
REPRIV: Re-Imagining Content Personalization and In-Browser Privacy

Matthew Fredrikson
University of Wisconsin

Benjamin Livshits
Microsoft Research

Abstract—We present REPRIV, a system that combines the
goals of privacy and content personalization in the browser.
REPRIV discovers user interests and shares them with third-
parties, but only with an explicit permission of the user. We
demonstrate how always-on user interest mining can effectively
infer user interests in a real browser. We go on to discuss an
extension framework that allows third-party code to extract and
disseminate more detailed information, as well as language-based
techniques for verifying the absence of privacy leaks in this
untrusted code. To demonstrate the effectiveness of our model,
we present REPRIV extensions that perform personalization
for Netflix, Twitter, Bing, and GetGlue. This paper evaluates
important aspects of REPRIV in realistic scenarios. We show
that REPRIV’s default in-browser mining can be done with no
noticeable overhead to normal browsing, and that the results
it produces converge quickly. We demonstrate that REPRIV
personalization yields higher quality results than those that may
be obtained about the user from public sources. We then go on
to show similar results for each of our case studies: that REPRIV
enables high-quality personalization, as shown by cases studies in
news and search result personalization we evaluated on thousands
of instances, and that the performance impact each case has on
the browser is minimal. We conclude that personalized content
and individual privacy on the web are not mutually exclusive.

I. INTRODUCTION

The motivation for this work comes from the observation
that personalized content on the web is increasingly relevant.
This means more web service providers are interested in
learning as much about their users as they can so that they
can better target their ads or provide this personalization. Users
might welcome content, ad, and site personalization as long
as it does not unduly compromise their privacy.

In today’s web, for service providers, personalization oppor-
tunities are limited. Even if sites like Amazon and Facebook
allow or sometimes require authentication, service providers
only know as much about the user as can be gathered through
interaction with the site. A user might only spend a few
minutes a day on Amazon.com, for example. This is minuscule
compared to the amount of time the same user spends in the
browser. This suggests a simple lesson: the browser knows
much more about you than any particular site you visit. Based
on this observation, we suggest the following strategy, which
forms the basis for REPRIV:

1) Let the browser infer information about the user’s inter-
ests based on his browsing behavior, the sites he visits,
his prior history, and detailed interactions on web sites
of interest to form a user interest profile. Optionally, this
profile can by synched with a cloud storage device for
use on multiple systems.

2) Let the browser control the release of this information.
For instance, upon the request of a site such as Ama-

zon.com or BarnesAndNoble.com, the user will be asked
for a permission to send her high-level interests to the
site. This is similar to prompting for the permission to
obtain the geo-location in today’s mobile browsers. By
default, more explicit information than this, such as the
history of visited URLs would not be exposed to the
requesting site. It is an important design principle of
REPRIV that the user stay in control of what information
is released by the browser.

3) Because the information provided by default user inter-
est mining may not suit all needs, REPRIV allows ser-
vice providers to register extensions that would perform
information extraction within the browser. For instance,
a Netflix extension (or miner) may extract information
pertinent to what movies the user is interested in. The
miner may use the history of visiting Fandango.com to
see what movies you saw in theaters in the past. REPRIV
miners are statically verified at the time of submission
to disallow undesirable privacy leaks.

This approach is attractive for web service providers because
they get access to user’s preferences without the need for
complex data mining machinery, and is in any case based on
limited information. It is also attractive for the user because of
better ad targeting and content personalization opportunities.
Moreover, this approach opens up an interesting new business
model: service providers can incentivize users to release their
preferences in exchange for store credit, ad-free browsing, or
access to premium content. Compared to prior research [14,
34], the appeal of REPRIV is considerably more extensive as
it enables the following broad applications:

1) Personalized search. Search results from a variety of
search engines can be re-ranked to match user’s prefer-
ences as well as their browsing history (Section VI-A).

2) Site personalization. Sites such as Google News,
CNN.com, or Overstock.com can be easily adapted
within the browser to match user’s news or shopping
preferences (Section VI-B).

3) Ad targeting. Although we do not explicitly focus on ad
personalization in this apper, REPRIV enables browser-
based ad targeting as suggested by Adnostic [34] and
Privad [14].

Note that REPRIV is largely orthogonal to in-private browsing
modes supported by modern browsers. While it is still possible
for a determined service provider to perform user tracking
unless the user combines REPRIV with a browser privacy
mode such as InPrivate Browsing in Internet Explorer, it is
our hope that, going forward, the service provider will opt

for explicitly requesting user preferences through the REPRIV
protocol rather than using a back door.

A. Contributions

Our paper makes the following contributions:

• REPRIV. We present REPRIV, a system for controlling
the release of private information within the browser. We
demonstrate how built-in data mining of user interests
can work within an experimental HTML5 platform called
C3 [21].

• REPRIV protocol. We propose a protocol on top of
HTTP that can be used to seamlessly integrate REPRIV
with existing web infrastructure. We also show how
pluggable extensions can be used to extract more detailed
information, and how to check these third-party miners
for unwanted privacy leaks.

• Extension Framework. We developed a browser exten-
sion framework for allowing untrusted third-party code to
make use of REPRIV’s data. We discuss the API and type
system based on the Fine programming language [31]
that ensures these extensions do not introduce privacy
leaks. We developed six realistic miner examples that
demonstrate the utility of this framework.

• Evaluation. We demonstrate that REPRIV mining can be
done with minimal overhead to the end-user latency. We
also show the efficacy of REPRIV mining on real-life
browsing sessions and conclude that REPRIV is able to
learn user preferences quickly and effectively. We demon-
strate the utility of REPRIV by performing two large-scale
case studies, one targeting news personalization, and the
other focusing on search result reordering, both evaluated
on real user data.

