
52 communicaTionS of The acm | february 2013 | vol. 56 | no. 2

practice
Doi:10.1145/2408776.2408792

 article development led by
 queue.acm.org

Open source security foundations
for mobile and embedded devices.

By RoBeRT n.m. WaTSon

a Decade of oS
access-control
extensibility

movement from multiuser computing
toward single-user devices with com-
plex application models. The transition
was facilitated by extensible access-con-
trol frameworks, which allow operating-
system kernels to be more easily adapt-
ed to new security requirements.

One such extensible kernel refer-
ence-monitor framework is the Trust-
edBSD MAC (Mandatory Access Con-
trol) Framework, developed beginning
in 2000 and shipped in the open source
FreeBSD operating system in 2003.
This article first describes the context
and challenges for access-control ex-
tensibility and high-level framework
design, then turns to practical expe-
rience deploying security policies in
several framework-based products, in-
cluding FreeBSD, nCircle appliances,
Juniper’s Junos, and Apple’s OS X and
iOS. While extensibility was key to each
of these projects, they motivated con-
siderable changes to the framework it-
self, so the article also explores how the
framework did (and did not) meet each
product’s requirements, and finally re-
flects on the continuing evolution of
operating-system security.

a Quiet Revolution in oS Design
Embedded and mobile operating sys-
tems have changed greatly in the past
20 years: devices have gained the CPU
power to run general-purpose operat-
ing systems; they have been placed in
ubiquitous networking environments;
they have needed to support mature
software stacks including third-party
applications; and they have found
themselves exposed to malicious ac-
tivity motivated by strong financial
incentives. Vendors built on exist-
ing operating systems—often open
source—to avoid creating them from
scratch. This provided mature applica-
tion frameworks and complex network
stacks, both areas of weakness for
then-contemporary “embedded oper-
ating systems.” One early example is
Juniper’s Junos, a version of FreeBSD
adapted for router control planes in
1998. This trend had come to fruition
by 2007 when Google’s Android, based

to DisCUss oPeratiNg-sYsteM security is to marvel
at the diversity of deployed access-control models:
Unix and Windows NT multiuser security, Type
Enforcement in SELinux, anti-malware products, app
sandboxing in Apple OS X, Apple iOS, and Google
Android, and application-facing systems such as
Capsicum in FreeBSD. This diversity is the result of a
stunning transition from the narrow 1990s Unix and
NT status quo to security localization—the adaptation
of operating-system security models to site-local or
product-specific requirements.

This transition was motivated by three changes:
the advent of ubiquitous Internet connectivity; a
migration from dedicated embedded operating
systems to general-purpose ones in search of more
sophisticated software stacks; and widespread

february 2013 | vol. 56 | no. 2 | communicaTionS of The acm 53

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 b
r

i
a

n
 g

r
e

e
n

b
e

r
g

 /
 a

n
d

r
i

j
 b

o
r

y
s

 a
s

s
o

c
i

a
t

e
s

on Linux, and Apple’s iOS, based in
part on Mach and FreeBSD, became
available, transforming the smart-
phone market.

Common to all of these environ-
ments is a focus on security and reli-
ability: as third-party applications are
deployed in systems from Junos, via its
SDK, and to iOS/Android app stores,
sandboxing becomes critical, first to
prevent bricking (reducing a device to
a mere brick as a result of malfunction
or abuse) and later to constrain mal-
ware. This trend is reinforced by mo-
bile-phone access to online purchas-
ing, and most recently, banking and
payment systems. As a result, the role
of operating-system security has shift-
ed from protecting multiple users from
each other toward protecting a single
operator or user from untrustworthy
applications. In 2013, embedded de-
vices, mobile phones, and tablets are
points of confluence: the interests of
many different parties—consumers,
phone vendors, application authors,
and online services—must be medi-
ated with the help of operating systems

that were designed for another place
and time.

Access-Control Frameworks. Oper-
ating-system developers must satisfy
device vendors, who require everything
from router and firewall hardening
to mobile-phone app sandboxing.
Operating-system vendors had accu-
rately observed a difficult adoption
path for historic trusted operating sys-
tems, whose mandatory access-control
schemes suffered from poor usability,
performance, maintainability, and—
perhaps most critically—end-user de-
mand. Likewise, they saw many prom-
ising new security models in research,
each with unknown viability, suggest-
ing that no single access-control mod-
el would meet all needs. This practical
reality of security localization directly
motivates extensible access control.

Research over the preceding 20
years had made clear the need for a ref-
erence monitor—a self-contained, non-
bypassable, and compact (hence verifi-
able) centralization of access control.2
By the early 1990s, this concept had
been combined with the notion of en-

capsulation, appearing in Abrams et
al.’s Generalized Framework for Ac-
cess Control (GFAC),1 and by the late
1990s in Ott’s Rule Set-based Access
Control (RSBAC)14 and Spencer et al.’s
Flask security architecture.17 Main-
stream operating-system vendors did
not adopt these approaches until the
early 2000s with the MAC Framework
on FreeBSD22 and shortly after, Linux
Security Modules (LSM).23 In both cas-
es, a key concern was supporting third-
party security models without com-
mitting to fixed policies as had earlier
trusted systems.

The mac framework
The MAC Framework was proposed
in 1999, with the first whitepaper on
its design published in June 2000.20 It
appeared in FreeBSD 5.0 in 2003 as an
experimental feature—compiled out
by default but available to early adopt-
ers. FreeBSD 8.0 in 2009 included the
framework as a production feature,
compiled into the default kernel. (A
timeline of key events in its develop-
ment appears in Figure 1.)

54 communicaTionS of The acm | february 2013 | vol. 56 | no. 2

practice

compiled into the kernel or loadable
modules and implement well-defined
kernel programming interfaces (KPIs).
Policies can augment access-control
decisions and make use of common
infrastructure such as object labeling
to avoid direct kernel modification
and code duplication. They are able to
enforce access control across a broad

The MAC Framework offers a logi-
cal solution to the problem of kernel
access-control augmentation: exten-
sion infrastructure able to represent
many different policies, offering im-
proved maintainability and supported
by the operating-system vendor. Simi-
lar to device drivers and virtual file
system (VFS) modules,10 policies are

range of object types, from files to net-
work interfaces, and integrate with the
kernel’s concurrency model.

Mandatory Policies. MAC describes
a class of security models in which
policies constrain the interactions
of all system users. Whereas discre-
tionary access control (DAC) schemes
such as file-system access-control lists

figure 1. mac framework research and development with key corporate contributions.

