
Package Manager Security

Anish Athalye

aathalye@mit.edu

Rumen Hristov

rhristov@mit.edu

Tran Nguyen

viettran@mit.edu

Qui Nguyen

qui@mit.edu

Abstract

We analyze the security properties of package manage-

ment software. First, we examine many package man-

agers for basic security properties and we perform an

in-depth security audit for several chosen package man-

agers. Next, we construct and demonstrate an automated

end-to-end attack against CPAN, a popular package man-

ager for Perl. Finally, we make recommendations on how

to build more secure package management programs.

1 Introduction

Millions of people rely on package management pro-

grams to install new packages on their machines, keep

packages up-to-date, and manage library dependencies

for other programs. Both developers and regular users

invoke various package managers frequently, to install all

kinds of software and libraries on their systems. Given

that these package managers are responsible for manag-

ing the majority of the software and libraries running on

a system, it’s critical to the security of the system that

these package managers and the protocols that they use

are secure.

There are two basic types of package managers. Some

manage system-wide programs and libraries for operat-

ing systems, like APT for Debian-based Linux distribu-

tions and Homebrew for Mac OS X. Others manage li-

brary dependencies in a development environment, such

as pip for Python and CPAN for Perl.

Clearly, these package managers have a large security

impact. These programs are sometimes run with ambient

user privileges, and they are usually run with superuser

privileges, so they are an attractive target for attackers.

Libraries downloaded through package managers are of-

ten components of other software, amplifying the poten-

tial reach of malware. Therefore, it is critical that these

package managers correctly install and update packages,

against any attempted interference from attackers.

Our goal was to analyze potential weaknesses of pack-

age management programs in general, identify vulnera-

bilities, create automated tools to exploit these vulnera-

bilities, and recommend good security practices.

1.1 Threat Model

We analyze security properties of these package man-

agers in the presence of man-in-the-middle attackers. In

this model, an attacker may control the network that a

user is on or control a router between the user and pack-

age repository. In this position, an attacker can sniff the

user’s traffic, send packets to the user, and manipulate

traffic to and from the user. Given this threat model, we

will evaluate the ability of attackers to compromise ma-

chines running various package management programs.

Organization The rest of this paper is organized as

follows. In § 2, we discuss security properties of pack-

age managers and our methodology for analyzing tools.

In § 3, we present security flaws in CPAN, the package

manager for Perl, and in § 4, we take advantage of those

vulnerabilities to construct an automated end-to-end at-

tack against the package manager. In § 5, we discuss the

scope and impact of our attack, and in § 6, we make rec-

ommendations on how to design, build, and ship more

secure package management software. In § 7, we con-

clude the paper.

2 Analysis

We evaluated 28 different package management pro-

grams on a list of security criteria. The package man-

agers we investigated included both system-level pack-

age managers such as APT, yum, and Homebrew, and

development-level package managers like pip, cabal-

install, and CPAN.

2.1 Criteria

We analyzed three security properties in the context of

our threat model. These properties affect the security of

the packages downloaded through these package man-

agers, as well as the security of any downloaded meta-

data, such as information about package dependencies.

2.1.1 Communication Protocol

First, we considered the communication protocol that

each package manager uses. Using a secure and authen-

ticated protocol is necessary to ensure that downloaded

packages are not tampered with. Most package managers

use HTTP, or its secure version, HTTPS. For programs

that do use HTTPS, we investigated whether they follow

the protocol properly, by appropriately checking signa-

tures and rejecting self-signed certificates.

2.1.2 Integrity Checking

We also evaluated how each package manager checked

the integrity of downloads. A standard technique for

integrity checking is to include a checksum with each

downloaded file, and upon download, verifying that the

checksum matches. We found some package managers,

such as cabal-install for Haskell, do not support integrity

checking. Others, like EasyInstall for Python, only ver-

ify checksums if provided by the developer. Some tools,

such as CPAN, always require checksums.

