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a Decade of oS  
access-control 
extensibility

movement from multiuser computing 
toward single-user devices with com-
plex application models. The transition 
was facilitated by extensible access-con-
trol frameworks, which allow operating-
system kernels to be more easily adapt-
ed to new security requirements.

One such extensible kernel refer-
ence-monitor framework is the Trust-
edBSD MAC (Mandatory Access Con-
trol) Framework, developed beginning 
in 2000 and shipped in the open source 
FreeBSD operating system in 2003. 
This article first describes the context 
and challenges for access-control ex-
tensibility and high-level framework 
design, then turns to practical expe-
rience deploying security policies in 
several framework-based products, in-
cluding FreeBSD, nCircle appliances, 
Juniper’s Junos, and Apple’s OS X and 
iOS. While extensibility was key to each 
of these projects, they motivated con-
siderable changes to the framework it-
self, so the article also explores how the 
framework did (and did not) meet each 
product’s requirements, and finally re-
flects on the continuing evolution of 
operating-system security.

a Quiet Revolution in oS Design
Embedded and mobile operating sys-
tems have changed greatly in the past 
20 years: devices have gained the CPU 
power to run general-purpose operat-
ing systems; they have been placed in 
ubiquitous networking environments; 
they have needed to support mature 
software stacks including third-party 
applications; and they have found 
themselves exposed to malicious ac-
tivity motivated by strong financial 
incentives. Vendors built on exist-
ing operating systems—often open 
source—to avoid creating them from 
scratch. This provided mature applica-
tion frameworks and complex network 
stacks, both areas of weakness for 
then-contemporary “embedded oper-
ating systems.” One early example is 
Juniper’s Junos, a version of FreeBSD 
adapted for router control planes in 
1998. This trend had come to fruition 
by 2007 when Google’s Android, based 

to DisCUss oPeratiNg-sYsteM  security is to marvel 
at the diversity of deployed access-control models: 
Unix and Windows NT multiuser security, Type 
Enforcement in SELinux, anti-malware products, app 
sandboxing in Apple OS X, Apple iOS, and Google 
Android, and application-facing systems such as 
Capsicum in FreeBSD. This diversity is the result of a 
stunning transition from the narrow 1990s Unix and 
NT status quo to security localization—the adaptation 
of operating-system security models to site-local or 
product-specific requirements. 

This transition was motivated by three changes: 
the advent of ubiquitous Internet connectivity; a 
migration from dedicated embedded operating 
systems to general-purpose ones in search of more 
sophisticated software stacks; and widespread 
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on Linux, and Apple’s iOS, based in 
part on Mach and FreeBSD, became 
available, transforming the smart-
phone market.

Common to all of these environ-
ments is a focus on security and reli-
ability: as third-party applications are 
deployed in systems from Junos, via its 
SDK, and to iOS/Android app stores, 
sandboxing becomes critical, first to 
prevent bricking (reducing a device to 
a mere brick as a result of malfunction 
or abuse) and later to constrain mal-
ware. This trend is reinforced by mo-
bile-phone access to online purchas-
ing, and most recently, banking and 
payment systems. As a result, the role 
of operating-system security has shift-
ed from protecting multiple users from 
each other toward protecting a single 
operator or user from untrustworthy 
applications. In 2013, embedded de-
vices, mobile phones, and tablets are 
points of confluence: the interests of 
many different parties—consumers, 
phone vendors, application authors, 
and online services—must be medi-
ated with the help of operating systems 

that were designed for another place 
and time.

Access-Control Frameworks. Oper-
ating-system developers must satisfy 
device vendors, who require everything 
from router and firewall hardening 
to mobile-phone app sandboxing. 
Operating-system vendors had accu-
rately observed a difficult adoption 
path for historic trusted operating sys-
tems, whose mandatory access-control 
schemes suffered from poor usability, 
performance, maintainability, and—
perhaps most critically—end-user de-
mand. Likewise, they saw many prom-
ising new security models in research, 
each with unknown viability, suggest-
ing that no single access-control mod-
el would meet all needs. This practical 
reality of security localization directly 
motivates extensible access control.

Research over the preceding 20 
years had made clear the need for a ref-
erence monitor—a self-contained, non-
bypassable, and compact (hence verifi-
able) centralization of access control.2 
By the early 1990s, this concept had 
been combined with the notion of en-

capsulation, appearing in Abrams et 
al.’s Generalized Framework for Ac-
cess Control (GFAC),1 and by the late 
1990s in Ott’s Rule Set-based Access 
Control (RSBAC)14 and Spencer et al.’s 
Flask security architecture.17 Main-
stream operating-system vendors did 
not adopt these approaches until the 
early 2000s with the MAC Framework 
on FreeBSD22 and shortly after, Linux 
Security Modules (LSM).23 In both cas-
es, a key concern was supporting third-
party security models without com-
mitting to fixed policies as had earlier 
trusted systems.

The mac framework
The MAC Framework was proposed 
in 1999, with the first whitepaper on 
its design published in June 2000.20 It 
appeared in FreeBSD 5.0 in 2003 as an 
experimental feature—compiled out 
by default but available to early adopt-
ers. FreeBSD 8.0 in 2009 included the 
framework as a production feature, 
compiled into the default kernel. (A 
timeline of key events in its develop-
ment appears in Figure 1.) 
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compiled into the kernel or loadable 
modules and implement well-defined 
kernel programming interfaces (KPIs). 
Policies can augment access-control 
decisions and make use of common 
infrastructure such as object labeling 
to avoid direct kernel modification 
and code duplication. They are able to 
enforce access control across a broad 

The MAC Framework offers a logi-
cal solution to the problem of kernel 
access-control augmentation: exten-
sion infrastructure able to represent 
many different policies, offering im-
proved maintainability and supported 
by the operating-system vendor. Simi-
lar to device drivers and virtual file 
system (VFS) modules,10 policies are 

range of object types, from files to net-
work interfaces, and integrate with the 
kernel’s concurrency model.