20012000 2004 200720052002 200920062003 2010 201220112008 2013

June 2000: extensible access control
framework for freebsd proposed at
network associates laboratories

2001–2004 darPa Cboss project
on access control extensibility at
Mcafee reasearch

2004–2007 us navy sefos project at
Mcafee research improves the MaC
framework; sebsd; apple os X port

october 2007, august 2008: MaC
framework improvements merged
to freebsd from apple os X

2009: MaC framework dtrace
instrumentation added by university of
Cambridge during dynamic analysis study

July 2002: MaC framework merged to
freebsd 5.0 development tree

november 2006: nCircle contributes os
privilege extensions to MaC framework

2007: secure Computing Corporation
(later Mcafee) contributes MaC framework
patches from freebsd transition;
sidewinder is evaluated to eal 4+

2008: seccuris contributes MaC
framework iPC enhancements while
developing biba-based network intrusion
detection appliance

figure 2. Policy models are encapsulated in kernel modules that augment kernel access control.

Kernel subsystems
consult framework to check
access control decisions
and notify the framework
of object lifecycle events
to support labeling

label management aPis
support security-aware but
policy-agnostic applications

dtrace probes allow
monitoring and tracing
of framework entry point
invocation and results

Policy modules can be com-
piled into the kernel, loaded
at boot, or (where supported
by policy semantics) loaded
and uploaded at runtime.

Process Process Process Process

biba Mls

ugidfw

vfs
Process
signals

socket
iPC

MaC label
system

calls
dtrace

system call interface

MaC framework

operating
system
kernel

practice

february 2013 | vol. 56 | no. 2 | communicaTionS of The acm 55

(ACLs) allow object owners to protect
(or share) objects at their own discre-
tion, MAC enforces systemwide se-
curity invariants regardless of user
preference. The research literature de-
scribes a plethora of mandatory poli-
cies grounded in information flow and
rule-based models.

Early mandatory policies focused on
information flow, requiring ubiquitous
enforcement throughout the kernel.
Multilevel security (MLS) protects con-
fidentiality by labeling user clearance
and data confidentiality, limiting flow.5
The Biba integrity policy is the logi-
cal dual of MLS, protecting integrity.6
These models maintain subject and
object security labels holding confi-
dentiality or integrity information, and
controlling operations that might lead
to information upgrade or downgrade.

SRI International’s PSOS (Provably
Secure Operating System) design in-
cluded strong enforcement of object
types, supplementing capability protec-
tions.13 This evolved into Boebert’s Type
Enforcement (TE)7 and Badger et al.’s
Domain and Type Enforcement (DTE),4
which have proven influential, with TE
deployed in SELinux11 and McAfee’s
Sidewinder firewall. Both models are
flexible and fine-grained, labeling sub-
jects and objects with symbolic do-
mains and types. Administrator-con-
trolled rules authorize interactions and
transitions between domains.

Finally, a broad class of product-
specific hardening policies is also rel-
evant; these take less principled ap-
proaches, offering direct control over
services rather than abstract models.

Before Access-Control Extensibil-
ity. In implementation papers, we cri-
tiqued contemporaneous techniques
from experience:

 ˲ Direct kernel modification was used
for most trusted systems, whether
originated by operating-system ven-
dors (for example, Trusted Solaris) or
third-party extensions (for example,
Argus Pitbull). Tracking upstream
operating-system development is
problematic: extensions are unable
to depend on public, and hence more
stable, APIs (application program-
ming interfaces) and KPIs—and less
obvious at the time, ABIs (application
binary interfaces) and KBIs (kernel
binary interfaces). Upstream churn
frequently triggers design and source-

code conflicts with security exten-
sions. Assurance is also affected, as
the burden of arguing for correctness
is left entirely in the hands of the ex-
tension writer.

 ˲ System call interposition is widely
used in antivirus systems and, in the
past, security extension products and
research systems.9 Kernel concurren-
cy proves a particular challenge, and
we have demonstrated easily exploit-
ed race conditions between wrappers
and kernels.19

Guiding Design Principles. The
dual goals of access-control extensi-
bility and encouraging upstream and
downstream vendor engagement mo-
tivated several design principles for
the MAC Framework:

Do not commit to a specific access-
control policy. There is no consensus
on a single policy or even policy lan-
guage; instead, capture policy models
in C code.

Avoid policy-specific intrusions into
the kernel. Encapsulate internals be-
hind policy-agnostic interfaces. This
leads naturally to object-centered de-
sign—access-control checks with re-
spect to subjects, objects, and methods.

Provide policy-agnostic infrastructure.
This satisfies common requirements
beyond access-control instrumenta-
tion, such as labeling and tracing.

Support multiple simultaneously
loaded policies. In this way different
aspects of policy, perhaps from differ-
ent vendors, can be independently ex-
pressed. For example, Trusted IRIX and
Argus Pitbull both employed MLS for
user-data confidentiality and Biba for
trusted computing base (TCB) protec-
tion. Composition must be predictable,
deterministic, and ideally sensible.

Impose structures that facilitate as-
surance arguments. This can be done
by separating policy and mechanism
via a reference monitor and through
well-defined KPI semantics (for exam-
ple, locking).

Design for an increasingly concurrent
kernel. Policies must not only behave
correctly, but also scale with the fea-
tures they protect.

Architecture of the MAC Frame-
work. The MAC Framework, illustrated
in Figure 2, is a thin layer linking kernel
services, policies, and security-aware
applications. Control passes from ker-
nel consumers to framework to poli-

The mac
framework
offers a logical
solution to the
problem of kernel
access-control
augmentation:
extension
infrastructure able
to represent many
different policies,
offering improved
maintainability and
supported by the
operating-system
vendor.

56 communicaTionS of The acm | february 2013 | vol. 56 | no. 2

practice

 ˲ Policy entry points connect the
framework and policies, adding ex-
plicit label arguments relative to corre-
sponding kernel-service entry points.
They are supplemented by policy life-
cycle events and library functions.

cies through roughly 250 entry points
(object types × methods):

 ˲ Kernel-service entry points allow
subsystems (for example, VFS) to en-
gage the reference-monitor framework
in relevant events and access control.

Policies need implement only the entry
points they require.

 ˲ Applications manage labels (on
processes and files, among others) us-
ing the label-management API.

