6.858 Final Project

Changping Chen, Xinyue Deng, Xiaomin Wang
ccp0101, dxy0420, xiaominw

Introduction

In recent years we have seen an increasing number of man in the middle (MITM) attacks from
sophisticated attackers who have access to browser-trusted certificate authorities. An
example of this is state actors that can target few activists to monitor their traffic. Such
targeted attacks are likely go unnoticed. Our goal is to uncover such attacks by comparing
server certificate with the one users have received on their first visit, assuming their first visit
is over a secure, trusted network.

As a broad overview, we store server certificate while users access websites. When MITM
attack occurs, the certificate is bound to change and we can alert users if that happens. Our
implementation has to split our program into two parts, a chrome App and a chrome
extension. This is to bypass some security restrictions imposed on third party developers.
When a user visits a website, chrome notifies our extension about a pending request. Our
extension forwards the URL to our app, which then initiates a TLS handshake to retrieve
server certificate. Then it checks for changes and notifies our extension if the certificate has
changed. Then our extension can present this information to users through extension UlL.

Assumptions

1. Users are aware of basic security concepts

2. Users want to avoid MITM without any noticeable penalty on browsing experience

3. MITM attacks against a website could only be in effect for a short period of time in the
entire course of user’s interaction with a website

4. Attackers are sophisticated: they can compromise a certificate authority, either legally
(state actors) or illegally (online accounts / credit card stealers)

5. No modification required from server administrators, a.k.a. 100% compatibility

6. Our applications (browser, extensions, and more) are secure

Our ideal users are security-sensitive users, e.g. activist, journalists and political dissidents.
They fall into the categories of users that generally have some security knowledge and are
very active in seeking ways to protect their internet privacy.

The Open Web Application Security Project (OWASP) has excellent resource on certificate
pinning’. It has a discussion on what to pin, public key or certificate. We believe in ideal case,
change in public key should carry more weight on determining if MITM has likely happened.
However, in our prototype with limited time, we have decided to pin on certificate issuers from

' https://www.owasp.org/index.php/Certificate and Public Key Pinning



https://www.google.com/url?q=https%3A%2F%2Fwww.owasp.org%2Findex.php%2FCertificate_and_Public_Key_Pinning&sa=D&sntz=1&usg=AFQjCNF_k2AX0qx5s87A5lqfT9s1DhzImw

user’s first visit, since we believe that the attackers are unlikely to compromise the exact
intermediate CA that issued the legitimate certificate.

Implementation

The broad idea of our implementation is to retrieve certificate with TLS handshake in
Javascript. For security reasons, Chrome does not expose an API that allows us to tap into its
TLS-layer informations. To overcome the restrictions, we only partially implemented TLS
handshake protocol, specifically the construction of initial “Client Hello” and parsing of “Server
Certificate”. By overlaying our TLS implementation on built-in API “chrome. sockets.tcp”, we
can obtain server certificate with minimal latency.

Our existing implementation has a few design flaws. Certainly it is unable to interrupt a
connection until MITM. Moreover, the default browser behavior is to reuse a negotiated TLS
session in many TCP connections to reduce overhead. However, the extra TCP connections
initiated by our program would negotiate a second TLS session immediately after, which
reveals our program in place. An adversary can exploit this information to selectively
man-in-the-middle the first TLS session, and directly forward the second session to the
legitimate server, thereby returning a different certificate. Performance-wise, additional TCP
connections might negatively impact the browser performance because it usually maintains a
connection pool of limited size.

In addition, we have implemented a few optimizations to delay and optionally block user
request if server certificate has changed. First, we block requests to previously invalidated
hosts, using “blocking” option in “chrome .webRequest”. We also implemented a light-weight
HTTP server within our Chrome app, and redirect non-embedded URLs to our server, e.g.
‘http://localhost:port/validate?url=http://www.facebook.com”. Our server waits
until website certificate is validated and redirect user back to the original website using HTTP
status code 302 Moved Temporarily. If the website certificate has changed, we respond
with an error.

These optimizations allow us to have some control over a user’s network flow. However, in
practise, it’s difficult to implement these features correctly, without disrupting user’'s
experience, such as Same-Origin policies that would be violated when an embedded secure
resource is redirected over an insecure channel. We have disabled our optimizations for now.

To install, enable Developer Mode in Chrome Extensions page. Drag the app and ext folders
from our project, onto the page separately. Then a user can click on the extension icon to
view verification results of all secure websites accessed in the current tab.

Alternative Implementation

We have considered implementing a Socks5 proxy in a Chrome Packaged App and parse
TLS on all network flow. It’s similar to inspecting network flows with Wireshark, but with the
option to modify and drop connections. This does not send extra network traffic, so it mitigates



the issue with existing implementation that adversaries can fool our program. With
“chrome.proxy” API, we could force to proxy all secure traffic via our program. However one
caveat here is that we need to implement a simple to use interface by which users can specify
upstream proxies, such as Tor, and a bad implementation in upstream proxy interaction can
reveal user identity.

We believe that our applications if deployed by many could reveal broader issues with
traditional PKI. If our users represent a substantial sample size of entire Internet users, in
theory we could attempt to include more risk heuristics beyond the “I trust you therefore | trust
him” approach of PKI. However, we do not have enough sample size to actually carry out our
ideas.

Future Work

We have built a database to store certificates uploaded by users. Part of the database can be
found at http://ccp0101.scripts.mit.edu/6858/. What we would like to explore more is Web of
Trust with majority rule. Given the certificate records gathered from all over the world, we may
be able to answer questions such as “is this certificate and public key that | received from
BOA.com the same from what others received”. We can also do things like identify public WiFi
with paywall redirection (airport, hotel, cafe, etc.) or the network entity behind MITM attacks
(an ISP, company, individual, etc.). We can even gauge the impact of compromising a
particular CA, or detect and provide evidence of rogue CAs.

Conclusion

We have implemented a prototype application for uncovering sophisticated MITM attacks and
detecting rogue CAs for Chrome browser. It has the advantage of being lightweight,
informative, and simple to install via Chrome Web Store. The shortcomings are unable to
prevent attack and may be noticed by attackers.


http://www.google.com/url?q=http%3A%2F%2Fccp0101.scripts.mit.edu%2F6858%2F&sa=D&sntz=1&usg=AFQjCNFXClaS2WVb_piy15txmUTFplil6Q