• Monetization. In addition to being a way to improve
the current ecosystem, we strongly believe that REPRIV
can replace the current approach of user tracking with
a legitimate, above-the-table marketplace for user infor-
mation that would enable user targeting. This new model
elaborated in Section II-E would allow direct interactions
between users and services, with REPRIV acting as a
broker in such transactions.

B. Paper Organization

The rest of the paper is organized as follows. Section II
provides some background on web privacy and personaliza-
tion and motivates the problem REPRIV attempts to solve.
Section III talks about REPRIV implementation and resulting
technical issues. Section IV discusses custom REPRIV miners
and their verification. Section V describes our experimental
evaluation. Section VI describes two detailed case studies, one
focusing on news and the other on search personalization.
Section VII discusses the topics of incentives for REPRIV
use, usability, deployment, etc. Finally, Sections VIII and
Section IX describe related work and conclude. Our technical
report [9] provides a more comprehensive experimental eval-
uation and contains listings of the miners references in this

paper. A closely related paper on IBEX presents our vision for
verified browser extensions [13].

II. OVERVIEW

We begin with a high-level discussion in Section II-A of
existing efforts to preserve privacy on the web, and how
REPRIV fits into this context. Section II-B talks about site
personalization and Section II-C motivates third-party person-
alization extensions that we call “miners”.

A. Background

One definition of privacy common in popular thought and
law is summarized as follows: individual privacy is a person’s
right to control information about one’s self, both in terms of
how much information others have access to, and the manner
in which others may use it. The web as it currently stands
is different from how it was initially conceived; it has trans-
formed from a passive medium to an active one where users
take part in shaping the content they receive. One popular form
of active content on the web is personalized content, wherein a
provider uses certain characteristics of a particular user, such
as their demographic or previous behaviors, to filter, select,
or otherwise modify the content that it ultimately presents.
This transition in content raises serious concerns about privacy,
as arbitrary personal information may be required to enable
personalized content, and a confluence of factors has made it
difficult for users to control where this information ends up,
and how it is used.

Because personalized content presents profit opportunity,
businesses have incentive to adopt it quickly, oftentimes
without user consent. This creates situations that many users
perceive as a violation of privacy. A prevalent example of
this is already seen with online targeted advertising, such as
that offered by Google AdSense [11]. By default, this system
tracks users who enable browser cookies across all web sites
that choose to partner with it. This tracking can be arbitrarily
invasive as it pertains to the user’s behavior at partner sites,
and in most cases the user is not explicitly notified that the
content they choose to view also actively tracks their actions,
and transmits it to a third party (Google). While most services
of this type have an opt-out mechanism that any user can
invoke, many users are not even aware that a privacy risk
exists, much less that they have the option of mitigating it.

As a response to concerns about individual privacy on the
web, developers and researchers continue to release solutions
that return various degrees of privacy to the user. One well-
known example is the private browsing modes available in
most modern browsers, which attempt to conceal the user’s
identity across sessions by blocking access to various types of
persistent state in the browser [1]. However, a recent study [1]
demonstrated that none of the major browsers implement this
mode correctly, leading to alarming inconsistencies between
user expectations and the features offered by the browser.
Even if private browsing mode were implemented correctly, it
inherently poses significant problems for personalized content

on the web, as sites are not given access to the information
needed to perform personalization.

Others have attempted to build schemes that preserve the
privacy of the user while maintaining the ability to person-
alize content. Most examples [10, 14, 19, 34] concern targeted
advertising, given its prevalence and well-known privacy im-
plications. For example, both PrivAd [14] and Adnostic [34]
are end-to-end systems that preserve privacy by performing
all behavior tracking on the client, downloading all potential
advertisements from the advertisor’s servers, and selecting the
appropriate ad to display locally on the client. Although these
systems differ in details regarding accounting and architecture,
they share a basic strategy for maintaining user privacy: keep
sensitive information local to the user, to simplify the matter
of control.

The goal of REPRIV is to enable general personalized
content on the web in a privacy-conscious manner. Like
PrivAd and Adnostic, REPRIV does this by keeping all of
the sensitive information necessary to perform personalization
close to the user, within the browser. However, REPRIV
differs from these systems both technically and in the notion
of privacy it considers. Because REPRIV does not target a
specific application, it does not attempt to completely hide all
personal information from the party responsible for providing
personalized content. Aside from the improbable technical
advances needed to make such a system practical, it is not
clear that content providers would take part in such a scheme,
as they would loose access to the valuable user data that they
currently use to improve their products and increase efficiency.
Rather, REPRIV leaves it to the user to decide which parties
may access the various types of data stored inside the browser,
and manages dissemination accordingly in a secure manner.

We posit that expecting the user to make this decision is not
only reasonable, but necessary given the constraints discussed
above. The basis of this decision must be two-fold, depending
both on the trust the user has in the content provider, as
well as the incentive the content provider gives the user for
access to his data. However, this type of decision is ultimately
similar to the type of decision a user makes when signing up
for an account at Amazon.com or Netflix.com: if she agrees
to the terms in the privacy policy, then he has deemed the
benefit offered by that site worth the reduction in personal
privacy needed to obtain it. This is the same negotiation
that REPRIV relies on to protect user privacy while still
enabling a diverse set of personalized applications. Thus, the
challenge of REPRIV is to facilitate the collection of personal
information from the browser in a manner flexible enough
to enable existing and future personalized applications, while
maintaining explicit user control over how that information is
used and disseminated to third parties on the web.

There are legitimate concerns as to whether users will pro-
vide meaningful policy guidance when prompted at run time.
First, we point out that interface design for policy prompts
is a very active area of research, and recent results [20]
indicate that well-thought out prompt design can significantly
improve user comprehension of policy implications. As to

whether users will simply be annoyed by repeated prompts for
permission, potentially leading them to authorize all accesses,
we assert that careful use of general policies, and limited use
of prompts, can minimize this issue.