 ˲ DTrace probes allow entry-point
tracing, profiling, and instrumentation.8

Collectively, these interfaces allow
policies to augment kernel access con-
trol in a maintainable manner.

Entry-Point Invocation. To under-
stand how these layers interact, let’s fol-
low a single file-write check through the
kernel. Figure 3 illustrates vn _ write,
a VFS function implementing the
write and writev system calls. The
mac _ vnode _ check _ write ker-
nel service-entry point authorizes a write
to a vnode (vp) by two subject creden-
tials: fp->f _ cred, which opened the
file, and active _ cred, which initi-
ated the write operation. Policies can
implement Unix capability semantics
(fp->f _ cred) or revocation seman-
tics (active _ cred). The vnode lock
(vp->v _ lock)is held over both check
and use, protecting label state and pre-
venting time-of-check-to-time-of-use
race conditions.

Arguments excluded from entry
points are as important as those in-
cluded. For example, vn _ write’s
data pointer (uio) is omitted, as this
data resides in user memory and can-
not be accessed race-free with respect
to the write. Similar design choices
throughout the framework discourage
behavior not safely expressible through
the kernel synchronization model.

Wherever possible, it is best to take
the perspective that kernel subsys-
tems implement labeled objects, and
that policies may be enforced through
controls on method invocation. This
approach is a natural fit for the ker-
nel, which adopts an object-oriented
structure despite an absence of lan-
guage features in C. Once objects have
been identified, placing entry points
requires care: the more granular the
KPI, the more expressive policies can
be—at the cost of policy complexity.
The fewer the calling sites, the easier
they are to validate; too few, however,
leads to inadequate protection. Entry-
point design must also balance placing
checks deep enough to allow insight
into object types while minimizing en-
forcement points for a particular level
of abstraction.

figure 3. vfS invokes the mac framework to authorize file writes.

static int
vn_write(struct file *fp, struct uio *uio,
 struct ucred *active_cred, int flags,
 struct thread *td)
{
 ...
 vn_lock(vp, lock_flags | LK_RETRY);
 ...
#ifdef MAC
 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 if (error == 0)
#endif
 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
 ...
 VOP_UNLOCK(vp, 0);
 ...
 return (error);
}

figure 4. framework access control on file writes; lock assertions and DTrace probes are
central design elements.

int
mac_vnode_check_write(struct ucred *active_cred,
 struct ucred *file_cred, struct vnode *vp)
{
 int error;

 ASSERT_VOP_LOCKED(vp, “mac_vnode_check_write”);
 MAC_POLICY_CHECK(vnode_check_write, active_cred,
 file_cred, vp, vp->v_label);
 MAC_CHECK_PROBE3(vnode_check_write, error,
 active_cred, file_cred, vp);
 return (error);
}

figure 5. Biba authorization of file writes.

#define LABEL(l) ((struct mac_biba *)mac_label_get((l), biba_slot))

static int
biba_vnode_check_write(struct ucred *active_cred,
 struct ucred *file_cred, struct vnode *vp,struct label *vplabel)
{
 struct mac_biba *subj, *obj;

 if (!biba_enabled || !revocation_enabled)
 return (0);
 subj = LABEL(active_cred->cr_label);
 obj = LABEL(vplabel);
 if (!biba_dominate_effective(subj, obj))
 return (EACCES);
 return (0);
}

practice

february 2013 | vol. 56 | no. 2 | communicaTionS of The acm 57

Figure 4 illustrates mac _ vnode _
check _ write, a thin shim that as-
serts locks, invokes interested policies,
and fires a DTrace probe. Policies are
not prohibited from directly accessing
vnode fields; however, passing an ex-
plicit label reference avoids encoding
vnode structure layout into policies
in a common case, improving KPI and
KBI resilience.

Policy entry-point invocation, en-
capsulated in MAC _ POLICY _ CHECK,
is nontrivial: access to the policy list
must be synchronized to prevent races
with module unload, interested poli-
cies must be called, and results must be
composed. The framework employs a
simple composition metapolicy: if any
policy returns failure, then access is de-
nied. For example, an EACCES returned
by Biba would be selected in preference
to 0 (success) returned by MLS. The
only exception lies in privilege exten-
sions discussed later. This metapolicy
is simple, deterministic, predictable by
developers, and above all, useful.

Figure 5 illustrates Biba invocation:
Biba checks its revocation configura-
tion, unwraps policy-specific labels,
and computes a decision using its
dominance operator.

Kernel-Object Labeling. Many ac-
cess-control policies label subjects
and objects in order to support access-
control decisions (for example, integ-
rity or confidentiality levels). The MAC
Framework provides policy-agnostic
label facilities for kernel objects, la-
bel-management system calls, and
persistent storage for file labels. Poli-
cies control label semantics—not only
the bytes stored, but also the memory
model: policies might store per-in-
stance, reference-counted, or global
data. For example, when a process
creates a new socket, Biba propagates
the current subject integrity level (for
example, low) to the socket label. The
partition policy, concerned with inter-
process access control, labels only
processes and not sockets, so will not
assign a label value for the socket.

The framework represents label
storage using struct label, which
is opaque to both kernel services and
policies. Where object types support
metadata schemes (for example, mbuf
tags that hold per-packet metadata),
those are used; otherwise, label point-
ers are added to core structures (for
example, vnode). Policies may borrow
existing object locks to protect label

data, where supported by the synchro-
nization model.

from Research to Product
Having presented the design of the
MAC Framework, let’s turn our at-
tention to policies found in FreeBSD-
derived commercial or open source
products. Table 1 and Figure 6 illus-
trate several such policy modules, their
feature footprints, and ship dates. A
number of factors contributed to the
success of this transition:

The need for new access control was
pressing. The classic Unix model failed
to meet the needs of ISPs, firewalls,
and smartphones. Simultaneously, the
threat of attack became universal with
ubiquitous networking and strong fi-
nancial incentives for attackers.

Structural arguments for a frame-
work were correct. Access-control ex-
tensibility is the preferred way of sup-
porting security localization, catering
to diverse requirements.

No one policy model has become domi-
nant. Therefore, many must be supported.

Hardware performance improvement
increased tolerance for security over-
head. This was true even in consumer
and embedded devices.