Mandatory Policies. MAC describes 
a class of security models in which 
policies constrain the interactions 
of all system users. Whereas discre-
tionary access control (DAC) schemes 
such as file-system access-control lists 

figure 1. mac framework research and development with key corporate contributions.

20012000 2004 200720052002 200920062003 2010 201220112008 2013

June 2000: extensible access control 
framework for freebsd proposed at 
network associates laboratories

2001–2004 darPa Cboss project 
on access control extensibility at 
Mcafee reasearch

2004–2007 us navy sefos project at 
Mcafee research improves the MaC 
framework; sebsd; apple os X port

october 2007, august 2008: MaC 
framework improvements merged  
to freebsd from apple os X

2009: MaC framework dtrace 
instrumentation added by university of 
Cambridge during dynamic analysis study

July 2002: MaC framework merged to 
freebsd 5.0 development tree

november 2006: nCircle contributes os 
privilege extensions to MaC framework

2007: secure Computing Corporation  
(later Mcafee) contributes MaC framework 
patches from freebsd transition; 
sidewinder is evaluated to eal 4+

2008: seccuris  contributes MaC 
framework iPC enhancements while 
developing biba-based network intrusion 
detection appliance

figure 2. Policy models are encapsulated in kernel modules that augment kernel access control.

Kernel subsystems  
consult framework to check 
access control decisions  
and notify the framework  
of object lifecycle events  
to support labeling

label management aPis 
support security-aware but 
policy-agnostic applications

dtrace probes allow 
monitoring and tracing 
of framework entry point 
invocation and results

Policy modules can be com-
piled into the kernel, loaded 
at boot, or (where supported 
by policy semantics) loaded 
and uploaded at runtime.
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(ACLs) allow object owners to protect 
(or share) objects at their own discre-
tion, MAC enforces systemwide se-
curity invariants regardless of user 
preference. The research literature de-
scribes a plethora of mandatory poli-
cies grounded in information flow and 
rule-based models.

Early mandatory policies focused on 
information flow, requiring ubiquitous 
enforcement throughout the kernel. 
Multilevel security (MLS) protects con-
fidentiality by labeling user clearance 
and data confidentiality, limiting flow.5 
The Biba integrity policy is the logi-
cal dual of MLS, protecting integrity.6 
These models maintain subject and 
object security labels holding confi-
dentiality or integrity information, and 
controlling operations that might lead 
to information upgrade or downgrade.

SRI International’s PSOS (Provably 
Secure Operating System) design in-
cluded strong enforcement of object 
types, supplementing capability protec-
tions.13 This evolved into Boebert’s Type 
Enforcement (TE)7 and Badger et al.’s 
Domain and Type Enforcement (DTE),4 
which have proven influential, with TE 
deployed in SELinux11 and McAfee’s 
Sidewinder firewall. Both models are 
flexible and fine-grained, labeling sub-
jects and objects with symbolic do-
mains and types. Administrator-con-
trolled rules authorize interactions and 
transitions between domains.

Finally, a broad class of product-
specific hardening policies is also rel-
evant; these take less principled ap-
proaches, offering direct control over 
services rather than abstract models.

Before Access-Control Extensibil-
ity. In implementation papers, we cri-
tiqued contemporaneous techniques 
from experience:

 ˲ Direct kernel modification was used 
for most trusted systems, whether 
originated by operating-system ven-
dors (for example, Trusted Solaris) or 
third-party extensions (for example, 
Argus Pitbull). Tracking upstream 
operating-system development is 
problematic: extensions are unable 
to depend on public, and hence more 
stable, APIs (application program-
ming interfaces) and KPIs—and less 
obvious at the time, ABIs (application 
binary interfaces) and KBIs (kernel 
binary interfaces). Upstream churn 
frequently triggers design and source-

code conflicts with security exten-
sions. Assurance is also affected, as 
the burden of arguing for correctness 
is left entirely in the hands of the ex-
tension writer.

 ˲ System call interposition is widely 
used in antivirus systems and, in the 
past, security extension products and 
research systems.9 Kernel concurren-
cy proves a particular challenge, and 
we have demonstrated easily exploit-
ed race conditions between wrappers 
and kernels.19

Guiding Design Principles. The 
dual goals of access-control extensi-
bility and encouraging upstream and 
downstream vendor engagement mo-
tivated several design principles for 
the MAC Framework:

Do not commit to a specific access-
control policy. There is no consensus 
on a single policy or even policy lan-
guage; instead, capture policy models 
in C code.

Avoid policy-specific intrusions into 
the kernel. Encapsulate internals be-
hind policy-agnostic interfaces. This 
leads naturally to object-centered de-
sign—access-control checks with re-
spect to subjects, objects, and methods.

Provide policy-agnostic infrastructure. 
This satisfies common requirements 
beyond access-control instrumenta-
tion, such as labeling and tracing.

Support multiple simultaneously 
loaded policies. In this way different 
aspects of policy, perhaps from differ-
ent vendors, can be independently ex-
pressed. For example, Trusted IRIX and 
Argus Pitbull both employed MLS for 
user-data confidentiality and Biba for 
trusted computing base (TCB) protec-
tion. Composition must be predictable, 
deterministic, and ideally sensible.

Impose structures that facilitate as-
surance arguments. This can be done 
by separating policy and mechanism 
via a reference monitor and through 
well-defined KPI semantics (for exam-
ple, locking).

Design for an increasingly concurrent 
kernel. Policies must not only behave 
correctly, but also scale with the fea-
tures they protect.