For example, advocacy groups (e.g. the Electronic Freedom
Foundation [8]) could provide automatic policies based on
known trusted or untrusted domains, in a manner similar to the
DNS-based block lists (DNSBLs) provided free of charge to
the public [5]. Thus, if the user trusts the third-party advocacy
group or policy provider, a large number of prompts can be
avoided.

Our philosophy in REPRIV is to minimize user involvement
whenever possible. We point out that we only rely on users to
be able to understand simple contextual prompts; we do not
expect users to understand miner security policies described
in Section IV.

B. Motivating Personalization Scenarios

Several applications drove the development of REPRIV. We
briefly discuss a sampling of them in this section.
Content Targeting: Commonplace on many online merchant
web sites is content targeting: the inference and strategic place-
ment of content likely to compel the user, based on previous
behavior. Although popular sites such as Amazon.com and
Netflix.com already support this functionality without issue,
the amount of personal information collected and maintained
by these sites have real implications for personal privacy that
may surprise many users [26]. Additionally, the fact that the
personal data needed to implement this functionality is vaulted
on a particular site is an inconvenience for the user, who
would ideally like to use their personal information to receive
a better experience on a competitor’s site. By keeping all of
the information needed for this application in the browser,
REPRIV can solve both problems. The content provider can
ask the user’s browser for data as it needs it, and the user
can accept or decline requests either programatically or via a
high-level policy.
Targeted Advertising: Advertising serves as one of the
primary enablers of free content on the web, and targeted
advertising allows merchants to maximize the efficiency of
their efforts. REPRIV should facilitate this task in the most
direct way possible by allowing advertisers to consult the
user’s personal information in a consentual manner. Advertis-
ers have incentive to use the accurate data stored by REPRIV,
rather than collecting their own data, as the browser-computed
interests are more representative of the user’s complete brows-
ing behavior. Additionally, consumers are likely to select
businesses who engage in practices that do not seem invasive
or threatening.

C. Personalization Extensions

While the core mining mechanism in REPRIV is meant to
be as general-purpose as possible, the pace at which new per-
sonalized web applications is appearing suggests that REPRIV
will need an extra degree of flexibility to support up-and-
coming apps. A large part of our work focuses on an extension

Browser

Core mining Core mining
Core mining

Core mining
Miners

Personal store

3rd party
providers

1st party
providers

RePriv APIs

U
se

r
co

n
se

n
t

an
d

 p
o

lic
ie

s
Fig. 1: REPRIV architecture.

platform that enables near-arbitrary programmatic interaction
with the user’s personal data, in a verifiably privacy-preserving
manner.

Topic-Specific Functionality: Users may spend a large
amount of time at particular types of sites, e.g. movie-
related, science, or finance sites. Users will expect specific
personalization on these sites that cannot be provided by
a general-purpose behavior mining algorithm. To facilitate
this, third-party developers should be able to write extensions
that have site-specific understanding of user input, and are
able to mediate REPRIV’s stored personalization information
accordingly. For example, a plugin should be able to track the
user’s interaction with Netflix, observe which movies he likes
and dislikes, and update his interest profile to reflect these
preferences.

Web Service Relay: Many web API’s now provide services
relevant to personalization. For example, Netflix now has
an API that allows a third-party developer to programmati-
cally access information about the user’s account, including
their movie preferences and purchase history. Other exam-
ples allow a third-party developer to submit portions of a
user’s overall preference profile or history to receive content
recommendations or ratings; getglue.com, hunch.com, and
tastekid.com are all examples of this. REPRIV extensions
should be able to act as intermediaries between the user’s
personal data and the services offered by these API’s. For
example, when a user navigates to fandango.com, the site
can query an extension that in turn consults the user’s Netflix
interactions and Amazon purchases, and returns useful derived
information to Fandango for personalized show times or film
reviews.

Direct Personalization: In many cases, it is not reasonable to
expect a web site to keep up with the user’s personalization
expectations. It is often simpler to write an extension that can
access REPRIV’s repository of user information, and modify
the presentation of selected sites to reflect preferences. To
facilitate this need, REPRIV extensions should be able to
interact with and modify the DOM structure of selected web
sites to reflect the contents of the user’s personal information.

D. Incentives for Users, Service Providers, and Developers

Users: The incentives for users to adopt REPRIV are imme-
diate: REPRIV was designed to facilitate the types of person-
alized web experience that have become popular today, while
allowing users to maintain control of their personal informa-
tion. REPRIV also helps to solve the cold-start problem, where
a user visits a new web site and cannot recieve personalized
content for lack of data. Finally, we have demonstrated that
REPRIV’s performance overhead is minimal, so there is little
disincentive for a user to adopt REPRIV.

Service providers: While a truly anonymous browsing mode
would leave content providers without an alternative, incen-
tives already exist for service providers to adopt REPRIV
without the need for such measures. The first such incentive is
the quality of information that REPRIV can provide relative to
other techniques. REPRIV gives service providers the opportu-
nity to utilize data that is not impeded by tracker blockers on
the client, that is derived using information from the user’s
complete browsing experience. Secondly, because REPRIV
gives content providers a way to respect user privacy without
sacrificing functionality, they can differentiate themselves from
competitors by appealing to the users’ desire for privacy.

Miner developers: Finally, we foresee a number of likely
scenarios to incentivize miner authorship. First observe that
incentive must already exist, as developers already produce
browser extensions that track user behavior; this is typically
done without the user’s consent, and is sometimes referred to
as spyware [22] (one famous example is the Alexa toolbar,
published by Amazon). REPRIV gives these developers a
way of writing similar functionality, but in a manner that is
verifiably benign. Another likely scenario arises with con-
tent recommendation services, such as getglue.com and
hunch.com. These sites allow users to create profiles of their
interests for sharing with other users and receiving content
recommendations. Key to the effectiveness of these services
is the amount of personal information that can be used for
recommendation. REPRIV miners are a safe way for these
sites to gather this information.