Table 1. comparison of policies and their feature footprints.

name oSS cP Product Type Lab Priv Proc vfS iPc net aPi Sig

mac none P - freebsd null policy - - - - - - - -

mac_stub P - freebsd template policy P P P P P P P -

mac_test P - freebsd framework self-test P - P P P P P -

mac_ugidfw P P freebsd file system firewall - - - P - - - -

mac_biba P P freebsd fixed integrity P P P P P P P -

mac_lomac P ? freebsd floating integrity P P P P P P P -

mac_mls P ? freebsd Confidentiality P - P P P P P -

sebsd P P freebsd type enforcement P P P P P P P -

sandbox - P apple os X rule-based P P P P P - P P

quarantine - P apple os X taint-based P - - P - - P -

tmsafetynet - P apple os X fixed integrity P - - P - - P -

amfi - P apple ios fixed integrity - P P - - - - P

sandbox - P apple ios rule-based P P P P P - P P

mac_runasnonroot - P apple ios hardening - - P - - - - P

mac_pcap - P Juniper Junos grant bPf privs P P - P - P P -

mac_veriexec - P Juniper Junos signed binaries P - - P - - - P

sidewinder_te - P Mcafee sidewinder type enforcement P P P P P P P -

mac_ncircle - P nCircle iP360 hardening - P - P - - - -

Key:
oss: open source software
CP: shipped in a commercial product
lab: uses subject or object label facility

Priv, Proc, vfs, iPC, net: implements
access-control entry points for privileges,
processes, file system, interprocess
communication, or the network stack

aPi: uses MaC framework application aPis
sig: provides or depends on application
digital signatures

58 communicaTionS of The acm | february 2013 | vol. 56 | no. 2

practice

Open source technology transition
works. FreeBSD provided not only a fo-
rum for collaborative research and de-
velopment, but also a pipeline to com-
mercial products.

The framework has evolved con-
siderably since 2003 thanks to contri-
butions from companies deploying it
in products.

freeBSD
FreeBSD is an open source operat-
ing system used to build online ser-
vices, appliances, and embedded
devices. FreeBSD or its components
can be found in data centers (Inter-
net Systems Consortium, Yahoo!), as
a foundation for integrated products
(NetApp and EMC Isilon storage ap-
pliances), and in embedded/mobile
devices (Juniper switches and Apple
iPhones). Its origins lie in BSD (the
Berkeley Software Distribution), de-
veloped in the 1970s and 1980s.12 BSD
originated a number of central Unix
technologies, including FFS (the Fast
File System) and the Berkeley TCP/IP
stack and sockets API. The BSD license
and its variations (MIT, CMU, ISC,
Apache) have encouraged technol-
ogy transition by allowing unrestricted
commercial use. FreeBSD’s diverse
consumers both motivate and are the
perfect target for security localization.

The MAC Framework is a com-
plex piece of software; although the
framework itself is only 8,500 lines of

code, with 15,000 lines in reference
policies, it integrates with a multi-
million-line kernel. The transition to
production relied on several factors,
including increasing confidence in
mediation and response to commu-
nity feedback on design, compatibil-
ity, and performance. The framework,
as first shipped in FreeBSD 5.0, was
marked as experimental, with several
implications:

 ˲ Enabling it required recompiling
the kernel.

 ˲ Documentation marked it as po-
tentially incomplete, unstable, or inse-
cure, and therefore unsupported.

 ˲ Programming and binary interface
(API, KPI, ABI, and KBI) stability was
disclaimed, allowing change without
formal depreciation.

Merging the framework while still
experimental was key to gaining users
who could help validate and improve
the approach, while retaining the flex-
ibility to make changes. Two concerns
needed to be addressed before the
framework could be considered pro-
duction worthy:

 ˲ Binary compatibility impact for
the kernel, policies, and other modules
must be better understood.

 ˲ Performance must be analyzed and
optimized based on community review.

KPI and KBI Resilience. FreeBSD
policy dictates that certain classes of
kernel modules compiled against a
release must work with later minor

versions in the same series (for ex-
ample, a FreeBSD 9.0 network device
driver should work with FreeBSD 9.1).
The goals were to avoid disrupting the
KBIs of consumer subsystems and
to offer similar levels of binary com-
patibility for policy modules. Label
storage opacity for subsystems and
policies was the primary area of refine-
ment, which avoids encoding kernel
data-structure internals into policies
if they require only label access, as
well as providing flexibility to change
label implementation.

Performance Optimization. Many
FreeBSD deployments are extremely
performance sensitive, requiring
minimal overhead, especially if the
framework is disabled. As sites se-
lect policies based on local security-
performance trade-offs, it is also de-
sirable for policies to incur only the
performance penalties of features
they actually use—performance pro-
portionality. As shipped in FreeBSD
5.0, however, regressions were mea-
surable, an obstacle to enabling the
framework by default.

Label Allocation Trade-offs. Even
when the framework was compiled
out, bloat from adding a label to ker-
nel data structures (especially packet
mbufs) created significant allocation-
time zeroing cost. In FreeBSD 5.1, in-
lined mbuf labels were replaced with
pointers, and for all object types in
5.2; this decreased costs for non-MAC

figure 6. Timelines of selected mac framework-based product ship dates.

20012000 2004 200720052002 200920062003 2010 201220112008 2013

January 2003: freebsd 5.0 released
with MaC framework marked as an
experimental feature

July 2007: nCircle ships iP360 6.7
with MaC framework policy

January 2007: secure Computing
Corporation (later Mcafee)
ships sidewinder 7.0 product
with MaC framework

2009: Juniper ships Junos using the MaC
framework for access control

november 2009: freebsd 8.0 released with
MaC framework in default kernel marked
as a production feature

october 2007: apple ships os X
leopard with MaC framework
support and sandboxing model

april 2010 apple
ships iPad with
app sandboxing

July 2008: apple ships iPhone
os 2.0 with app store and
sandboxed third-party applications

2010: apple completes
eal 3+ evaluation with MaC
framework enforcement

July 2011: apple ships
os X lion with preliminary
app sandboxing

July 2012: apple ships
os X Mountain lion with
mandatory app sandboxing

practice

february 2013 | vol. 56 | no. 2 | communicaTionS of The acm 59

kernels at the expense of additional
allocation and indirection for MAC-
enabled kernels.

Label allocation was even more
measurable with the framework en-
abled—and unnecessary for unla-
beled policies. The effect was most
pronounced with network packets
and led, in FreeBSD 5.1, to a per-poli-
cy flag to request packet labels. In 8.0,
this approach was generalized so that
labels were allocated only for object
types for which at least one loaded
policy defined an initialization entry
point. This effectively eliminated the
cost of labeling when not required by
a policy, restoring performance pro-
portionality and satisfying the general
case well. However, one commercial
product that used packet labeling, the
McAfee Sidewinder Firewall, saw suf-
ficient overhead to bypass the label
abstraction in favor of direct struc-
ture modification.