Architecture of the MAC Frame-
work. The MAC Framework, illustrated 
in Figure 2, is a thin layer linking kernel 
services, policies, and security-aware 
applications. Control passes from ker-
nel consumers to framework to poli-

The mac 
framework 
offers a logical 
solution to the 
problem of kernel 
access-control 
augmentation: 
extension 
infrastructure able 
to represent many 
different policies, 
offering improved 
maintainability and 
supported by the 
operating-system 
vendor.
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 ˲ Policy entry points connect the 
framework and policies, adding ex-
plicit label arguments relative to corre-
sponding kernel-service entry points. 
They are supplemented by policy life-
cycle events and library functions. 

cies through roughly 250 entry points 
(object types × methods):

 ˲ Kernel-service entry points allow 
subsystems (for example, VFS) to en-
gage the reference-monitor framework 
in relevant events and access control.

Policies need implement only the entry 
points they require.

 ˲ Applications manage labels (on 
processes and files, among others) us-
ing the label-management API.

 ˲ DTrace probes allow entry-point 
tracing, profiling, and instrumentation.8

Collectively, these interfaces allow 
policies to augment kernel access con-
trol in a maintainable manner.

Entry-Point Invocation. To under-
stand how these layers interact, let’s fol-
low a single file-write check through the 
kernel. Figure 3 illustrates vn _ write, 
a VFS function implementing the 
write and writev system calls. The 
mac _ vnode _ check _ write ker-
nel service-entry point authorizes a write 
to a vnode (vp) by two subject creden-
tials: fp->f _ cred, which opened the 
file, and active _ cred, which initi-
ated the write operation. Policies can 
implement Unix capability semantics 
(fp->f _ cred) or revocation seman-
tics (active _ cred). The vnode lock 
(vp->v _ lock)is held over both check 
and use, protecting label state and pre-
venting time-of-check-to-time-of-use 
race conditions.

Arguments excluded from entry 
points are as important as those in-
cluded. For example, vn _ write’s 
data pointer (uio) is omitted, as this 
data resides in user memory and can-
not be accessed race-free with respect 
to the write. Similar design choices 
throughout the framework discourage 
behavior not safely expressible through 
the kernel synchronization model.

Wherever possible, it is best to take 
the perspective that kernel subsys-
tems implement labeled objects, and 
that policies may be enforced through 
controls on method invocation. This 
approach is a natural fit for the ker-
nel, which adopts an object-oriented 
structure despite an absence of lan-
guage features in C. Once objects have 
been identified, placing entry points 
requires care: the more granular the 
KPI, the more expressive policies can 
be—at the cost of policy complexity. 
The fewer the calling sites, the easier 
they are to validate; too few, however, 
leads to inadequate protection. Entry-
point design must also balance placing 
checks deep enough to allow insight 
into object types while minimizing en-
forcement points for a particular level 
of abstraction.

figure 3. vfS invokes the mac framework to authorize file writes.

static int
vn_write(struct file *fp, struct uio *uio,
     struct ucred *active_cred, int flags,
     struct thread *td)
{
 ...
          vn_lock(vp, lock_flags | LK_RETRY);
 ...
#ifdef MAC
          error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
          if (error == 0)
#endif
                    error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
 ...
          VOP_UNLOCK(vp, 0);
 ...
          return (error);
}

figure 4. framework access control on file writes; lock assertions and DTrace probes are 
central design elements.

int
mac_vnode_check_write(struct ucred *active_cred,
     struct ucred *file_cred, struct vnode *vp)
{
          int error;

          ASSERT_VOP_LOCKED(vp, “mac_vnode_check_write”);
          MAC_POLICY_CHECK(vnode_check_write, active_cred,
               file_cred, vp, vp->v_label);
          MAC_CHECK_PROBE3(vnode_check_write, error,
               active_cred, file_cred, vp);
          return (error);
}

figure 5. Biba authorization of file writes.

#define LABEL(l) ((struct mac_biba *)mac_label_get((l), biba_slot))

static int
biba_vnode_check_write(struct ucred *active_cred,
     struct ucred *file_cred, struct vnode *vp,struct label *vplabel)
{
      struct mac_biba *subj, *obj;

      if (!biba_enabled || !revocation_enabled)
           return (0);
      subj = LABEL(active_cred->cr_label);
      obj = LABEL(vplabel);
      if (!biba_dominate_effective(subj, obj))
         return (EACCES);
    return (0);
}
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Figure 4 illustrates mac _ vnode _
check _ write, a thin shim that as-
serts locks, invokes interested policies, 
and fires a DTrace probe. Policies are 
not prohibited from directly accessing 
vnode fields; however, passing an ex-
plicit label reference avoids encoding 
vnode structure layout into policies 
in a common case, improving KPI and 
KBI resilience.

Policy entry-point invocation, en-
capsulated in MAC _ POLICY _ CHECK, 
is nontrivial: access to the policy list 
must be synchronized to prevent races 
with module unload, interested poli-
cies must be called, and results must be 
composed. The framework employs a 
simple composition metapolicy: if any 
policy returns failure, then access is de-
nied. For example, an EACCES returned 
by Biba would be selected in preference 
to 0 (success) returned by MLS. The 
only exception lies in privilege exten-
sions discussed later. This metapolicy 
is simple, deterministic, predictable by 
developers, and above all, useful.

Figure 5 illustrates Biba invocation: 
Biba checks its revocation configura-
tion, unwraps policy-specific labels, 
and computes a decision using its 
dominance operator.