E. Monetizing Privacy with REPRIV

In addition to improving matters in the currently deployed
ecosystem of users, service providers, advertising networks,
personalization services, etc. we want to point out that REPRIV
opens up an entirely new market for personal data. Today,
when a user visits a cite that chooses to track the user
by, say, leaving a cookie in her browser, in many way this
is tantamount to a theft of personal information. While a
single incident of this sort might be overlooked, the reality
of the situation is that user tracking happens daily, on quite a
large-scale, as evidences by the Wall Street Journal series of
articles [18]. A key observation here is that REPRIV can act
as a broker in this emerging markeplace of private user data.

While more research is clearly needed, one example sce-
nario is that of a user visiting the Barnes & Noble online
bookstore and being asked to share their top-level interests. If

they choose to do so, the bookstore will give them a $5 coupon
towards their next purchase. In this transaction, everybody
benefits: the user is given personalized shopping experience
in the form of a customized bn.com page, the retailer is
presenting a more relevant book selection and provides a
monetary incentive for the user to make a purchase. Finally,
the browser manufacturer can, by virtual of orchestrating this
transaction, collect a fee from the retailer, which might be
10% of the coupon or purchase amount. This is not unlike
what happens in the case of pay-per-click advertising, but this
kind of transaction is much more direct and streamlined.

III. TECHNICAL ISSUES

This section is organized as follows. Section III-A discusses
browser modifications we implemented to support REPRIV.
Section III-B discusses support for REPRIV miners.

A. Browser Modifications

Our current research prototype is built on top of C3, an
HTML5 experimental platform developed in .NET [21]. How-
ever, we believe that other browsers can be modified in a very
similar manner. We modified C3 in the following ways to add
support for REPRIV:

• Added a behavior mining algorithm that observes users’
browsing behavior and automatically updates a profile of
user interests (Section III-A).

• Implemented a communication protocol that sits on top
of HTTP and allows web sites to utilize the information
maintained by REPRIV in the browser (Section III-A).

• Implemented an extension framework that allows third-
party extensions to utilize the information maintained
by REPRIV, and interact programatically with web sites
(Section III-B).

The core of these modifications is the repository of user
interest and behavior information, called the personal store.
This is a local database, encrypted to prevent tampering or
spying by other applications.

User Behavior Mining: The goal of our general-purpose
behavior mining algorithm is to provide relevant parties with
two types of information about the user:

• Top-n topics of interest, where n can vary to suit the
needs of each particular application,

• The level of interest in a given set of topics, normalized
to a reasonable scale.

We selected these types of information for compatibility with
existing personalization schemes [32, 34]; as we show in one
of our case studies (Section VI), it is straightforward to
map between this representation and those used by existing
personalization frameworks and APIs. Applications that do
not fit this mold can build arbitrary data models using the
extension framework discussed in Section III-B.

Our approach works by classifying individual documents
viewed in the browser, and keeping the aggregate information
of total browsing history with respect to document categories
in the personal store.

Interest Categories: To characterize user interests, we use
a hierarchical taxonomy of document topics maintained by
the Open Directory Project (ODP) [28]. The ODP classifies a
portion of the web according to a hierarchical taxonomy with
several thousand topics, with specificity increasing towards the
leaf nodes of the tree. We use only the most general two levels
of the taxonomy, which account for 450 topics. To convey the
level of specificity contained in our interest hierarchy, a small
portion is presented in Figure 2.

top

science

physics

math

sports football

Fig. 2: Portion of taxonomy.

Our taxonomy-based
interest classification
scheme is similar to
those used by targeted
advertising networks [11].
As elucidated by Narayanan
and Shmatikov [26], care
must be taken when selecting the taxonomy to ensure that
the target population is not distributed too sparsely among
topics in the taxonomy, as anonymity attacks may result. As
shown in Figure 2, the depth and specificity of our taxonomy
is quite limited.

Classifying Documents: Of primary importance for our doc-
ument classification scheme is performance: REPRIV’s default
behavior must not impact normal browsing activities in a
noticeable way. This immediately rules out certain solutions,
such as querying existing web API’s that provide classification
services. We use the Naı̈ve Bayes classifier for its well-known
performance in document classification tasks, as well as its
low computation cost on most problem instances. However,
REPRIV’s high-level functionality is independent of the spe-
cific type of classifier used, so this part of the implementation
can be varied to suit changing technologies and needs.

To create our Naı̈ve Bayes classifier, we obtained 3,000
documents from each category of the first two levels of the
ODP taxonomy. We selected attribute words as those that occur
in at least 15% of documents for at least one category, not
including stop words such as “a”, “and”, and “the”. We then
ran standard Naı̈ve Bayes training on the corpus, calculating
the needed probabilities P (wi Cj), for each attribute word wi

and each class Cj . Calculating document topic probabilities
at runtime is then reduced to a simple log-likelihood ratio
calculation over these probabilities.

To ensure that the cost of running topic classifiers on a
document does not affect browsing activities, this computation
is done in a background worker thread. When a document
has finished parsing, its TextContent attribute is queried and
added to a task queue. When the background thread activates,
it consults this queue for unfinished classification work, runs
each topic classifier, and updates the personal store. Due to the
interactive characteristics of internet browsing, i.e. periods of
bursty activity followed by downtime for content consumption,
there are likely to be many opportunities for the background
thread to complete the needed tasks.

Aggregate Statistics: REPRIV uses the classification informa-
tion from individual documents to relay aggregate information

about user interests to relevant parties. The first type of infor-
mation that REPRIV provides is the “top-n” statistic, which
reflects n taxonomy categories that comprise more of the
user’s browsing history than the other categories. Computing
this statistic is done incrementally, as browsing entries are
classified and added to the personal store.

