
Pretty Good Chat

Alex Grinman
agrinman@mit.edu

Philippe Schiff
pschiff@mit.edu

Jonathan Stoller
ystoller@mit.edu

1 Abstract

We present "Pretty Good Chat" (PGC), an iOS messaging app that lets users communicate securely
without requiring any trust in the server and with an increased level of identity privacy, while still
maintaining simple usability. The PGC app uses asymmetric key encyption, and provides a very
simple interface for users to exchange public keys in the app using QR codes. We also provide a
brief analysis of Telegram and TextSecure, two of the most popular "secure" messaging apps, and
a description of future work.

2 Motivation

Over the past few years, chat apps have exploded in popularity on the mobile platform. Recently,
due to frequently recurring news stories about data leaks and hacks, some companies have created
what they claim to be "secure" messaging apps. By the very nature of an internet messaging sys-
tem, all chat messages must pass through some central server that all chat clients must subscribe
to. However, herein lies the problem. The messaging server is a mysterious black box, whose se-
curity properties are difficult to ascertain. In fact, in the current landscape of mobile apps, most
backends are hosted on third-party services such as Amazon’s AWS, Heroku, Redhat’s OpenShift,
or some other Virtual Private Server (VPS). Hence, the server resides in an unknown location that
is assumed to always be trusted by app developers. In addition to trusting all the employees that
work for the app company, users must also implicitly trust the services that the app is in contact
with to not abuse their promise of security.

Our concern is that too much trust is being placed in the individuals and services that manage
the service and data. The attack vector that we are worried about is when an adversary has full
control of the messaging server. We can imagine a scenario in which a chat app company hires an
employee who is an adversary and is able to change essentially anything and everything in the server
application.

Many of these chat apps claim to be secure by having clients encrypt messages using the Diffie-
Hellman Key Exchange protocol (or something similar) to establish a symmetric key between the
two clients. The server, by definition, is a Man-In-The-Middle (MITM) in the communication path
between the clients during the key negotiation protocol. Thus, if the server is completely controlled
by an adversary, the protocol can be compromised and the server can decrypt all messages sent by
the clients, in a way which is undetectable to the clients unless they compare their symmetric keys
through a side channel.

3 The PGC App

In this section we will describe the PGC app design choices including public key exchange, key
management system, storing the private key securely, revoking the public key, and data syncing
across all iOS devices, and finally possible attacks on the app. We will also describe the structure
of the server and how it stores messages.

1



(a) Conversations UI (b) Messaging UI

Figure 1: App UI

3.1 Visual App Design
Figure 1 above shows the home screen of the app where the conversations are displayed, and the
messaging UI, which closely resembles the default text messaging UI in iOS.

3.2 First run
When a user first installs and opens PGC, the app generates a public/private key pair and asks the
user for a username. The username is used only for in-app purposes and is never used to identify
users. The identifying information sent to the server is a hash of the public key, known as the public
key fingerprint, which we consider to be a small amount of information about the user. Therefore,
the user’s identity is private to the chat server.

3.3 Exchanging Public Keys
To exchange public keys, two users meet in person and they both open the app. As shown in Figure
2(a), the PGC app generates a QR code representing the public-key of the user. Using the camera
in the app, both users scan each other’s public keys, after which the new contact information is
stored on the device. The contact information consists only of the username and the public-key.
The app maintains a "phonebook" of public key to username mappings. Now the user can open the
contact list, as shown in Figure 2(b), and start messaging the other user. Note that users only
have to meet in person once, unless they revoke their private keys (as explained in the next section).

3.4 Messaging
A user selects a friend to message from the contact list, as shown in Figure 2(b), and begins a
conversation. The plain text message object is encrypted with the recipient’s public key, and the
message is padded with random bits. Each plain text message object also contains a date. The
encrypted message is signed with the senders private key. Finally this payload that contains the
sender’s public key fingerprint, the recipient’s public key fingerprint, the encrypted message, and

2



(a) Conversations UI (b) Messaging UI

Figure 2: Key Exchange QR and Contact List

the signature is sent to the messaging server. The server’s storage of this payload is described in
section 3.8.

