
friend.me: A private social networking webapp

Alin Tomescu
alinush@mit.edu

Prashant Vasudevan
prashvas@mit.edu

Sachin Shinde
shinde@mit.edu

December 12, 2014

Abstract

We design and implement friend.me, a web application for online social networking that provides strong guar-
antees about user data confidentiality and integrity on the untrusted server. We use the Meteor framework to
implement the web application due to its clean separation of code and data. We use ideas from Frientegrity[3]
in the design of friend.me, but we achieve weaker security guarantees in our implementation. We design a secure
access revocation scheme that offers some degree of forward secrecy for user data: Alice’s removed friends are
cryptographically denied access to Alice’s new content, such as pictures and posts.

1 Introduction

friend.me is an online social networking web application similar to Facebook[1]. friend.me offers a subset of Facebook
features while preserving user data confidentiality and integrity on the server. Users use their browser to access the
friend.me service, exposed as a web application at https://friend.me. The browser fetches client-side code (CSS,
HTML and JavaScript), authenticated by an in-browser extension (implemented in previous work [7]) so as to prevent
a malicious friend.me server from serving malicious client-side code that leaks user credentials. The client-side code
is verified independently and, as a result, is trusted by the user.

2 Threat model

2.1 Untrusted friend.me server

The friend.me server is untrusted. We only rely on the server for storing encrypted and authenticated data in a
database. In that sense, the server can mount DoS attacks, but we believe this to be a non-problem, because such
behaviour would go against the financial incentives of a service provider. We do not trust the server with users’
encryption keys. Such keys are never sent to the server. The server can attempt to create ciphertexts, tamper with
ciphertexts, delete ciphertexts or replay old ciphertexts. The server can attempt to replay old content to a user.

2.2 Untrusted non-friends

The friend.me users themselves can attempt to access data they do not have access to, such as: profiles of non-friends,
pictures of non-friends, conversations they are not part of, posts destined to a group they are not part of, etc. In that
sense, with respect to a user u and some content c of u there exists a set of untrusted users s that are cryptographically
denied access to content c by friend.me. Note that friends, or users which are given access to content, are trusted
not to give away encryption keys for that content to the server.

2.3 Trusted friends

Friends of a user Alice are trusted by Alice to correctly execute the friend.me protocol. More on this in later sections
(verifying hashes on shared content such as conversations, signing hashes on Merkle trees and hash chains).

3 Trusted computing base

A friend.me user has to trust:

1. The friend.me client-side code, to not leak secrets to the server or to other parties outside the browser.

1



2. The browser’s JavaScript engine, to correctly execute and enforce browser policies. For instance, the
browser cannot allow other webpages to read friend.me JavaScript state, like secret keys (i.e. same origin
policy has to be enforced).

3. The Meteor web framework, to cleanly separate server code from client code. In one extreme example,
suppose Meteor caches local client-side JavaScript variables on the server and hence leaks secret keys stored in
those variables. Also, Meteor is trusted to correctly compile client-side code and not insert malicious statements
(like sending keys over to an adversary).

4. The JavaScript libraries used in the client-side code, such as encryption libraries. Crypto libraries are
trusted to be correctly implemented and side-channel attack-free. The source of randomness in JavaScript client
code is trusted. Other libraries like jQuery are trusted to be free of XSS attacks which would allow an attacker
to steal a user’s keys.

5. SSL/TLS, for authentication, secrecy and integrity of the communication channel. We need secrecy during
user authentication by the server which is done by traditional means (hashed passwords and session IDs). We
need integrity to prevent network attackers from tampering with in-flight ciphertexts and mounting DoS attacks
(such as modifying in-flight user messages and rendering them undecipherable later).

6. A source of time, such as an NTP server. The users need a reliable source of time to include in their
encrypted and authenticated content (such as photos or messages), so that they can later assess the freshness
of this content when they are presented back with it.

4 Security goals

4.1 Secrecy of user data

All user-generated content is encrypted and kept secret from the server, from non-friends, and from friends who are
not on the access control list (ACL) associated with that content.

friend.me protects users’ private data confidentiality using symmetric key encryption and offers chosen-ciphertext
attack (CCA) security for all ciphertexts.

friend.me also cryptographically prevents friends who have been given and later denied access to some user’s content
(like an album or a conversation) from reading future updates to that content (like new photos or new messages).
Similary, if Alice defriends Bob, then Bob loses the ability to decrypt any future content Alice might post (on her
wall or albums).

4.2 Integrity of user data

We want to prevent the server from assembling ciphertexts together and presenting arbitrary views of a user’s content
to a visitor. If the client-side code only verifies the integrity of individual ciphertexts but not the integrity of how
those ciphertexts are linked to one another, such arbitrary views of content will look authentic even though they are
not.