Minimizing Synchronization Over-
heads. With the framework compiled in,
lock-protected reference count opera-
tions on entry-point invocation were eas-
ily measurable for frequent operations,
such as per-packet delivery checks. As
multicore hardware became more com-
mon, lock (and later cache-line) conten-
tion also became significant.

Beginning in FreeBSD 5.2, policies
were divided into static and dynamic
sets to help fixed-configuration em-
bedded systems. The former were com-
piled in or loaded at boot and unload-
able thereafter, and hence required no
synchronization. Dynamic policies—
those loaded after boot, or potentially
unloadable—still required multiple
lock operations.

In FreeBSD 8.0, synchronization
was further optimized so that the MAC
Framework could be shipped in the de-
fault kernel. This effort benefited from
continuing improvements in kernel
scalability driven by increasingly com-
mon eight-core machines. Particularly
critical were read-mostly locks, which
do not trigger cache-line migrations
during read-only acquisition, at the
cost of more expensive exclusive ac-
quisition—perfect for infrequently
changed policy lists.

ncircle iP360 appliance
nCircle Network Security produces a
FreeBSD-based appliance, the IP360,

to scan networks for vulnerable soft-
ware and Sarbanes-Oxley compliance.
While most of its security require-
ments could be captured with conven-
tional DAC, customers requested the
ability to audit appliance content and
configuration directly. To meet this
requirement, while limiting potential
damage in case audit access is misused
or compromised, nCircle developed a
custom policy.

The policy authorizes an audit user
to read all file-system and configura-
tion data, bypassing permissions,
while also preventing file-system
writes. The MAC Framework could ex-
press only a subset of this augmenta-
tion: policies could constrain rights
but not grant them. nCircle therefore
enhanced the framework to allow con-
trol over fine-grained system privileges.

Privilege Extensions. Operating-sys-
tem privilege confers the right to bypass
operating-system security policies (for
example, changing system settings or
overriding DAC or the process model).
In classic Unix, system privileges are
granted to any process running as the
root user. To meet nCircle’s goals, a
policy must be able to augment the ker-
nel’s default privilege policy to grant
(and moderate) privileges for other us-
ers. This presented two technical chal-
lenges: how to identify and distinguish
different types of privilege; and how to
add extensibility to the existing privilege
model. These problems resemble, in mi-
crocosm, the larger concern addressed
by the MAC Framework—structuring of
a reference monitor for extensibility—
and seemed a natural fit despite a depar-
ture from the original design choice to
only limit, rather than grant, rights.

All existing kernel privilege checks
were analyzed and replaced with checks
for specific named privileges. Privilege
checking was then reworked to include
an explicit composition policy for
sources and limitations of privilege,
including two new MAC Framework
entry points: mac _ priv _ check fol-
lows the standard entry-point conven-
tions, accepting a credential, named
privilege arguments, and restrict-
ing privileges by returning an error;
mac _ priv _ grant diverges from
this model by overriding the base oper-
ating-system policy to grant new rights,
using a new composition operator that
allows any policy to grant a right, rather

it is desirable for
policies to incur only
the performance
penalties of
features they
actually use—
performance
proportionality.

60 communicaTionS of The acm | february 2013 | vol. 56 | no. 2

practice

than requiring them all to agree.
Existing policies were updated to

take advantage of the new features,
providing stronger nondiscretionary
control of the root user. For example,
the Biba policy now limits access to a
number of privileges that might allow
bypass of the process model or system
reconfiguration when operating as the
root user without Biba privilege. These
features shipped in FreeBSD 7.0.

The nCircle MAC Policy. The nCircle
policy extends (and restricts) rights
available to the audit user:

 ˲ It identifies a specific user ID to
which all remaining policy activities
apply.

 ˲ Privileges are granted, including
read access to the kernel log and fire-
wall configuration, and file read/look-
up protections are overridden.

 ˲ VFS entry points deny write access
to all objects and read access to certain
files such as the password file.

With these enhancements, the nCir-
cle policy is able to combine controlled
privilege escalation with mandatory
constraints, meeting product needs
while minimizing local operating-sys-
tem modification.

Juniper Junos
The Junos router operating system
runs on the control planes of all Juni-
per routers and switches. Juniper main-
tains substantial local modifications to
FreeBSD and is undergoing a multiyear
process to minimize its patches by re-
turning improvements to the FreeBSD
community and increasing use of oper-
ating-system extensibility frameworks
that allow local features to be cleanly
grafted onto an unmodified operating
system. As part of that project, Juniper
has been moving local security exten-
sions into MAC Framework policies,
both to reduce conflicts during FreeBSD
updates and to prepare certain policies

for upstreaming. Junos ships with four
local security extensions:

 ˲ mac _ runasnonroot. Ensures
that third-party applications written
against the Junos SDK are not run as
the root user.

 ˲ mac _ pcap. Allows Junos SDK
applications to capture packets despite
not running as root.

 ˲ mac _ veriexec. Implements
support for digitally signed binaries.

 ˲ Junos SDK sandboxing. Constrains
third-party applications based on mac_
veriexec certificates.

The mac _ runasnonroot and
mac _ pcap extensions first shipped
as framework policies in 2009. Then
mac _ veriexec shipped in 2012,
replacing a previous directly patched
implementation. Juniper is preparing
to migrate Junos SDK sandboxing to
the MAC Framework to reduce local
patches further, as well as upstream
mac _ veriexec.

These policies required minor
changes to the MAC Framework, includ-
ing additional entry points; perhaps
most interesting is a new O _ VERIFY
flag to the open system call, which sig-
nals to the framework that the user-
space runtime linker has requested that
a file be validated.

apple oS X and ioS
In quick succession, Apple released
versions of OS X Leopard for the desk-
top/server in 2007, and iPhone OS 2 for
the iPhone and iPod Touch in 2008,
incorporating the MAC Framework as
a reference-monitor framework. OS
X Snow Leopard shipped with three
MAC policies:

 ˲ Sandbox. Provides policy-driven
sandboxing of risky components that
process untrustworthy data such as
network services and video codecs.

