	Implementation
	iOS Framework
	One-Time Passcodes

	Conclusion
	Further Work