For example, we want to prevent a malicious web server from taking messages from one private conversation and
putting them in another conversations. We use Merkle Trees[4] on composite content such as photo albums and hash
chains on walls and conversations.

Note that we only provide per object integrity and do not provide integrity over all objects simultaneously: the
server can pick and choose which objects it presents to a user. An object can be a wall, an album or a conversation.

4.3 Freshness of user data

In the presence of persistent client-side storage (such as HTML5 local storage) we provide freshness guarantees for
walls, albums and conversations, as well as for the ACLs associated with them. As users create their own content
(albums) or contribute to shared content (walls, conversations), root hashes are remembered on the client and prevent
the server from showing old content to a user. However, the server can still refuse to present updates by other users

2



to Alice. For instance, given a conversation c = m1,m2, . . .mn of n messages that Alice is part of, the server can
only fork Alice by refusing to present all messages mk,mk+1 . . .mn. If Alice then posts a new (k+ 1)th message after
being forked by the server, then the server can never show messages mk+1 . . .mn to Alice or she will detect that she’s
been forked by noticing that her (k + 1)th message is not cryptographically linked to mk+1.

Note that freshness guarantees cannot be provided without client-storage unless the user is presented with some-
thing he can manually verify. Thus, if a user clears his HTML5 local storage then the server can present any version
of an object to the user.

5 Design

We implemented friend.me as a Meteor 1.0 web application using JavaScript and the Stanford JavaScript Crypto
Library (SJCL), ellipticjs, and CryptoJS.

5.1 Users and keys

Since users need to encrypt their content, share it with their friends and possibly revoke some of their friends’ access,
this implies a user will have more than one cryptographic key, which means these extra keys will have to be encrypted
and authenticated on the server.

When a user Alice signs up, she chooses her password and that password is never sent to the server. The server
only gets a bcrypt hash that Meteor uses as a user authentication token. When Alice logs in, the JavaScript client
code derives a symmetric masterKey from her password as masterKey = PBKDF2(password, salt, iterations),
where the salt is stored on the server. The masterKey is used to encrypt and authenticate an asymmetric key pair
(ED25519 in our case) denoted by asymKeyPair. Alice will need this keypair for signing certain operations.

To befriend Bob, Alice sends him a friend request that she signs. This is to prevent controversial providers like
LinkedIn which apparently send friend requests on behalf of their users but without their users’ knowledge or ap-
proval. Also, Alice obtains a shared symmetric friendKey with Bob after passing a shared key obtained from Elliptic
Curve Di ffie-Hellman (ECDH) through a key derivation function (KDF). We assume Alice and Bob have confirmed
each other’s public keys in an out-of-band fashion.

When Bob accepts the requests, he obtains the same symmetric friendKey after performing the ECDH key ex-
change and applying the same KDF to the shared ECDH key.

5.2 ACLs

The friendKeys could be used to share content between Alice and Bob but that would be very inefficient: Alice
would have to encrypt her content (many albums, wall posts, conversations, etc.) for all of her friends each time she
friends somebody and each time she creates new content.

Instead, each object (wall, album, conversation) has a symmetric contentKey generated for it by the owner of
the object, and Access Control List (ACL) trees (similar to the ones used in Frientegrity[3]) are used to provide
sharers access to an object’s contentKey.

If Alice defriends Bob, then a new contentKey is generated for each object Alice owned and shared with Bob,
so as to cryptographically prevent Bob from reading future updates to that object (such as viewing new pictures in
an album). This new contentKey is stored in the ACL tree’s root, and the path from Bob to the root is encrypted
under different keys such that the new key becomes inaccessible for him. Bob proceeds identically with respect to
Alice once he is defriended.

ACL trees are ”Merkelized” for integrity and their root hash is included in each object update operation, to prevent
the server from presenting an older ACL with a newer piece of content. For instance, if Alice posts a wall post to
Bob, then she will also include the root hash of the ACL tree in her signed wall post so that users who post other
messages after her are guaranteed to pick up the right ACL version.

3



5.3 Hash chains

We use hash chains to provide integrity and freshness for walls and conversations. A conversation is a chain of quacks
(we use this as a pseudonym for ”messages” in a conversation and ”wall posts” in a wall). Each quack contains a
signature on its hash and on the previous quack. Thus, all quacks form a hash chain ending in the last quack. The
first quack uses the conversation itself as the previous quack, thereby binding a quack chain to its conversation. Each
conversation contains a unique client-generated ID so that quack chains bound to seemingly identical conversations
(same owner and title) cannot be swapped between each other.