Kernel-Object Labeling. Many ac-
cess-control policies label subjects 
and objects in order to support access-
control decisions (for example, integ-
rity or confidentiality levels). The MAC 
Framework provides policy-agnostic 
label facilities for kernel objects, la-
bel-management system calls, and 
persistent storage for file labels. Poli-
cies control label semantics—not only 
the bytes stored, but also the memory 
model: policies might store per-in-
stance, reference-counted, or global 
data. For example, when a process 
creates a new socket, Biba propagates 
the current subject integrity level (for 
example, low) to the socket label. The 
partition policy, concerned with inter-
process access control, labels only 
processes and not sockets, so will not 
assign a label value for the socket.

The framework represents label 
storage using struct label, which 
is opaque to both kernel services and 
policies. Where object types support 
metadata schemes (for example, mbuf 
tags that hold per-packet metadata), 
those are used; otherwise, label point-
ers are added to core structures (for 
example, vnode). Policies may borrow 
existing object locks to protect label 

data, where supported by the synchro-
nization model.

from Research to Product
Having presented the design of the 
MAC Framework, let’s turn our at-
tention to policies found in FreeBSD-
derived commercial or open source 
products. Table 1 and Figure 6 illus-
trate several such policy modules, their 
feature footprints, and ship dates. A 
number of factors contributed to the 
success of this transition:

The need for new access control was 
pressing. The classic Unix model failed 
to meet the needs of ISPs, firewalls, 
and smartphones. Simultaneously, the 
threat of attack became universal with 
ubiquitous networking and strong fi-
nancial incentives for attackers.

Structural arguments for a frame-
work were correct. Access-control ex-
tensibility is the preferred way of sup-
porting security localization, catering 
to diverse requirements.

No one policy model has become domi-
nant. Therefore, many must be supported.

Hardware performance improvement 
increased tolerance for security over-
head. This was true even in consumer 
and embedded devices.

      

Table 1. comparison of policies and their feature footprints.

name oSS cP Product Type Lab Priv Proc vfS iPc net aPi Sig

mac none P - freebsd null policy - - - - - - - -

mac_stub P - freebsd template policy P P P P P P P -

mac_test P - freebsd framework self-test P - P P P P P -

mac_ugidfw P P freebsd file system firewall - - - P - - - -

mac_biba P P freebsd fixed integrity P P P P P P P -

mac_lomac P ? freebsd floating integrity P P P P P P P -

mac_mls P ? freebsd Confidentiality P - P P P P P -

sebsd P P freebsd type enforcement P P P P P P P -

sandbox - P apple os X rule-based P P P P P - P P

quarantine - P apple os X taint-based P - - P - - P -

tmsafetynet - P apple os X fixed integrity P - - P - - P -

amfi - P apple ios fixed integrity - P P - - - - P

sandbox - P apple ios rule-based P P P P P - P P

mac_runasnonroot - P apple ios hardening - - P - - - - P

mac_pcap - P Juniper Junos grant bPf privs P P - P - P P -

mac_veriexec - P Juniper Junos signed binaries P - - P - - - P

sidewinder_te - P Mcafee sidewinder type enforcement P P P P P P P -

mac_ncircle - P nCircle iP360 hardening - P - P - - - -

Key:
oss: open source software
CP: shipped in a commercial product
lab: uses subject or object label facility

Priv, Proc, vfs, iPC, net: implements  
access-control entry points for privileges,  
processes, file system, interprocess  
communication, or the network stack

aPi: uses MaC framework application aPis
sig: provides or depends on application  
digital signatures
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Open source technology transition 
works. FreeBSD provided not only a fo-
rum for collaborative research and de-
velopment, but also a pipeline to com-
mercial products.

The framework has evolved con-
siderably since 2003 thanks to contri-
butions from companies deploying it 
in products.

freeBSD
FreeBSD is an open source operat-
ing system used to build online ser-
vices, appliances, and embedded 
devices. FreeBSD or its components 
can be found in data centers (Inter-
net Systems Consortium, Yahoo!), as 
a foundation for integrated products 
(NetApp and EMC Isilon storage ap-
pliances), and in embedded/mobile 
devices (Juniper switches and Apple 
iPhones). Its origins lie in BSD (the 
Berkeley Software Distribution), de-
veloped in the 1970s and 1980s.12 BSD 
originated a number of central Unix 
technologies, including FFS (the Fast 
File System) and the Berkeley TCP/IP 
stack and sockets API. The BSD license 
and its variations (MIT, CMU, ISC, 
Apache) have encouraged technol-
ogy transition by allowing unrestricted 
commercial use. FreeBSD’s diverse 
consumers both motivate and are the 
perfect target for security localization.

The MAC Framework is a com-
plex piece of software; although the 
framework itself is only 8,500 lines of 

code, with 15,000 lines in reference 
policies, it integrates with a multi-
million-line kernel. The transition to 
production relied on several factors, 
including increasing confidence in 
mediation and response to commu-
nity feedback on design, compatibil-
ity, and performance. The framework, 
as first shipped in FreeBSD 5.0, was 
marked as experimental, with several 
implications:

 ˲ Enabling it required recompiling 
the kernel.

 ˲ Documentation marked it as po-
tentially incomplete, unstable, or inse-
cure, and therefore unsupported.

 ˲ Programming and binary interface 
(API, KPI, ABI, and KBI) stability was 
disclaimed, allowing change without 
formal depreciation.

Merging the framework while still 
experimental was key to gaining users 
who could help validate and improve 
the approach, while retaining the flex-
ibility to make changes. Two concerns 
needed to be addressed before the 
framework could be considered pro-
duction worthy:

 ˲ Binary compatibility impact for 
the kernel, policies, and other modules 
must be better understood.

 ˲ Performance must be analyzed and 
optimized based on community review.