The second type of information provided by REPRIV is the
degree of user interest in a given set of interest categories.
For each interest category, this is interpreted as the portion
of the user’s browsing history comprised of sites classified
with that category. This statistic is efficiently computed by
indexing the database underlying the personal store on the
column containing the topic category.

Interest Protocol:
REPRIV allows third-party web sites to query the browser
for two types of information that are computed by default
when REPRIV runs. The protocols are depicted graphically in
Figure 3. The design of these protocols is constrained by the
following concerns:

1) Secure dissemination of personal information. The
user should have explicit control over the information
that is passed from the browser to the third-party web
site, and the parties it is given to.

2) Backwards compatibility with existing protocols. Site
operators should not need to run a separate daemon on
behalf of REPRIV users, or change network infrastruc-
ture to accomodate new protocols.

To address these concerns, we have developed a protocol
that utilizes facilities already present in the HTTP specifi-
cation. This allows implementations to use existing secrecy-
preserving HTTP extensions such as HTTPS, without requir-
ing new protocols. We will now walk through each step of the
protocol. There are two shown in Figure 3; one for each type
of information that can be queried (top-n interests and specific
interest level by category). However, they differ only in minor
ways regarding the types of information communicated.

The client signals its ability to provide personal information
by including a repriv element in the Accept field of the
standard HTTP header. If the server daemon is programmed
to understand this flag, then it may respond with an HTTP 300
message, providing the client with the option of subsequently
requesting the default content, or providing personal informa-
tion to receive personalized content. The information requested
by the server is encoded as URL parameters in one of the
content alternatives listed in this message. For example, the
server in Figure 3(b) requests the user’s interest in the topic
“category-n”, which is encoded by specifying catN as the
value for the interest variable. At this point, the browser
prompts the user regarding the server’s information request,
in order to declassify the otherwise prohibited flow from the
personal store to an untrusted party. If the user agrees to the
information release, then the client responds with a POST mes-
sage to the originally-requested document, which additionally
contains the answer to the server’s request. Otherwise, the
connection is dropped.

B. Miner Support

To support a degree of flexibility and allow future person-
alization applications to integrate into its framework, REPRIV
provides a mechanism for loading third-party software that
utilizes the personal store. We call REPRIV extensions miners,
to reflect the fact that they are intended to assist with novel
behavior mining tasks. Of primary importance to supporting
miners correctly is ensuring that (1) they do not leak private
user data to third parties without explicit consent from the
user, and (2) they do not compromise the integrity of the
browser, including other miners. The majority of our technical
discussion regarding miners addresses these concerns.

Security Policies: To support a diverse set of extensions while
maintaining control over the sensitive information contained in
the personal store, REPRIV allows extension authors to express
the capabilities of their code in a simple policy language. At
the time of installation, users are presented with the extension’s
list of needed capabilities, and have the option of allowing or
disallowing the installation. Several of the policy predicates
deal with information flow and to provenance labels, which
are 〈host , extensionid〉 pairs. All sensitive information used
by miners is tagged with a set of these labels, which allow
policies to reason about information flows involving arbitrary
〈host , extensionid〉 pairs. A sampling of the predicates avail-
able in REPRIV’s policy language is presented in Figure 4.

Given a list of policy predicates regarding a particular miner,
the policy for that extension is interpreted as the conjunction
of each predicate in the list. This is equivalent to behavioral
whitelisting: unless a behavior is implied by the predicate
conjunction, the miner does not have permission to exhibit
it. Each miner is associated with one static security policy
that is active throughout the lifespan of the miner; revocation
is not needed by any of our current applications, and is not
supported by the extension framework.

Tracking Sensitive Information: When a miner makes a call
to REPRIV requesting information from the personal store,
special precautions must be taken to ensure that the returned
information is not misused. Likewise, when a miner writes
information to the store that is derived from content on pages
viewed by the user, REPRIV must ensure that the user’s wishes
about the privacy of web content are not violated. All REPRIV
functionality that returns sensitive information to miners first
encapsulates it in a private data type tracked, which contains
metadata indicating the provenance of that information.

This allows REPRIV to take the provenance of data into
account when it is used by miners. The tracked type is
opaque — it does not allow miner code to directly reference
the data that it encapsulates without invoking a REPRIV
mechanism that prevents misuse. This means that REPRIV can
ensure complete noninterference, to the degree mandated by
the miner’s policy. Whenever the miner would like to perform
a computation over the encapsulated information, it must call
a special bind function that takes a function-valued argument
and returns a newly-encapsulated result of applying it to the
tracked value. This scheme prevents leakage of sensitive

The domain “example.com” would like to learn
your top-n interests. We will tell them your

interests are: c1, c2, …

Is this acceptable?

(a) top-n interests

The domain “example.com” would like to learn
how interested you are in the topic “catN”. We

will tell them interest-level.

Is this acceptable?

(b) Interest level by category
Fig. 3: Communication protocols for personal information.

val MakeRequest:
p:provs ->
{host:string | AllCanCommunicateXHR h p} ->
t:tracked <string ,p> ->
{eprin:string | ExtensionId eprin} ->
fp:{p:provs | forall (pr:prov).(InProvs pr p)

<=> (InProvs pr p || pr = (P h eprin))} ->
mut_capability ->
tracked <xdoc ,fp>

val AddEntry:
({p:provs | AllCanUpdateStore p}) ->
tracked <string ,p> ->
string ->
tracked <list <string >,p> ->
mut_capability ->
unit

Fig. 5: Example API definitions.

information, as long as the function passed to bind does not
cause any side effects. We discuss verification of this property
below.
Verifying Miners: REPRIV verifies miners against their stated
properties statically using security types. This eliminates the
need for costly run-time checks, and ensures that a security
exception will never interrupt a browsing session. To meet
this goal, we require that all untrusted miners be written
in Fine [31], a security-typed programming language. Fine
allows programmers to express dependent types on func-
tion parameters and return values, which forms the basis of
REPRIV’s verification mechanism. Fine provides a language-
level sandbox, so all useful functionality is available to miners
only through a set of API functions. The interface for these
API’s specifies type refinements on key parameters that reflect
the consequence of each API function on the relevant policy
predicates. Verification occurs at each code point where an
API function is invoked: the miner’s policy is checked against
the dependent type signature of the API function.