 ˲ Quarantine. Taints downloaded
files, supporting a user dialog display-

ing the originating website.
 ˲ Time Machine Safety Net. Protects

the integrity of Time Machine backups.
With OS X Mountain Lion, applica-

tions distributed via Apple’s App Store
have mandatory sandboxing. Apple’s
iOS 2.0 shipped with two policies:
Sandbox and one additional:

 ˲ Apple Mobile File Integrity (AMFI).
Works in concert with a code-signing
facility, terminating apps whose digi-
tal signatures have been invalidated at
runtime; exempts debugging during
app development.

Collectively the policies support sys-
tem integrity and provide strong sepa-
ration between apps in order to keep
data private. Both OS X and iOS diverge
substantially from our design expecta-
tions for the MAC Framework, requir-
ing significant adaptation.

XNU Prototype. Apple began beta
testing OS X in 2000, and the promise
of a commodity desktop operating sys-
tem with an open source kernel was
difficult to ignore. The XNU kernel is
a sophisticated blend of Carnegie Mel-
lon University’s Mach microkernel,
FreeBSD 5.0, cherry-picked newer Free-
BSD elements, and numerous features
developed by Apple. With these foun-
dations, it seemed likely that the MAC
Framework approach, and even code,
would be reusable.

Though not a microkernel, XNU
(short for X is not Unix) adopts many
elements from Mach, including its
scheduler, interprocess communica-
tion (IPC) model, and VM system. The
FreeBSD process model, IPC, network
stack, and VFS are grafted onto Mach,
providing a rich POSIX program-
ming model. Apple-developed kernel
components in the first release of OS
X included the I/O Kit device-driver
framework, network kernel extensions
(NKEs), and the HFS+ file system; this
list has only grown over time.

Table 2. apple oS X applications may use one of several statically configured profiles, or define their own.

Profile Description

ksbXProfilenointernet tCP/iP networking is prohibited

ksbXProfilenonetwork all sockets-based networking is prohibited

ksbXProfilenoWrite file-system writes are prohibited

ksbXProfilenoWriteexcepttemporary file-system writes are restricted to temporary folders

ksbXProfilePureComputation only Mach iPC to the host process is permitted

practice

february 2013 | vol. 56 | no. 2 | communicaTionS of The acm 61

Interesting questions abounded:
for example, would ideas developed in
the DTMach16 and DTOS17 microker-
nel projects apply better or worse than
the monolithic kernel approach in the
MAC Framework? Between 2003 and
2007, the increasingly mature MAC
Framework was ported to OS X.18

Adapting to OS X. The MAC Frame-
work required a detailed analysis of
the FreeBSD kernel and is tightly in-
tegrated with low-level memory man-
agement and synchronization, as well
as higher-level services such as the file
system, IPC, and network stack. While
the adaptation to OS X was able to rely
heavily on Apple’s use of FreeBSD com-
ponents, fundamental changes were
needed to reflect differences between
FreeBSD and XNU.

The first step was integrating the
MAC Framework with the closely
aligned BSD process model, file system,
and network stack. High-level architec-
tural alignment made some of the ad-
aptation easy, but nontrivial differenc-
es were also encountered. For example,
FreeBSD’s Unix file system (UFS) con-
siders directories to be specialized file
objects, whereas HFS+ considers the
directory and object attribute struc-
ture, or disk catalog, to be a first-class
object. This required changes to both
the framework and XNU.

Next, coverage was extended to in-
clude Mach tasks and IPC. Each XNU
process links a Mach task (schedul-
ing, VM) with a FreeBSD process (cre-
dentials, file descriptors), presenting
a philosophical problem: is the MAC
Framework part of Mach or BSD?
While useful architecturally, the Mach-
BSD boundary in XNU proves artificial:
references frequently span layers, re-
quiring the MAC Framework to serve
both. Label modifications on BSD pro-
cess labels are mirrored to correspond-
ing Mach task labels.

Mach ports are another case in
which microkernel origins come into
conflict with the monolithic kernel
premise of the MAC Framework. Un-
like BSD IPC objects, with kernel-
managed namespaces, Mach ports rely
on userspace namespaces managed
by launchd (for example, for desk-
top IPC). Taking a leaf from DTOS,
launchd is responsible for labeling
and enforcement but queries the ref-
erence monitor to authorize lookups.

A userspace label handle abstraction
similar to the kernel label structure
serves this purpose.

Adoption by Apple. Apple is the
world’s largest vendor of desktop Unix
systems and was among the first to de-
ploy Unix in a smartphone. It has like-
wise seen exploding use cases and new
security requirements motivated by
ubiquitous networking and malicious
attackers. Apple’s adoption of the MAC
Framework was not assured, however,
as competing technologies were also
considered, motivated by similar ob-
servations, awareness of future prod-
uct directions, performance concerns,
and our research.

Alternatives included system-call
interposition-based technology similar
to that discussed earlier, and Apple’s
Kauth3 (short for kernel authorization),
an authorization framework targeted
at antivirus vendors (modeled in part
on the MAC Framework). Apple found
arguments about the fallibility of sys-
tem-call interposition convincing, and
in the end adopted two technologies:
Kauth for third-party antivirus vendors;
and the more expressive and capable
MAC Framework for its own sandbox-
ing technologies.

The Sandbox Policy. Since Apple’s
OS X and iOS policy modules are not
open source, we are unable to consid-
er their implementations, but public
documentation exists for the Sandbox
policy used by Mac OS X components

and third-party applications such as
Google’s Chrome Web browser. Sand-
box allows applications voluntarily to
restrict their access to resources (for ex-
ample, the file system, IPC namespac-
es, and networking). Process sandbox
profiles are stored in process labels.

Bytecode-compiled policies can be
set via public APIs, or by the sandbox-
exec helper program. Applications
may select from several Apple-defined
policies (Table 2) or define custom poli-
cies. Several applications use default
policies such as the iChat video codec,
which employs the computation-only
profile limited to IPC with the host pro-
cess. Many other software components,
such as Spotlight indexing, the BIND
name server, Quicklook document pre-
views, and the System Log Daemon, uti-
lize custom profiles to limit the effects
of potential vulnerabilities.