KPI and KBI Resilience. FreeBSD 
policy dictates that certain classes of 
kernel modules compiled against a 
release must work with later minor 

versions in the same series (for ex-
ample, a FreeBSD 9.0 network device 
driver should work with FreeBSD 9.1). 
The goals were to avoid disrupting the 
KBIs of consumer subsystems and 
to offer similar levels of binary com-
patibility for policy modules. Label 
storage opacity for subsystems and 
policies was the primary area of refine-
ment, which avoids encoding kernel 
data-structure internals into policies 
if they require only label access, as 
well as providing flexibility to change 
label implementation.

Performance Optimization. Many 
FreeBSD deployments are extremely 
performance sensitive, requiring 
minimal overhead, especially if the 
framework is disabled. As sites se-
lect policies based on local security-
performance trade-offs, it is also de-
sirable for policies to incur only the 
performance penalties of features 
they actually use—performance pro-
portionality. As shipped in FreeBSD 
5.0, however, regressions were mea-
surable, an obstacle to enabling the 
framework by default.

Label Allocation Trade-offs. Even 
when the framework was compiled 
out, bloat from adding a label to ker-
nel data structures (especially packet 
mbufs) created significant allocation-
time zeroing cost. In FreeBSD 5.1, in-
lined mbuf labels were replaced with 
pointers, and for all object types in 
5.2; this decreased costs for non-MAC 

figure 6. Timelines of selected mac framework-based product ship dates.

20012000 2004 200720052002 200920062003 2010 201220112008 2013

January 2003: freebsd 5.0 released 
with MaC framework marked as an 
experimental feature

July 2007: nCircle ships iP360 6.7 
with MaC framework policy

January 2007: secure Computing 
Corporation (later Mcafee)  
ships sidewinder 7.0 product  
with MaC framework

2009: Juniper ships Junos using the MaC 
framework for access control

november 2009: freebsd 8.0 released with 
MaC framework in default kernel marked 
as a production feature

october 2007: apple ships os X 
leopard with MaC framework 
support and sandboxing model

april 2010 apple 
ships iPad with  
app sandboxing

July 2008: apple ships iPhone  
os 2.0 with app store and 
sandboxed third-party applications

2010: apple completes  
eal 3+ evaluation with MaC 
framework enforcement

July 2011: apple ships  
os X lion with preliminary 
app sandboxing

July 2012: apple ships 
os X Mountain lion with 
mandatory app sandboxing
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kernels at the expense of additional 
allocation and indirection for MAC-
enabled kernels.

Label allocation was even more 
measurable with the framework en-
abled—and unnecessary for unla-
beled policies. The effect was most 
pronounced with network packets 
and led, in FreeBSD 5.1, to a per-poli-
cy flag to request packet labels. In 8.0, 
this approach was generalized so that 
labels were allocated only for object 
types for which at least one loaded 
policy defined an initialization entry 
point. This effectively eliminated the 
cost of labeling when not required by 
a policy, restoring performance pro-
portionality and satisfying the general 
case well. However, one commercial 
product that used packet labeling, the 
McAfee Sidewinder Firewall, saw suf-
ficient overhead to bypass the label 
abstraction in favor of direct struc-
ture modification.

Minimizing Synchronization Over-
heads. With the framework compiled in, 
lock-protected reference count opera-
tions on entry-point invocation were eas-
ily measurable for frequent operations, 
such as per-packet delivery checks. As 
multicore hardware became more com-
mon, lock (and later cache-line) conten-
tion also became significant.

Beginning in FreeBSD 5.2, policies 
were divided into static and dynamic 
sets to help fixed-configuration em-
bedded systems. The former were com-
piled in or loaded at boot and unload-
able thereafter, and hence required no 
synchronization. Dynamic policies—
those loaded after boot, or potentially 
unloadable—still required multiple 
lock operations.

In FreeBSD 8.0, synchronization 
was further optimized so that the MAC 
Framework could be shipped in the de-
fault kernel. This effort benefited from 
continuing improvements in kernel 
scalability driven by increasingly com-
mon eight-core machines. Particularly 
critical were read-mostly locks, which 
do not trigger cache-line migrations 
during read-only acquisition, at the 
cost of more expensive exclusive ac-
quisition—perfect for infrequently 
changed policy lists.

ncircle iP360 appliance
nCircle Network Security produces a 
FreeBSD-based appliance, the IP360, 

to scan networks for vulnerable soft-
ware and Sarbanes-Oxley compliance. 
While most of its security require-
ments could be captured with conven-
tional DAC, customers requested the 
ability to audit appliance content and 
configuration directly. To meet this 
requirement, while limiting potential 
damage in case audit access is misused 
or compromised, nCircle developed a 
custom policy.

The policy authorizes an audit user 
to read all file-system and configura-
tion data, bypassing permissions, 
while also preventing file-system 
writes. The MAC Framework could ex-
press only a subset of this augmenta-
tion: policies could constrain rights 
but not grant them. nCircle therefore 
enhanced the framework to allow con-
trol over fine-grained system privileges.

Privilege Extensions. Operating-sys-
tem privilege confers the right to bypass 
operating-system security policies (for 
example, changing system settings or 
overriding DAC or the process model). 
In classic Unix, system privileges are 
granted to any process running as the 
root user. To meet nCircle’s goals, a 
policy must be able to augment the ker-
nel’s default privilege policy to grant 
(and moderate) privileges for other us-
ers. This presented two technical chal-
lenges: how to identify and distinguish 
different types of privilege; and how to 
add extensibility to the existing privilege 
model. These problems resemble, in mi-
crocosm, the larger concern addressed 
by the MAC Framework—structuring of 
a reference monitor for extensibility—
and seemed a natural fit despite a depar-
ture from the original design choice to 
only limit, rather than grant, rights.