Two example interface definitions are given in Figure 5. The
first example, MakeRequest, is the API used by miners to
make HTTP requests; several policy interests are operative in
its definition. The second argument of MakeRequest is a string
that denotes the remote host with which to communicate, and
is refined with the formula AllCanCommunicateXHR host p,
where p is the provenance label of the buffer to be transmitted.

This refinement ensures that a miner cannot call MakeRequest
unless its policy includes a CanCommunicateXHR predicate for
each element in the provenance label p. Because the REPRIV
API is very limited, we are assured that this is the only
function that impacts the CanCommunicateXHR predicate.

Notice as well that the third argument, as well as the return
value of MakeRequest, are of the dependent type tracked.
tracked types are indexed both by the type of the data that
they encapsulate, as well as the provenance of that data. The
third argument is the request string that will be sent to the
host specified in the second argument; its provenance plays
a part in the refinement on the host string discussed above.
The return value has a provenance label that is refined in the
fifth argument. The refinement specifies that the provenance
of the return value of MakeRequest has all elements of the
provenance associated with the request string, as well as a
new provenance tag corresponding to 〈host, eprin〉, where
eprin is the extension principal that invokes the API. This
reflects all of the principals that could affect the value returned
by MakeRequest. The refinement on the fourth argument
ensures that the extension passes its actual ExtensionId to
MakeRequest. These considerations ensure that the prove-
nance of information passed to and from MakeRequest is
available for all necessary policy considertations.

As discussed above, verifying correct enforcement of infor-
mation flow properties in REPRIV requires checking that func-
tional arguments passed to bind are side effect-free. Fine’s
language-level sandbox guarantees that side effects are only
created via API calls; our verification task reduces to ensuring
that API’s which create side effects are not called from code
that is invoked by bind, as bind provides direct access to data
encapsulated by tracked types. We use capability tokens that
are given affine types [31] to gain this assurance. Roughly,
an affine typed-variable can only be used once, so an affine
token that is copied in the program text results in a type error.
Each API function that may create a side effect takes an affine
token mut_capability as an argument (short for “mutation
capability”), which indicates that the caller of the function
has the right to create side effects. REPRIV passes the main

function of each miner a value of type mut_capability,

CanCaptureEvents(t, 〈h, e〉) Extension can capture events of type t on elements tagged 〈h, e〉.

CanReadDOMElType(t, h) Extension can read DOM elements of type t from pages hosted by h.

CanReadDOMId(i, h) Extension e can read DOM elements with ID i from pages hosted by h.

CanUpdateStore(d, 〈h, e〉) Extension can update the personal store with information tagged 〈h, e〉.

CanReadStore(〈h, e〉) Extension can read items in the personal store tagged 〈h, e〉.

CanCommunicateXHR(h1, 〈h2, e〉) Extension can communicate information tagged 〈h2, e〉 to host h1 via XHR-style
requests.

CanServeInformation(h1, 〈h2, e〉) Extension can serve programmatic requests to sites hosted by h1, containing
information tagged 〈h2, e〉. An example of a programmatic request is an invocation
of an extension function from the JavaScript on a site in d.

CanHandleSites(h) Extension can set load handlers on sites hosted by h.

Fig. 4: Selected security policy predicates. A full listing is available in our technical report [9].

which the miner must in turn pass to each location that calls a
side-effecting function. Because mut_capability is an affine
type, and the functional argument of bind does not specify
an affine type, the Fine type system will not allow any code
passed to bind to reference a mut_capability value Be-
cause the constructor for mut_capability is private and the
original token cannot be copied, the functional passed to bind
has no way of generating a value of type mut_capability

required to invoke a side-effecting function. As an example
of this construct in the REPRIV API, observe that both API
examples in Figure 5 create side effects, so their interface
definitions specify arguments of type mut_capability.

Verification Philosophy: The policy associated with a miner
is expressed at the top of its source file, using a series of
Fine assume statements: one assume for each conjunct in
the overall policy. An example of this is shown in Figure 8,
where the policy assumptions of the miner are 3–5 lines of
the source code. Given the type refinements on all REPRIV
API’s, verifying that the miner correctly implements its stated
policy is reduced to an instance of Fine type checking. The
soundness of this technique rests on three assumptions:

• The soundness of the Fine type system, and the correct-
ness of its implementation. The soundness of the type
system was established via a mechanical proof [31].

• The correctness of the dependent type refinements placed
on the API functions. This amounts to less than 100 lines
of code, which reasons about a relatively simple logic
of policy predicates. Furthermore, because the REPRIV
API is very limited, it is easy to argue that refinements
are placed on all necessary arguments to ensure sound
enforcement. In other words, the API usually only pro-
vides one function for producing a particular type of side
effect, so it is not difficult to check that the appropriate
refinements are placed at all necessary points.

• The correctness of the underlying browser’s implemen-
tation of functions provided by the REPRIV API. For
REPRIV, we used C3, an experimental managed-code

HTML5 platform. C3 is written in a memory-managed
language (C#), providing assurance that it does not
contain memory corruption vulnerabilities. The logical
correctness of C3 code needed by REPRIV has not been
formally verified, but doing so is a goal of future work.