When a conversation is started by its owner, the owner posts the initial quack (i.e. the first message in the conver-
sation), signing the conversation and the quack and binding them together. At this point, the owner computes the
trusted hash of the conversation as the hash of the last quack and can verify that new messages posted by other users
link back to this quack, upgrading his trusted hash to the latest one. Note that the hash of the last quack depends
on the hash of all the quacks before it.

When they first access a conversation, users who are on the conversation’s ACL will have to get the hash of the
first quack from the server, verify it, and then verify that the rest of the quacks link back to this hash. Then they
can upgrade their trusted hash to the latest one and use this trusted hash for verifying new updates. Note that the
server can choose to not present the last k quacks in the conversation to a user Bob, but if Bob posts a new quack,
thereby forking the hash chain, the server can never present those last k quacks to Bob as they will not verify against
Bob’s latest quack.

5.4 Merkle trees

For albums, we want to prevent the server not only from modifying individual pictures, which is easily achieved using
message authentication codes or authenticated encryption modes, but also from moving pictures in between albums
and from not presenting all pictures to a user.

We use Merkle trees for albums, as opposed to hash chains, because they make verification of an individual pic-
ture in an album of n pictures only O(log(n)) in cost. If we used a hash chain, we would’ve incurred an O(n) cost,
depending on where in the chain the picture is.

As opposed to walls and conversations, only owners can modify an album. As a result, they always have the
latest root hash of the album’s Merkle tree cached. The difficulty lies in updating the other user’s root hash for their
friends’ albums. Frientegrity solves this problem using history trees which allow users to collaboratively verify that
a new Merkle tree hash is linked to a previously trusted Merkle tree hash. We solve it by checking that the version
number has increased in the root of the tree. In our case, the complexity of history trees is unjustified in this simpler
scenario where only the trusted owner is updating the album.

Unfortunately, neither Merkle trees nor history trees solve the freshness problem: the server can always present
an older version of the tree to the album viewer than the version the owner has (but not older than what the viewing
user has cached locally).

6 Future work

• Comment threads, likes, friends of friends, and many other social networking features.

• Concurrency issues, both across clients of the same user and clients of different users.

7 Related work

7.1 Frientegrity

Frientegrity[3] is an existing framework for online social networking implemented as a Java client and server.
Frientegrity does not go the extra mile of implementing a web application and they do not deal with verification
of the client-side JavaScript Frientegrity code. This code would need to be authenticated so as to ensure it will not
leak a user’s secrets to an untrusted party.

4



7.2 Mylar

Mylar[7] is an existing framework for building secure web applications that stores all key material on the client,
making it safe to outsource encrypted user data to an untrusted server. However, it is unclear how Mylar would deal
with access revocation when a user Alice defriends Bob. friend.me’s goal is to cryptographically prevent Bob from
interacting with any new content Alice might post in the future.

7.3 CryptDB

CryptDB[6] is a database server that performs SQL queries over encrypted data by leveraging various encryption
schemes that allow computations on the ciphertext. However, CryptDB’s architecture relies on a proxy that rewrites
SQL queries received from a web application. Consequently, the proxy has to store key material which defeats our
goal of never allowing a key to leave the user’s trusted machine (see 4.1).

References

[1] Facebook. https://www.facebook.com. Accessed November 5th, 2014.

[2] Aris Anagnostopoulos, MichaelT. Goodrich, and Roberto Tamassia. Persistent authenticated dictionaries and
their applications. In GeorgeI. Davida and Yair Frankel, editors, Information Security, volume 2200 of Lecture
Notes in Computer Science, pages 379–393. Springer Berlin Heidelberg, 2001.

[3] Ariel J. Feldman, Aaron Blankstein, Michael J. Freedman, and Edward W. Felten. Social networking with
frientegrity: Privacy and integrity with an untrusted provider. In Proceedings of the 21st USENIX Conference on
Security Symposium, Security’12, pages 31–31, Berkeley, CA, USA, 2012. USENIX Association.

[4] R.C. Merkle. Method of providing digital signatures, January 5 1982. US Patent 4,309,569.

[5] Colin Percival. Stronger key derivation via sequential memory-hard functions, 2009.

[6] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb: Protecting con-
fidentiality with encrypted query processing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 85–100, New York, NY, USA, 2011. ACM.

[7] Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai Zeldovich, M. Frans Kaashoek, and Hari
Balakrishnan. Building web applications on top of encrypted data using mylar. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation, NSDI’14, pages 157–172, Berkeley, CA,
USA, 2014. USENIX Association.

5