3.5 Key Management, Syncing Data with iCloud, Storing Messages
The private key is stored in the iOS keychain which is protected by both encryption and sandboxing.
Each app has its own keychain sandbox that other apps are prevented from accessing. Additionally
the keychain is encrypted using the user’s phone passcode. It is important to note that all new iOS
devices use TouchID which is an implicit passcode that the user cannot turn off, and must setup
before using the device. The keychain cannot be read at all without unlocking the device, and this
thus prevents both other apps on the device and outside adversaries from stealing the private key.
With iCloud Keychain turned on, the keychain is securely synced across all the devices that the
user enables for this feature. Therefore, if a phone is lost, stolen, or broken, the new device that a
user signs into with their iCloud credentials will be able to sync the private key (which is stored in
encrypted form, on a sandboxed iCloud storage space) and resume normal use.

The "phonebook" of public keys is also securely stored in the keychain in encrypted format, also
implicitly in the app sandbox. This means that outside sources or other third-party apps will not
be able to modify or even read the user’s public key contact list.

To improve efficiency, messages are stored on iCloud, but they are encrypted with the user’s pri-
vate key in order to make them unreadable to an outside user or even an Apple iCloud team employee.

Therefore, we have both security but also usability since even losing a phone doesn’t mean that
the user will have to re-exchange keys with all of their contacts.

3.6 Denial of Service Attack on PGC
We found only one plausible attack that PGC is vulnerable to: a denial of service attack in the form
of dropping messages. Since our adversarial model is the actual messaging server, it is very easy for

3



the server, at any random point, to drop a message and not store it in the database. While we argue
that the server cannot target which messages to drop, due to them all looking identical and being
encrypted, the server still may target a specific public key fingerprint to deny messages to. This is
not a very meaningful or strong attack, but it is something that is inherently possible in any system
where the server is completely controlled by an adversary for some amount of time.

3.7 Revoking Private Key and Generating New Keys
We provide a simple feature that will allow a user to revoke their private key if they fear it was
somehow stolen or exposed. This feature sends a "revoking message" to the entire contact list
of the user, which has a special parameter indicating that the contact should remove the user
from their contact list. The clever part of this feature is that even if the server was compromised
(independently of the private key being stolen), the server would still not be able to distinguish this
"revoking message" from any other message, because the payload sent to the server looks identical
to a regular message. Therefore the server could not drop this revoking message without dropping
all messages. After revoking messages are sent, the app will generate a new public/private key pair,
replacing the old one.

3.8 Server Storage Data
The server stores only the Message object, which has the following properties. An ’id’ for the row,
a ’to’ field representing the public key fingerprint of the recipient, a ’from’ field representing the
public key fingerprint of the sender, a message field containing the encrypted message (plain text
or revocation signal) with the recipient’s public key, a signature field containing the signature of
the encrypted message field with the sender’s private key, and a digest field representing a SHA-256
hash of the encrypted message. An example row is shown in Figure 3 below.

Figure 3: Sample Message Database Entry

4 Analysis of Telegram and TextSecure compared to PGC

In this section we compare PGC to two of the most popular "secure" chat applications.

4.1 Telegram
Telegram is a free messaging service similar to Whatsapp, that allows users to store content on the
cloud and sync information across multiple devices.
As far as security is concerned, users that do not trust the server (i.e. Telegram) are provided with
a method of communication that provides an excellent security guarantee without any dependence
on the server. This method of communication is called "Secret Chat", and is implemented as follows:

4



1. Let Bob (B) want to communicate with Alice (A). The end goal is for A and B to maintain
a secure channel in which information is encrypted using the Diffie-Hellman protocol.

2. All information exchanged between A and B is routed through the server. The communication
channels between the server and the users rely on the use of Diffie-Hellman as well. In order
to prevent a MITM attack on these channels, the initial key exchange is encrypted using the
public key of the server, which comes installed in the app. (The App Store / Google is assumed
to be secure, an assumption PGC makes as well.)

3. As stated above, the DH key exchange between A and B is also done via the server. Since
information sent to and from the server is encypted asymmetrically using the server’s public
key, we aren’t worried about third party adversaries. However, the server itself is in an excel-
lent position to launch a MITM attack between A and B, if it should desire to do so.
In order to prevent this from happening, users that set up a "Secret Chat" are each presented
with an "identicon" (a pixelated image). If the identicons are identical, the users can rest
assured that no MITM tampering was done by the server.