We stress that these are modest requirements for the trusted
computing base, and point towards the overall soundness of
REPRIV’s security properties.

IV. REPRIV MINERS

In this section, we discuss several miner templates and their
corresponding policies, as well as two concrete examples:
TwitterMiner and GlueMiner. Two additional miners, Bing-
Miner and NetflixMiner, are discussed in various capacities,
but their complete description is available only in the technical
report [9].

A. Miner Patterns

In general, miners can provide a wide range of functionality
when it comes to updating the personal store with infor-
mation that reflects the user’s browser-related behaviors. In
this section, we present three patterns of functionality that
we envision many potential miners following. The policies
for each category can be templatized, easing the burden on
miner developers who wish to create variations on these basic
patterns. The three patterns are summarized in Figure 6.

The first miner pattern, “site-specific parsing”, includes
extensions that are aware of the layout and semantics of
specific web sites, and are able to update the user’s inter-
est profile accordingly. For example, TwitterMiner invokes
REPRIV’s document classifier over the text contained in the
user’s latest tweets, and BingMiner classifies the user’s search
terms. Miners that follow this pattern either need to send HTTP
requests to relevant web API’s, as in the case of TwitterMiner,
or read the relevant DOM elements from particular sites, as
with BingMiner. They invariably require permission to update
the personal store with information derived from these sources.

Pattern Policy Template

Site-specific parsing For the domain d of interest, either CanCommunicateXHR(d) or CanReadDOM*(d,)
CanUpdateStore(, d)
CanHandleSites(d) (optional, depending on the semantics of the miner)
CanCaptureEvents(, d) (optional, depending on the semantics of the miner)

Category-specific information For the domain d of interest, either CanCommunicateXHR(d) or CanReadDOM*(d,)
CanUpdateStore(Tag(, d))
CanHandleSites(d) (optional, depending on the semantics of the miner)
CanCaptureEvents(, d) (optional, depending on the semantics of the miner)
CanReadStore(Tag(, d))
For each domain p that can request category-specific information, CanServeInformation(p, Tag(, d))

Web service relay For the API provider a and each provenance tag t sent to a CanCommunicateXHR(a, t) and
CanReadStore(t)

For each domain p that can make requests, CanServeInformation(p, t) and CanServeInformation(p, a)

Fig. 6: Miner patterns and their policy templates.

Lines of code Verification

Name C# Fine time (seconds)

TwitterMiner 89 36 6.4
BingMiner 78 35 6.8
NetflixMiner 112 110 7.7
GlueMiner 213 101 9.5

Fig. 7: Miner characteristics.

The second pattern, “category-specific information”, returns
detailed information about the user’s interactions with specific
types of sites to services that request it via a JavaScript
interface. NetflixMiner is an example of this pattern; the
user’s interactions with pages hosted by netflix.com are
monitored, and information is added to the personal store to
reflect this. When a third-party site, such as fandango.com,
would like to personalize based on the user’s recent movie
interests, NetflixMiner queries the store to retrieve the list of
most recently-viewed entries by genre, and returns the relevant
titles to the third-party site. In addition to the capabilities
required by site-specific parsing miners, miners that follow
this pattern also need the ability to read from the store, and
return tagged information to specific sites via a programmatic
interface.

The final pattern, “web service relay”, acts as a privacy-
conscious intermediary between the user’s personal informa-
tion, and web sites that provide useful services using this
information. Miners in this category expose functionality via
a JavaScript interface, and query a third-party web service
with data from the personal store to implement this func-
tionality. For example, GlueMiner returns movies similar to
those recently viewed by the user by reading store entries
created by NetflixMiner, sending them to the API provided
by getglue.com, and returning the results to the JavaScript
that requested this information.

B. Miner Examples

In this section we discuss examples of miners that we wrote
for REPRIV.
TwitterMiner: TwitterMiner utilizes the RESTful API ex-
posed by twitter.com to periodically check the user’s twit-
ter profile for updates. When the user posts a new tweet,

TwitterMiner analyzes its content using REPRIV’s classifier
to determine how to update the personal store accordingly.

TwitterMiner needs only two capabilities from REPRIV, as
the twitter.com API simplifies its task:

1) It must be able to make XHR-style requests to twitter.

com. The second argument of the CanCommunicateXHR
capability must indicate that TwitterMiner cannot send
any sensitive information derived from the store in such
a request.

2) It must be able to update the store to reflect data derived
from twitter.com

The source code for TwitterMiner is shown in Figure 8
There are only two places in the Fine code in which the
programmer must justify to the compiler that the stated policy
is in fact being enforced. The first is in the type signature of
CollectLatestFeed, where a refined type is used to tell the
compiler that the identifier extid refers to the extension ID
stated in the policy manifest. The second location is the first
statement in CollectLatestFeed, where a provenance label
is constructed to reflect the source of information that will be
collected by TwitterMiner, e.g. twitter.com. This allows the
compiler to verify that the tracked information being sent to
the store at the end of CollectLatestFeed is in accordance
with the policy. Refinements on the type of API function
MakeXDocRequest make it impossible for the programmer
to forge this provenance label; if the constructed label does
not accurately reflect the URL passed to MakeXDocRequest,
a type error will indicate a policy violation.
GlueMiner: GlueMiner is different from TwitterMiner in
that it does not add anything to the store; rather, it provides
a privacy-preserving conduit between third-party web sites
that want to provide personalized content, the user’s personal
store information, and another third party (getglue.com)
that uses personal information to provide personalized content
recommendations. The function predictResultsByTopic is
the core of its functionality, effectively multiplexing the user’s
personal store to getglue.com: a third-party site can use this
function to query getglue.com using data in the personal
store. This communication is made explicit to the user in the
policy expressed by the extension. Given the broad range of
topics on which getglue.com is knowledgeable, it makes

using RePriv;

namespace TwitterMiner
{
static class Program
{
static string userId;
static List <string > guids;
static RePriv.ExtensionPrincipal p;

static void CollectLatestFeed(object source ,
ElapsedEventArgs e)