All existing kernel privilege checks 
were analyzed and replaced with checks 
for specific named privileges. Privilege 
checking was then reworked to include 
an explicit composition policy for 
sources and limitations of privilege, 
including two new MAC Framework 
entry points: mac _ priv _ check fol-
lows the standard entry-point conven-
tions, accepting a credential, named 
privilege arguments, and restrict-
ing privileges by returning an error; 
mac _ priv _ grant diverges from 
this model by overriding the base oper-
ating-system policy to grant new rights, 
using a new composition operator that 
allows any policy to grant a right, rather 

it is desirable for 
policies to incur only 
the performance 
penalties of  
features they 
actually use—
performance 
proportionality.
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than requiring them all to agree.
Existing policies were updated to 

take advantage of the new features, 
providing stronger nondiscretionary 
control of the root user. For example, 
the Biba policy now limits access to a 
number of privileges that might allow 
bypass of the process model or system 
reconfiguration when operating as the 
root user without Biba privilege. These 
features shipped in FreeBSD 7.0.

The nCircle MAC Policy. The nCircle 
policy extends (and restricts) rights 
available to the audit user:

 ˲ It identifies a specific user ID to 
which all remaining policy activities 
apply.

 ˲ Privileges are granted, including 
read access to the kernel log and fire-
wall configuration, and file read/look-
up protections are overridden.

 ˲ VFS entry points deny write access 
to all objects and read access to certain 
files such as the password file. 

With these enhancements, the nCir-
cle policy is able to combine controlled 
privilege escalation with mandatory 
constraints, meeting product needs 
while minimizing local operating-sys-
tem modification.

Juniper Junos
The Junos router operating system 
runs on the control planes of all Juni-
per routers and switches. Juniper main-
tains substantial local modifications to 
FreeBSD and is undergoing a multiyear 
process to minimize its patches by re-
turning improvements to the FreeBSD 
community and increasing use of oper-
ating-system extensibility frameworks 
that allow local features to be cleanly 
grafted onto an unmodified operating 
system. As part of that project, Juniper 
has been moving local security exten-
sions into MAC Framework policies, 
both to reduce conflicts during FreeBSD 
updates and to prepare certain policies 

for upstreaming. Junos ships with four 
local security extensions:

 ˲ mac _ runasnonroot. Ensures 
that third-party applications written 
against the Junos SDK are not run as 
the root user.

 ˲ mac _ pcap. Allows Junos SDK 
applications to capture packets despite 
not running as root.

 ˲ mac _ veriexec. Implements 
support for digitally signed binaries.

 ˲ Junos SDK sandboxing. Constrains 
third-party applications based on mac_
veriexec certificates.

The mac _ runasnonroot and 
mac _ pcap extensions first shipped 
as framework policies in 2009. Then 
mac _ veriexec shipped in 2012, 
replacing a previous directly patched 
implementation. Juniper is preparing 
to migrate Junos SDK sandboxing to 
the MAC Framework to reduce local 
patches further, as well as upstream 
mac _ veriexec.

These policies required minor 
changes to the MAC Framework, includ-
ing additional entry points; perhaps 
most interesting is a new O _ VERIFY 
flag to the open system call, which sig-
nals to the framework that the user-
space runtime linker has requested that 
a file be validated.

apple oS X and ioS
In quick succession, Apple released 
versions of OS X Leopard for the desk-
top/server in 2007, and iPhone OS 2 for 
the iPhone and iPod Touch in 2008, 
incorporating the MAC Framework as 
a reference-monitor framework. OS 
X Snow Leopard shipped with three 
MAC policies:

 ˲ Sandbox. Provides policy-driven 
sandboxing of risky components that 
process untrustworthy data such as 
network services and video codecs.

 ˲ Quarantine. Taints downloaded 
files, supporting a user dialog display-

ing the originating website.
 ˲ Time Machine Safety Net. Protects 

the integrity of Time Machine backups.
With OS X Mountain Lion, applica-

tions distributed via Apple’s App Store 
have mandatory sandboxing. Apple’s 
iOS 2.0 shipped with two policies: 
Sandbox and one additional:

 ˲ Apple Mobile File Integrity (AMFI). 
Works in concert with a code-signing 
facility, terminating apps whose digi-
tal signatures have been invalidated at 
runtime; exempts debugging during 
app development.

Collectively the policies support sys-
tem integrity and provide strong sepa-
ration between apps in order to keep 
data private. Both OS X and iOS diverge 
substantially from our design expecta-
tions for the MAC Framework, requir-
ing significant adaptation.

XNU Prototype. Apple began beta 
testing OS X in 2000, and the promise 
of a commodity desktop operating sys-
tem with an open source kernel was 
difficult to ignore. The XNU kernel is 
a sophisticated blend of Carnegie Mel-
lon University’s Mach microkernel, 
FreeBSD 5.0, cherry-picked newer Free-
BSD elements, and numerous features 
developed by Apple. With these foun-
dations, it seemed likely that the MAC 
Framework approach, and even code, 
would be reusable.

Though not a microkernel, XNU 
(short for X is not Unix) adopts many 
elements from Mach, including its 
scheduler, interprocess communica-
tion (IPC) model, and VM system. The 
FreeBSD process model, IPC, network 
stack, and VFS are grafted onto Mach, 
providing a rich POSIX program-
ming model. Apple-developed kernel 
components in the first release of OS 
X included the I/O Kit device-driver 
framework, network kernel extensions 
(NKEs), and the HFS+ file system; this 
list has only grown over time.

Table 2. apple oS X applications may use one of several statically configured profiles, or define their own.