2.1.3 Authenticity Checking

Integrity checking is not enough to guarantee that a

download can be trusted. Even if a package matches

its checksum, it could possibly contain malicious code.

This could happen with a man-in-the-middle attacker

who provides a checksum that matches a package that

is infected with malware. Therefore, another important

criterion is if and how a package manager ensures the

authenticity of a package.

The most common way to check authenticity is with

public-key cryptography. If it can be verified that a

checksum is signed with the private key of the maintain-

ers, then the file can be trusted. Some package managers

we researched do not check signatures; others always

check signatures; a few, such as CPAN, can optionally

be configured to do so.

2.2 Methodology

To evaluate these package managers on the criteria listed

above and identify specific attack vectors, we chose a

subset of them. We examined documentation and per-

formed detailed source code audits. We then explored

potential attacks in virtual machines, using Wireshark to

sniff the package manager traffic, and setting up our own

mirrors of package repositories. Once we verified that

an attack was possible from a malicious mirror, we could

then move to trying a man-in-the-middle attack.

3 Vulnerabilities

After our initial analysis of security criteria, we chose to

perform a more in-depth analysis of CPAN, the popular

Perl package manager that has over 140,000 Perl mod-

ules.

In brief, the architecture of the package manager

is as follows. There is a command line interface,

App::CPAN, for the module that interfaces with pack-

age mirrors, CPAN.pm. Optionally, the tool uses

Module::Signature to add cryptographic authentica-

tion checks to CPAN. All packages have CHECKSUM files

that are signed by the CPAN maintainers, and public keys

for the maintainers are added to the gpg keychain when

the signature module is installed. This tool makes calls

to the command line gpg application to actually perform

verification. Signature checking can be enabled by set-

ting the check_sigs parameter for CPAN. This is the

setting recommended by the author of CPAN [1].

Through packet inspection and source code audits, we

found vulnerabilities in the design of the signature check-

ing scheme in this tool.

We performed an in-depth source code audit of

Module::Signature [2], and we found several serious

issues related to verifying signatures. If needed to ver-

ify a signature, the tool automatically fetches keys from

a keyserver (by default, pool.sks-keyservers.net).

Normally, this is not a concern, but because of the way

the rest of the system works, this can lead to disas-

trous outcomes. The module uses the return value from

the gpg command line tool to verify a signature, which

makes it fairly difficult to check for trust rather than just

validity, an unfortunate design decision on the part of the

gpg designers. GPG only prints a warning to standard er-

ror if a signature is not trusted, so the module checks for

trust using a regular expression match on the text output

of gpg to stderr.

if ($output =~ /((?: +[\dA-F]{4}){10,})/) {

emit warning to stdout
}

Using a regular expression match is fragile and error-

prone, and Module::Signatureonly outputs a warning

to standard output if a signature is untrusted. The return

value from the check still indicates success. This is un-

fortunate, as it makes it incredibly difficult for a tool us-

ing the library to check for trust. In addition, because

automatic key download is enabled, a signature made

2

with an untrusted key will validate if the key has been

uploaded to a public keyserver.

The code for CPAN.pm [3] performs a signature check

by making a call to the signature module, but that mod-

ule does not check for trust, only for validity (given in

the return value). Even though CPAN.pm always checks

that checksums are signed, the check is ineffective. For

reference, the signature checking code from CPAN.pm is

shown below in reduced form:

my $rv = eval { Module::Signature::_verify($chk_file) };

if ($rv == Module::Signature::SIGNATURE_OK()) {
$CPAN::Frontend->myprint("Signature for $chk_file ok\n");

return $self->{SIG_STATUS} = "OK";
} else {

abort, notify user about invalid signature
}

The vulnerabilities that we found are serious design-

level vulnerabilities indicating a fundamental misunder-

standing between validity and trust.

4 Attack

In our threat model, we assume the attacker can be a

man-in-the-middle between a user and a package repos-

itory. Achieving a man-in-the-middle position was not

the primary focus of our attack, but we still tried several

different approaches.