At first glance, Telegram seems to be an extremely secure alternative to PGC. However, after digging
slightly deeper, there remain three strong reasons to prefer PGC over Telegram:

1. Although the "Secret Chat" key exchange can indeed be done reliably, since the keys are stored
locally on the phone, every time the user switches or formats his phone a new key exchange
will need to be done. Needless to say, this is a considerable inconvenience for the user, who
will have to create new keys and examine the resulting identicon for every "Secret Chat" that
they previously had.
In PGC, keys are stored on the iOS Keychain as described earlier, which enables the user to
use the same key indefinitely, regardless of whether or not the phone is switched/formatted.

2. Telegram also requires knowing the contact information of the user, while PGC allows users
to maintain complete anonymity (our app only requires a username which the server never
receives).

3. The final issue worth mentioning is primarily one of convenience. In PGC, the key exchange
doesn’t require any significant user involvement (asides from a handy in app QR code scanner
for users to scan each other’s public keys). However, Telegram requires the user to manually
compare two images. If there is a subtle difference between the two images and the user fails
to observe the difference, a MITM attack may succeed. This risk does not exist in the context
of PGC.

4.2 TextSecure
TextSecure is an open source encrypted message application developed by OpenWhisper Systems
which claims to provide end-to-end encryption of messages. Both SMS messages and chats sent
over data networks can be encrypted using TextSecure. It also allows for interleaving of "secure"
messages with regular ones, where the "secure" ones have a lock icon suggesting that they were sent
securely using TextSecure. Group chats are also possible. Broadly, TextSecure’s protocol works as
follows:

1. Let Bob (B) want to communicate with Alice (A). B will initiate by contacting the TextSecure
Server S. First B registers his phone number, along with a few preferences, with S. B then
generates 100 "prekeys" which he then sends to S. These prekeys are signed key exchange
messages generated by B before any communication with anybody. Whenever a source wants
to initialize a communication with a destination, the source requests the destination’s next

5



prekey from the server. This way, the destination does not have to be online for the key
exchange to be performed. A goes through this registration as well.

2. B then requests A’s next prekey. It uses this prekey, along with A’s long term public key to
perform a DH key exchange. B uses this with his own key exchange half to generate a secret
key. Then he encrypts his message with this secret key. B then sends the encrypted message
to the S, who upon receipt does some verification and sends it on to A.

3. When A receives the message she can choose whether to respond. She now has all the necessary
information on her end to calculate the key exchange and communicate with B.

In addition, in order to allow verification of public keys, TextSecure, like Telegram, allows users to
generate QR codes representing their public keys and allows them to compare them.

While TextSecure seems to have a good security model there are a number of issues not addressed
in TextSecure which would give a user a good reason to use PGC instead:

1. The server is relied upon for storing the prekeys and public keys of each of its users. This is
a drawback for a number of reasons. First, the server is now a single point of failure. In PGC
if the server is compromised all that means is that messages might not be able to be sent. In
TextSecure however, if the server is compromised, an attacker M could do a number of things
to compromise messages. M could, for example, replace A’s keys with his own, thereby letting
B think that he is communicating with M . The only way for A and B to be sure that they
are talking to each other would be to use TextSecure’s QR generation and meet in person to
verify. In PGC this scenario is not possible since the server does not store any keys.

2. While TextSecure, unlike PGC, seems to allow for sending secure messaging without having to
meet in person, this is an illusion since any reliable verification needs to be done in person. In
addition, with PGC after meeting in person once there is no need to meet up again to ensure
scenario 1 has not happened since it is not possible in PGC.

3. Another attack that an attacker M can stage with TextSecure is to impersonate A by preemp-
tively setting up an account with her phone number since TextSecure uses phone numbers to
remotely identify users. B would request to communicate with A using her phone number but
would in effect be communicating with M . In PGC users are protected from this since the
users must exchange keys in person using their phones.

4. TextSecure’s registration process is also vulnerable to a MITM attack where an attacker M can
impersonate the server altogether and give B wrong information. In PGC this is not possible
since the users exchange keys through the QR codes and have no need to communicate over a
network to a server to exchange keys.