Profile Description

ksbXProfilenointernet tCP/iP networking is prohibited

ksbXProfilenonetwork all sockets-based networking is prohibited

ksbXProfilenoWrite file-system writes are prohibited

ksbXProfilenoWriteexcepttemporary file-system writes are restricted to temporary folders

ksbXProfilePureComputation only Mach iPC to the host process is permitted
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Interesting questions abounded: 
for example, would ideas developed in 
the DTMach16 and DTOS17 microker-
nel projects apply better or worse than 
the monolithic kernel approach in the 
MAC Framework? Between 2003 and 
2007, the increasingly mature MAC 
Framework was ported to OS X.18

Adapting to OS X. The MAC Frame-
work required a detailed analysis of 
the FreeBSD kernel and is tightly in-
tegrated with low-level memory man-
agement and synchronization, as well 
as higher-level services such as the file 
system, IPC, and network stack. While 
the adaptation to OS X was able to rely 
heavily on Apple’s use of FreeBSD com-
ponents, fundamental changes were 
needed to reflect differences between 
FreeBSD and XNU.

The first step was integrating the 
MAC Framework with the closely 
aligned BSD process model, file system, 
and network stack. High-level architec-
tural alignment made some of the ad-
aptation easy, but nontrivial differenc-
es were also encountered. For example, 
FreeBSD’s Unix file system (UFS) con-
siders directories to be specialized file 
objects, whereas HFS+ considers the 
directory and object attribute struc-
ture, or disk catalog, to be a first-class 
object. This required changes to both 
the framework and XNU.

Next, coverage was extended to in-
clude Mach tasks and IPC. Each XNU 
process links a Mach task (schedul-
ing, VM) with a FreeBSD process (cre-
dentials, file descriptors), presenting 
a philosophical problem: is the MAC 
Framework part of Mach or BSD? 
While useful architecturally, the Mach-
BSD boundary in XNU proves artificial: 
references frequently span layers, re-
quiring the MAC Framework to serve 
both. Label modifications on BSD pro-
cess labels are mirrored to correspond-
ing Mach task labels.

Mach ports are another case in 
which microkernel origins come into 
conflict with the monolithic kernel 
premise of the MAC Framework. Un-
like BSD IPC objects, with kernel-
managed namespaces, Mach ports rely 
on userspace namespaces managed 
by launchd (for example, for desk-
top IPC). Taking a leaf from DTOS, 
launchd is responsible for labeling 
and enforcement but queries the ref-
erence monitor to authorize lookups. 

A userspace label handle abstraction 
similar to the kernel label structure 
serves this purpose.

Adoption by Apple. Apple is the 
world’s largest vendor of desktop Unix 
systems and was among the first to de-
ploy Unix in a smartphone. It has like-
wise seen exploding use cases and new 
security requirements motivated by 
ubiquitous networking and malicious 
attackers. Apple’s adoption of the MAC 
Framework was not assured, however, 
as competing technologies were also 
considered, motivated by similar ob-
servations, awareness of future prod-
uct directions, performance concerns, 
and our research.

Alternatives included system-call 
interposition-based technology similar 
to that discussed earlier, and Apple’s 
Kauth3 (short for kernel authorization), 
an authorization framework targeted 
at antivirus vendors (modeled in part 
on the MAC Framework). Apple found 
arguments about the fallibility of sys-
tem-call interposition convincing, and 
in the end adopted two technologies: 
Kauth for third-party antivirus vendors; 
and the more expressive and capable 
MAC Framework for its own sandbox-
ing technologies.

The Sandbox Policy. Since Apple’s 
OS X and iOS policy modules are not 
open source, we are unable to consid-
er their implementations, but public 
documentation exists for the Sandbox 
policy used by Mac OS X components 

and third-party applications such as 
Google’s Chrome Web browser. Sand-
box allows applications voluntarily to 
restrict their access to resources (for ex-
ample, the file system, IPC namespac-
es, and networking). Process sandbox 
profiles are stored in process labels.

Bytecode-compiled policies can be 
set via public APIs, or by the sandbox-
exec helper program. Applications 
may select from several Apple-defined 
policies (Table 2) or define custom poli-
cies. Several applications use default 
policies such as the iChat video codec, 
which employs the computation-only 
profile limited to IPC with the host pro-
cess. Many other software components, 
such as Spotlight indexing, the BIND 
name server, Quicklook document pre-
views, and the System Log Daemon, uti-
lize custom profiles to limit the effects 
of potential vulnerabilities.

Figure 7 shows excerpts from the 
common.sb profile used by Chrome, 
illustrating key Sandbox constructs: 
coarse controls for sysctl kernel-man-
agement interfaces and shared memo-
ry, and fine-grained regular expression 
matching of file paths. File path-based 
control is a highlight of the Sandbox 
policy, addressing programmer mod-
els much better than file labels in Biba, 
MLS, and TE. Path-based schemes are 
difficult to implement on the Unix VFS 
model, which considers paths to be 
second-class constructs. Whereas Free-
BSD permits files to have zero (unlinked 

figure 7. chrome oS X sandbox policy excerpts.

(deny default)

; Allow sending signals to self - http://crbug.com/20370
(allow signal (target self))

; Needed for full-page-zoomed controls -
; http://crbug.com/11325
(allow sysctl-read)

; Allow following symlinks
(allow file-read-metadata)

; Loading System Libraries.
(allow file-read-data
  (regex #”^/System/Library/Frameworks($|/)”))
(allow file-read-data
  (regex #”^/System/Library/PrivateFrameworks($|/)”))
(allow file-read-data
  (regex #”^/System/Library/CoreServices($|/)”))

; Needed for IPC on 10.6
(allow ipc-posix-shm)
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The mac framework 
has become 
the foundation 
for numerous 
instances of 
security localization, 
allowing local 
access-control 
policies to be 
composed with 
the still-popular 
unix discretionary 
access control 
model.

but open), one, or multiple names 
(hard links), HFS+ implements a par-
ent pointer for files and ensures that the 
name cache always contains the infor-
mation required to calculate unambig-
uous paths for in-use files.