Figure 7 shows excerpts from the
common.sb profile used by Chrome,
illustrating key Sandbox constructs:
coarse controls for sysctl kernel-man-
agement interfaces and shared memo-
ry, and fine-grained regular expression
matching of file paths. File path-based
control is a highlight of the Sandbox
policy, addressing programmer mod-
els much better than file labels in Biba,
MLS, and TE. Path-based schemes are
difficult to implement on the Unix VFS
model, which considers paths to be
second-class constructs. Whereas Free-
BSD permits files to have zero (unlinked

figure 7. chrome oS X sandbox policy excerpts.

(deny default)

; Allow sending signals to self - http://crbug.com/20370
(allow signal (target self))

; Needed for full-page-zoomed controls -
; http://crbug.com/11325
(allow sysctl-read)

; Allow following symlinks
(allow file-read-metadata)

; Loading System Libraries.
(allow file-read-data
 (regex #”^/System/Library/Frameworks($|/)”))
(allow file-read-data
 (regex #”^/System/Library/PrivateFrameworks($|/)”))
(allow file-read-data
 (regex #”^/System/Library/CoreServices($|/)”))

; Needed for IPC on 10.6
(allow ipc-posix-shm)

62 communicaTionS of The acm | february 2013 | vol. 56 | no. 2

practice

The mac framework
has become
the foundation
for numerous
instances of
security localization,
allowing local
access-control
policies to be
composed with
the still-popular
unix discretionary
access control
model.

but open), one, or multiple names
(hard links), HFS+ implements a par-
ent pointer for files and ensures that the
name cache always contains the infor-
mation required to calculate unambig-
uous paths for in-use files.

While Sandbox is used with many OS
X services, a number of third-party ap-
plications incorporate strong assump-
tions of ambient authority, the ability to
access any object in the system. With
the iPhone, Apple broke this assump-
tion: applications execute in isolation
from system services and each other.
This model is now appearing in OS X
and could similarly help protect device
integrity against misbehaving apps
and, increasingly, end-user data.

Performance Optimizations. OS X
and iOS were shipped with the MAC
Framework prior to FreeBSD 8.0’s per-
formance optimizations, requiring
Apple to make its own optimizations
based on product-specific constraints.
As with FreeBSD optimizations, these
were generally concerned with the over-
head of framework entry and labeling.
By default, labeling is compiled out of
the kernel for certain object types; for
others, such as vnodes, policies may
selectively request label allocation, ca-
tering to the often-sparse labeling use
in OS X’s policies.

In FreeBSD, framework instrumen-
tation and synchronization optimiza-
tions rely on all-or-nothing distinc-
tions between sites willing to pay for
additional access-control extension.
In OS X, the assumption is that sand-
boxing is used on most machines, but
selectively applied to high-risk process-
es. To this end, each process carries a
mask, set by policies, indicating which
object types require enforcement. As
OS X adopts more universal sandbox-
ing, as is the case in iOS, it may be de-
sirable to apply more global optimiza-
tions as in FreeBSD.

Reflections
Over the past decade, the MAC Frame-
work has become the foundation for
numerous instances of security local-
ization, allowing local access-control
policies to be composed with the still-
popular Unix discretionary access con-
trol (DAC) model—a timely conver-
gence of industry requirements and
research. Deploying via open source
proved a successful strategy, providing

a forum for collaborative refinement,
access to early adopters, and a path to
numerous products.

Perhaps the most surprising adop-
tion was at McAfee itself: when the
framework was open sourced by
McAfee Research, Secure Computing
Corporation (then a competitor) ad-
opted it for Sidewinder, which McAfee
later acquired. More generally, this
speaks to the success of open source in
providing a venue in which competing
companies can collaborate to develop
common infrastructure technolo-
gies. The industry’s adoption of open
source foundations for appliances and
embedded devices has been well-ca-
tered to by our access-control extensi-
bility argument:

 ˲ Security localization in devices has
become widespread.

 ˲ The criticality of multiprocessing
has only increased.

 ˲ Security label abstractions have
proven beneficial beyond their MAC
roots.

 ˲ Non-consensus on access-control
policies continues.

The MAC Framework, however, also
required refinement and extension to
address several unanticipated concerns:

 ˲ The desire to revisit the structure
of Unix privilege.

 ˲ The importance of digital signa-
tures when applying access control to
third-party applications.

 ˲ Continued tensions over the desire
for name-based vs. label-based access
control.

New Design Principles. In light of
extensive field experience with the
MAC Framework, we have added sev-
eral new design principles:

Policy authors determine their own
performance, functionality, and assur-
ance trade-offs. Policies may not re-
quire heavyweight infrastructure (for
example, labels), so offer performance
proportionality.

Traceability is a key design concern.
Programming and binary interface

stability is critical. API, ABI, KPI, and
KBI sustainability is often overlooked
in research, where prototypes are fre-
quently one-offs without multi-decade
support obligations.

Manipulating operating-system privi-
lege is important to policies that augment
rather than supplement DAC.

It is clear from the work of down-

practice

february 2013 | vol. 56 | no. 2 | communicaTionS of The acm 63

stream consumers, however, that
two further principles are now also
necessary:

Application authors are first-class
principals. Apple’s App Store and Ju-
niper’s SDK both employ application
signatures and certificates as policy
inputs.

Applications themselves require flex-
ible access control to support application
compartmentalization.

This latter observation led us to
develop the application-focused Cap-
sicum protection model,21 recently
shipped as an experimental feature in
FreeBSD 9.0. It can be viewed as com-
plementary to policy-driven kernel ac-
cess control.

Domain-Specific Policy Models.
Why no consensus has been reached in
the expression of operating-system pol-
icies is an interesting question—cer-
tainly, proponents of successive policy
models have argued that their models
capture the key concerns in system
design. In catering to a variety of mod-
els, our observations are twofold: first,
policy models aim to capture aspects of
the principle of least privilege15 but often
in fundamentally different forms (for
example, information flow vs. system
privileges), making their approaches
complementary; second, different
models address different spaces in a
multidimensional trade-off between
types of expression, assurance, perfor-
mance, administrative complexity, im-
plementation complexity, compatibil-
ity, and maintainability. This instead
reflects a consensus for domain-specific
policy models.