If the user is on an unsecure network, then the at-

tacker can send a malicious DNS response to poison the

user’s DNS cache and direct all the user’s requests to

the attacker. We attempted to do this, but unfortunately,

the only hardware we had available were our personal

computers, so our malicious DNS responses were much

slower than responses from the real DNS server, so our

attack did not have a 100% success rate. We hypothesize

that the network cards on personal computers are not op-

timized for low latency. We believe that this method is

possible with higher performance hardware.

An attacker can also achieve a man-in-the-middle po-

sition by controlling a router to which the user is con-

nected. Because our primary goal was not a man-in-the-

middle attack, we ultimately decided to simulate a man-

in-the-middle position with a simpler approach. We set

up two machines: one acting as the user and the other as

a server. We rerouted all of the user’s requests to the real

CPAN mirror to our own server, simulating DNS poison-

ing.

Our malicious server acts as a malicious mirror of

CPAN. It receives requests for packages and dynamically

injects them with malware before returning them to the

client.

When our server receives a request for a package, it

first fetches the correct tar archive from the real CPAN

mirror. Then, it decompresses the package and inserts

malware as a test file. The CPAN tool automatically runs

all tests on install, so this ensures our malware will be

executed immediately on the victim’s machine. CPAN

also verifies a signed checksum, so we synthesize a new

checksum for the modified package and sign it with our

own PGP key. We uploaded this PGP key to public PGP

keyservers so that CPAN would fetch it when installing

our package.

Our malware executes with the privileges that

cpan install is invoked with. Often, CPAN packages

require root privileges during installation. This allows

our malware to run arbitrary code on the user’s machine

with root privileges. For demonstration purposes, we

wrote malware to erase the user’s file system. If desired,

we could have silently infected the users machine.

5 Evaluation

Even though we didn’t setup an active man in the middle

attack, we know that it is possible to do [4]. Considering

our thread model, it is fairly easy to add malicious code

to packages that the user is downloading. Most com-

monly, users do not look at the code that they download.

This makes the attack very hard to detect.

Some package managers run the code that they down-

load during installation. This was the case with CPAN,

which allowed us to destroy the user’s machine. Even if

they don’t run code or if they don’t run it with root priv-

ileges, the attack is very effective. The source code that

is installed might later be used for building applications,

and the malware of the attacker will be also part of them.

This creates huge security vulnerabilities, because the at-

tacker not only infects a single machine, but also all the

applications that are going to use it.

6 Recommendations

Based on our findings, we make several recommenda-

tions on designing, building, and distributing more se-

cure package management software.

6.1 Communication Protocol

We recommend that all package managers use a secure,

well-established communication protocol. One of the

reasons why our attack works is that we are able to sniff

and modify the traffic to and from the victim machine.

Our particular construction of the attack can be mitigated

if these package managers use secure protocol such as

HTTPS with correct certificate checking. Many package

managers including Maven, npm, and Homebrew have

slowly migrated to HTTPS. Forging SSL certificates is

not beyond the capabilities of state-level attackers, but it

is still a great first-layer defense against most attackers.

3

6.2 Bootstrapping

We recommend that all distributors of package managers

are careful with how they ship their package manager,

protecting against attacks on the distribution itself during

the initial download or bootstrapping phase. This can

include protecting the download of the package manager

itself and the download of any cryptographic keys. It is

bad practice to download public keys over an insecure

connection, because attackers could modify the keys to

later subvert the package installation process.

A good approach to distributing a package manager is

as follows. The package manager should come prepack-

aged with cryptographic keys, and the download itself

should be provided over an HTTPS connection with a

verified SSL certificate. This way, users can trust the

download.

6.3 Validity versus Trustworthiness

We recommend that great attention is paid to both in-

tegrity and authenticity checking of packages.