5. Other people 1 provide a concrete example of a similar attack on TextSecure. They describe
the following Unknown Key-Share Attack (UKS): M knows that A will want to communicate
with him. M then initiates a session using B’s public key. He can justify the different public
key by saying that he now has a new phone, or that he re-registered. If A now sends a message
to M , M can just forward the message to B who will think the message was sent from A.
In effect, B will think that A sent him a message when really A sent M a message. In PGC
there is no danger of this UKS attack since there is no way for M to trick B into believing a
message was sent from A since B will know that he never exchanged keys with A. In other
words, TextSecure allows for unsolicited messages by relying on the public keys stored on the
server. This is not a secure system, as is manifested by the described UKS attack.

1https://eprint.iacr.org/2014/904.pdf

6



5 Future Work

In this section be describes future changes and features that could be added to PGC.

5.1 Perfect Forward Secrecy
We consider the case of the private key being stolen as very unlikely. The users themselves are
not able to access it outside the app, and no other adversary will be able to either. However, it
is important to note that with the private key, the adversary could read any messages sent to the
owner of the private key. Eventually, we plan on adding a new feature that will bring Perfect Forward
Secrecy to PGC, which will use the public/private key pair to have clients agree on an ephemeral
session key to encrypt messages with.

5.2 Anonimity
Currently, PGC offers users a high level of anonymity. Nowhere on the server is user information
ever stored and an attacker that compromises the server cannot, from just looking at the server, see
who is using PGC nor see who is messaging whom. However, an attacker could in principle see where
messages are coming from and going to by looking at IP addresses or cell tower information. For
example, the attacker could deduce that a user or a number of users from a particular geographic
location communicates frequently with a user or users in another particular geographic location.
While this is not necessarily something that most secure chat app users are worried about it is
something that users do care about. Solving this problem would require different techniques, some
of which will be similar to how Tor is implemented. This adds a different dimension to the current
PGC implementation but could in the future be added to generate an even more anonynmous PGC.

5.3 Messaging UI Code Rewrite
In the current implementation the code that drives the chat UI (displaying message bubbles in the
conversation window) was written in HTML/CSS/JavaScript. The JavaScript also uses JQuery to
handle changes to the UI. This code can be presented in iOS using UIWebV iew. We have placed all
the HTML/CSS/JavaScript code in a single file called messages.html. In order to remove the risk
inherent in having the JavaScript make requests over the network we included all outside libraries
in the code itself instead of making a network request. In fact, we also prevent any web requests
from going in or out of the UIWebV iew natively. There aren’t currently any directly negative
consequences of this implementation, however, due to potential Javascript updates in the future and
the inherent flaws in the web security model, our next version of PGC would have the message text
be displayed using native Objective-C/Swift and not rely on HTML/CSS/JavaScript at all.

6 Conclusion

We believe that future security will be based on mobile technology. Backend servers are very mys-
terious to users, can change at the drop of a hat, and depend on a range of even more third-party
services. There is a lot of trust that users implicitly have by using other "secure" chat applications,
and we created an alternative. By utilizing the security of the iOS ecosystem like Keychain and
iCloud, we are able to securely store private keys that will be synced across all of users’ devices,
allowing users to have significantly less trust in and more privacy from a backend server.

Why do we trust an app more than a server? First apps are approved by store marketplaces,
so they must meet the bare bones security requirements. Second, the app is something that changes
far less and can easily be tested by security researchers by just analyzing outgoing and incoming

7



network requests. Additionally, we would publish the code as open source, and provide a signature of
the compiled package such that researchers can trust that the code is actually what a user downloads.

Our contribution is twofold. First, we developed PGC which is an alternative messaging app that
we believe provides better security and privacy than current chat apps on the market, while still
maintaining good usability by creating an easy to use, fast in-app public key exchange. The sec-
ond part is an analysis of Telegram and TextSecure, two of the current big players in secure chat
applications.

8


	Abstract
	Motivation
	The PGC App
	Visual App Design
	First run
	Exchanging Public Keys
	Messaging
	Key Management, Syncing Data with iCloud, Storing Messages
	Denial of Service Attack on PGC
	Revoking Private Key and Generating New Keys
	Server Storage Data

	Analysis of Telegram and TextSecure compared to PGC
	Telegram
	TextSecure

	Future Work
	Perfect Forward Secrecy
	Anonimity
	Messaging UI Code Rewrite

	Conclusion