The Value of Extensibility. Does the
need for significant design enhance-
ment confirm or reject the hypoth-
esis of access-control extensibility?
Further comparison to similar frame-
works, such as VFS and device drivers,
seems appropriate: both are regularly
extended to adapt to new require-
ments such as changes in distributed
file-system technology or improve-
ment in power management. The
willingness of industrial consumers
to extend the framework and return
improvements reflects our fundamen-
tally economic hypothesis regarding
extensibility: managing the upstream-
downstream relationship for signifi-
cant source-code bases is a strong mo-
tivator. Widespread and continuing

deployment of the MAC Framework
appears to confirm the more general
argument that access-control extensi-
bility is a critical aspect of contempo-
rary operating-system design.

acknowledgments
Systems research emphasizes the
practical application of ideas to real-
world systems: only by implementing
an idea can you fully understand it;
this is even more true in the transition
from research to practice. Acknowl-
edgments are due to a large cast span-
ning many institutions; to view full
list, see queue.acm.org. Helpful feed-
back on this article came from Ross
Anderson, Simon Cooper, Jon Crow-
croft, Simon Gerraty, Matthew Grosve-
nor, Steve Hand, Mark Handley, Steve
Kiernan, Anil Madhavapeddy, Peter G.
Neumann, George Neville-Neil, and
Mike Silbersack.

This work was supported by DAR-
PA/AFRL contract FA8750-10-C-0237
(CTSRD), with previous support from
the DARPA CBOSS and SPAWAR SE-
FOS contracts, spanning the DARPA
CHATS and DARPA CRASH research
programs. The views, opinions, and/
or findings in this article are author’s
and should not be interpreted as rep-
resenting the official views or poli-
cies, either expressed or implied, of
DARPA, the U.S. Navy, AFRL, or the
Department of Defense. Google, Inc.
also supported this work.

 Related articles
 on queue.acm.org

Building Systems to Be Shared, Securely

Poul-Henning Kamp, Robert Watson
ttp://queue.acm.org/detail.cfm?id=1017001

Extensible Programming
for the 21st Century

Gregory V. Wilson
http://queue.acm.org/detail.cfm?id=1039534

ACM CTO Roundtable on
Mobile Devices in the Enterprise
Mache Creeger
http://queue.acm.org/detail.cfm?id=2016038

References
1. abrams, m.d., eggers, K.w., laPadula, l.j. and olson,

i.m. a generalized framework for access control: an
informal description. in Proceedings of the 13th NIST-
NCSC National Computer Security Conference (1990),
135–143.

2. anderson, j.P. computer security technology
Planning study. technical report, electronic systems
division, air force systems command, 1972.

3. apple inc. Kernel authorization. technical note
tn2127, 2007; http://developer.apple.com/technotes/
tn2005/tn2127.html.

4. badger, l., sterne, d.f., sherman, d. ., walker, K.m.
and haghighat, s.a. Practical domain and type
enforcement for unix. in Proceedings of the 1995
IEEE Symposium on Security and Privacy 66 (1995).
ieee computer society.

5. bell, d.e., and l.j. laPadula. secure computer systems:
mathematical foundations and model. technical report
m74-244. mitre corp., bedford, ma, 1973.

6. biba, K. integrity considerations for secure computer
systems. technical report tr-3153. mitre corp.,
bedford, ma, 1977.

7. boebert, w.e. and Kain, r.y. a practical alternative to
hierarchical integrity policies. in Proceedings of the 8th
National Computer Security Conference, 1985.

8. cantrill, b.m., shapiro, m.w. and leventhal,
a.h. dynamic instrumentation of production
systems. in Proceedings of the Usenix Annual
Technical Conference (berkeley, ca, 2004). usenix
association.

9. fraser, t., badger, l. and feldman, m. hardening
cots software with generic software wrappers. in
Proceedings of the 1999 IEEE Symposium on Security
and Privacy.

10. Kleiman, s.r. Vnodes: an architecture for multiple
file system types in sun unix. in Proceedings of the
Summer 1986 Usenix Conference.

11. loscocco, P.a. and smalley, s.d. integrating flexible
support for security policies into the linux operating
system. in Proceedings of the 2001 Usenix Annual
Technical Conference. usenix association, 29–42.

12. mcKusick, m.K., neville-neil, g.V. The Design and
Implementation of the FreeBSD Operating System.
Pearson education, 2004.

13. neumann, P.g., boyer, r.s., feiertag, r.j., levitt, K.n.
and robinson, l. a provably secure operating system:
the system, its applications, and proofs, second
edition. technical report csl-116. computer science
laboratory, sri international, 1980.

14. ott, a. rule-set-based access control (rsbac) for
linux (2010); http://www.rsbac.org/.

15. saltzer, j.h. and schroeder, m.d. the protection of
information in computer systems. in Proceedings of
the IEEE 63, 9 (1975), 1278–1308.

16. sebes, e.j. overview of the architecture of
distributed trusted mach. in Proceedings of the
Usenix Mach Symposium (1991). usenix association,
20–22.

17. spencer, r., smalley, s., loscocco, P., hibler, m.,
andersen, d. and lepreau, j. 1999. the flask
security architecture: system support for diverse
security policies. in Proceedings of the 8th Usenix
Security Symposium (1999). usenix association,
123–139.

18. Vance, c., miller, t. c., dekelbaum, r., reisse, a. 2007.
security-enhanced darwin: Porting selinux to mac
os X. in Proceedings from the Third Annual Security
Enhanced Linux Symposium (2007).

19. watson, r.n.m. exploiting concurrency vulnerabilities
in system call wrappers. in Proceedings of the First
Usenix Workshop on Offensive Technologies. usenix
association, 2007, 1–8.

20. watson, r.n.m. new approaches to operating system
security extensibility. technical report ucam-
cl-tr-818. university of cambridge, computer
laboratory, 2012.

21. watson, r.n.m., anderson, j., laurie, b. and
Kennaway, K. capsicum: Practical capabilities for
unix. in Proceedings of the 19th Usenix Security
Symposium (2010). usenix association.

22. watson, r.n.m. feldman, b., migus, a. and Vance,
c. design and implementation of the trustedbsd
mac framework. in Proceedings of the Third DARPA
Information Survivability Conference and Exhibition
(2003). ieee.

23. wright, c., cowan, c., morris, j., smalley, s. and
Kroah-hartman, g. 2002. linux security modules:
general security support for the linux kernel. in
Proceedings of the 11th Usenix Security Symposium
(2002). usenix association.

Robert n.M. Watson is a senior research associate at
the university of cambridge computer laboratory, and
a research fellow at st john’s college cambridge. he
was a senior principal scientist at sParta isso, and a
senior research scientist at mcafee research, where he
led the development of a kernel access control extension
framework for the open source freebsd operating system,
now used in products such as junos, apple os X, and ios.

© 2013 acm 0001-0782/13/02