We found serious issues indicating a fundamental con-

fusion between validity versus trustworthiness. Many

package managers use signature schemes to verify the

authenticity of downloads, which is a great security prac-

tice. However, signatures that are only checked for va-

lidity as opposed to trustworthiness are only as good

as checksums! Checking a signature just for valid-

ity is almost useless in terms of providing authenticity

guarantees. This provides no protection against mali-

cious attackers, only offering protection against acciden-

tal packet corruption.

6.4 Design of Interfaces

We recommend that interfaces of critical security-related

components are designed carefully, and that a great deal

of attention is given to the interfaces between compo-

nents, being mindful of which component is responsible

for what. We found several serious design-related vul-

nerabilities in the tools that we examined. Implemen-

tation vulnerabilities are easier to fix – they are usually

small oversights, and a couple lines of code can patch

a security bug. Design-related vulnerabilities, however,

are incredibly difficult to fix while preserving compati-

bility with existing tools that rely on these insecure soft-

ware packages.

The most serious issue that we found was with

GnuPG. When verifying signatures, there are several sit-

uations that may need to be communicated with a client

program (or user):

{valid, invalid}×{untrusted, trusted}

The GnuPG command line program returns 0 (suc-

cess) for the situation (valid,∗), and it returns 1 (fail-

ure) for the situation (invalid,∗). Deciding on a re-

turn value is complicated, because of having to some-

how encode 4 possible results into a binary return value.

GnuPG makes the wrong decision in terms of this en-

coding. On their own, either validity or trustworthiness

do not mean much – either one can be forged by an at-

tacker. A better interface would return success only for

the case (valid, trusted) and return failure for the other

three cases. Right now, it seems that the only way to

check a signature for both validity and trust is to check

the return value from the gpg tool and examine what is

printed to stderr. This is not ideal even when humans

are interacting with the command line tool. It is incred-

ibly fragile to have programs perform string parsing of

output formatted for humans for security purposes, espe-

cially when attackers control part of the input.

This issue is exacerbated by the fact that the GPG key-

chain is shared between different applications that use it,

where any application can add public keys to the key-

chain. Often times, automatic key download is enabled,

making this issue even worse, because anyone can up-

load keys to public keyservers. Validity means almost

nothing in terms of security guarantees, and because of

the interface of the GnuPG command line tool, it is in-

credibly difficult for tools that depend on gpg to perform

the proper security check in a robust manner.

6.5 Testing

Some protocols are provably secure, but this doesn’t stop

implementation bugs to expose security vulnerabilities.

An important practice is to have good test coverage. This

is true for all software in general, and it is especially im-

portant for security-related packages. Tests should check

for correct behavior for situations where signatures and

checksums are correct, and tests should also check for

correct behavior for situations when signatures or check-

sums fail to validate.

For example, CPAN’s Module::Signature has tests

for their signature module, but it only contains test cases

with messages signed by a trusted key. Given better test

coverage, it might have been possible to catch the vul-

nerabilities that we exploited.

7 Conclusion

We analyzed security properties of package managers,

and we uncovered several design-level vulnerabilities.

To demonstrate the seriousness of these issues, we con-

structed an automated end-to-end attack tool against

CPAN, the popular package manager for Perl. Finally,

4

we made recommendations on how developers could de-

sign, implement, and ship more secure package man-

agers in the future.

References

[1] A. J. König, “CPAN::FirstTime.” http://search.cpan.org/

~andk/CPAN-2.05/lib/CPAN/FirstTime.pm, Apr. 2014.

[2] A. Tang, “module-signature.” https://github.com/audreyt/

module-signature, Feb. 2014. commit 02f7a91.

[3] “cpanpn.” https://github.com/andk/cpanpm, Apr. 2014.

commit 87d8281.

[4] M. Eriksson, “An example of a man-in-the-middle attack against

server authenticated ssl-sessions,” 2009.

[5] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A look in the

mirror: Attacks on package managers,” Conference on Computer

and Communications Security, 2008.

5