While Sandbox is used with many OS 
X services, a number of third-party ap-
plications incorporate strong assump-
tions of ambient authority, the ability to 
access any object in the system. With 
the iPhone, Apple broke this assump-
tion: applications execute in isolation 
from system services and each other. 
This model is now appearing in OS X 
and could similarly help protect device 
integrity against misbehaving apps 
and, increasingly, end-user data.

Performance Optimizations. OS X 
and iOS were shipped with the MAC 
Framework prior to FreeBSD 8.0’s per-
formance optimizations, requiring 
Apple to make its own optimizations 
based on product-specific constraints. 
As with FreeBSD optimizations, these 
were generally concerned with the over-
head of framework entry and labeling. 
By default, labeling is compiled out of 
the kernel for certain object types; for 
others, such as vnodes, policies may 
selectively request label allocation, ca-
tering to the often-sparse labeling use 
in OS X’s policies.

In FreeBSD, framework instrumen-
tation and synchronization optimiza-
tions rely on all-or-nothing distinc-
tions between sites willing to pay for 
additional access-control extension. 
In OS X, the assumption is that sand-
boxing is used on most machines, but 
selectively applied to high-risk process-
es. To this end, each process carries a 
mask, set by policies, indicating which 
object types require enforcement. As 
OS X adopts more universal sandbox-
ing, as is the case in iOS, it may be de-
sirable to apply more global optimiza-
tions as in FreeBSD.

Reflections
Over the past decade, the MAC Frame-
work has become the foundation for 
numerous instances of security local-
ization, allowing local access-control 
policies to be composed with the still-
popular Unix discretionary access con-
trol (DAC) model—a timely conver-
gence of industry requirements and 
research. Deploying via open source 
proved a successful strategy, providing 

a forum for collaborative refinement, 
access to early adopters, and a path to 
numerous products. 

Perhaps the most surprising adop-
tion was at McAfee itself: when the 
framework was open sourced by 
McAfee Research, Secure Computing 
Corporation (then a competitor) ad-
opted it for Sidewinder, which McAfee 
later acquired. More generally, this 
speaks to the success of open source in 
providing a venue in which competing 
companies can collaborate to develop 
common infrastructure technolo-
gies. The industry’s adoption of open 
source foundations for appliances and 
embedded devices has been well-ca-
tered to by our access-control extensi-
bility argument:

 ˲ Security localization in devices has 
become widespread.

 ˲ The criticality of multiprocessing 
has only increased.

 ˲ Security label abstractions have 
proven beneficial beyond their MAC 
roots.

 ˲ Non-consensus on access-control 
policies continues.

The MAC Framework, however, also 
required refinement and extension to 
address several unanticipated concerns:

 ˲ The desire to revisit the structure 
of Unix privilege.

 ˲ The importance of digital signa-
tures when applying access control to 
third-party applications.

 ˲ Continued tensions over the desire 
for name-based vs. label-based access 
control.

New Design Principles. In light of 
extensive field experience with the 
MAC Framework, we have added sev-
eral new design principles:

Policy authors determine their own 
performance, functionality, and assur-
ance trade-offs. Policies may not re-
quire heavyweight infrastructure (for 
example, labels), so offer performance 
proportionality.

Traceability is a key design concern.
Programming and binary interface 

stability is critical. API, ABI, KPI, and 
KBI sustainability is often overlooked 
in research, where prototypes are fre-
quently one-offs without multi-decade 
support obligations.

Manipulating operating-system privi-
lege is important to policies that augment 
rather than supplement DAC. 

It is clear from the work of down-
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stream consumers, however, that 
two further principles are now also 
necessary:

Application authors are first-class 
principals. Apple’s App Store and Ju-
niper’s SDK both employ application 
signatures and certificates as policy 
inputs.

Applications themselves require flex-
ible access control to support application 
compartmentalization.

This latter observation led us to 
develop the application-focused Cap-
sicum protection model,21 recently 
shipped as an experimental feature in 
FreeBSD 9.0. It can be viewed as com-
plementary to policy-driven kernel ac-
cess control.

Domain-Specific Policy Models. 
Why no consensus has been reached in 
the expression of operating-system pol-
icies is an interesting question—cer-
tainly, proponents of successive policy 
models have argued that their models 
capture the key concerns in system 
design. In catering to a variety of mod-
els, our observations are twofold: first, 
policy models aim to capture aspects of 
the principle of least privilege15 but often 
in fundamentally different forms (for 
example, information flow vs. system 
privileges), making their approaches 
complementary; second, different 
models address different spaces in a 
multidimensional trade-off between 
types of expression, assurance, perfor-
mance, administrative complexity, im-
plementation complexity, compatibil-
ity, and maintainability. This instead 
reflects a consensus for domain-specific 
policy models.

The Value of Extensibility. Does the 
need for significant design enhance-
ment confirm or reject the hypoth-
esis of access-control extensibility? 
Further comparison to similar frame-
works, such as VFS and device drivers, 
seems appropriate: both are regularly 
extended to adapt to new require-
ments such as changes in distributed 
file-system technology or improve-
ment in power management. The 
willingness of industrial consumers 
to extend the framework and return 
improvements reflects our fundamen-
tally economic hypothesis regarding 
extensibility: managing the upstream-
downstream relationship for signifi-
cant source-code bases is a strong mo-
tivator. Widespread and continuing 

deployment of the MAC Framework 
appears to confirm the more general 
argument that access-control extensi-
bility is a critical aspect of contempo-
rary operating-system design.
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