{
// Get the user ’s twitter RSS feed
TrackedValue <XDocument > twitFeed =
RePriv.MakeXDocRequest("twitter.com",
"http :// twitter.com /.../"+userId+".rss", p);

// Extract the latest tweet from the feed
TrackedValue <string > cur = twitFeed.Bind(
x => (from d in x.Descendants("item")

where !guids.Contains(d.Element("guid"))
select (string)d.Element("description")
).Take (1). Single ());

// Find the categories that apply
TrackedValue <List <string >> cat =
cur.Bind(computeQueryCategories);

// Update the personal store
RePriv.AddEntry(cur , "contents:tweet", cat);

}

static void Main()
{
guids = new List <string >();

Timer feedTimer = new Timer ();
feedTimer.Elapsed +=
new ElapsedEventHandler(CollectLatestFeed);

feedTimer.Interval = 600000;
feedTimer.Start ();

}
}
}

module TwitterMiner

open Url
open RePrivPolicy
open RePrivAPI

// Policy assumptions
assume extid: ExtensionId "twitterminer"
assume PAx1: CanCommunicateXHR "twitter.com"
assume PAx2: forall (s:string) . (ExtensionId s) =>

CanUpdateStore (P "twitter.com" s)

// Miner code
val GetDescription: xdoc -> string
let GetDescription d =
let allMsgs =
ReadXDocEls d "item" (fun x -> true) "description" in
match allMsgs with
| Cons h t -> h
| Nil -> ""

val CollectLatestFeed: ({s:string | ExtensionId s}) ->
mut_capability ->
unit ->
unit

let CollectLatestFeed extid mcap u =
let twitterProv = simple_prov "twitter.com" extid in
let reqUrl =

mkUrl "http" "twitter.com" "statuses ..." in
let twitFeed =

MakeXDocRequest reqUrl extid twitterProv mcap in
let currentMsg =

bind twitterProv twitFeed GetDescription in
let categories =

bind twitterProv currentMsg ClassifyText in
AddEntry twitterProv currentMsg "tweet" categories mcap

val main: mut_capability -> unit
let main mcap =
let collect =
(CollectLatestFeed "twitterminer" mcap) in

SetTimeout 600000 collect

Fig. 8: Twitter miner in C# and Fine, abbreviated for presentation.

sense to open this functionality to pages from many domains.
This creates novel policy issues: the user may not want
information in the personal store collected from netflix.com

to be queried on behalf of linkedin.com, but may still
agree to allowing linkedin.com to use information from
twitter.com or facebook.com. Likewise, the user may want
sites such as amazon.com and fandango.com to use the
extension to ask getglue.com for recommendations based
on the data collected from netflix.com.

This usage scenario suggests a fairly complex policy for the
proposed extension.

• The extension must only communicate personal store
information from twitter.com and facebook.com

to linkedin.com through the return value of
predictResultsByTopic. Additionally, the information
that is ultimately returned will be tagged with labels
from getglue.com, as it was communicated to this host
to obtain recommendations. Thus, GlueMiner must be
able to communicate these sources to getglue.com,
and it must be able to send information tagged from
getglue.com to linkedin.com through the return
value of predictResultsByTopic.

• Similarly, the extension must only leak information from
netflix.com to getglue.com on behalf of amazon.

com or fandango.com. This creates policy requirements

analogous to those of the previous case.

The policy requirements of GlueMiner are made possible by
REPRIV’s support for multi-label provenance tracking. Note
also the assumption that Getglue.com is not a malicious
party, and does not otherwise pose a threat to the privacy con-
cerns of the user. This judgement is ultimately left to the user,
as REPRIV makes explicit the requirement to communicate
with this party, and guarantees that the leak cannot occur to
any other party.

V. EXPERIMENTAL EVALUATION

The experimental section is organized as follows. First, we
characterize the default mining and extension overhead of
REPRIV on browsing activities, Then, we discuss the quality of
our document classifier, that is used for all default in-browser
behavior mining.

A. Performance Overhead

We evaluated the effect of REPRIV on the performance
of web browsing activities. Several aspects of REPRIV can
affect the performance of browsing. This section is organized
to provide a separate discussion of each such aspect: the
effect of default in-browser behavior mining, the effect that
each proposed personalization extension (Section IV) has on

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

%
 In

 F
in

al
 T

o
p

-1
0

% History Complete

Fig. 9: Convergence curves.

document loading latency, and the performance of primary
extension functionality.

In-Browser Behavior Mining: One of the major components
of REPRIV is the behavior mining that happens by default
inside the browser, as the user navigates sites. To characterize
the cost of performing this type of mining and the impact
that it has on browser performance, we took measurements
from our prototype. We found that nearly all documents are
classified in around one-tenth of a second; given this result, it
is clear that REPRIV will not adversely affect the performance
of the browser.

Personalization Extensions: One concern with REPRIV’s
support for miners is the possibly arbitrary amount of memory
overhead that it can introduce. We sought to characterize the
memory requirements of REPRIV miners, by loading many
compiled copies of the four miners presented in the previous
section into a running instance of C3. We found that even in an
extreme case, with one-hundred miners loaded into memory,
only 20.3 megabytes of memory are needed.

B. Classifier Effectiveness

We sought to characterize the quality of the default in-
browser classifier. However, doing so is not straightforward,
as the task of document classification is inherently subjective.
Our evaluation focuses on the rate at which a user’s interest
profile converge

Profile convergence: The rate at which a user’s interest profile
converges is an important property of our implementation, as
it indicates the reliability of the personalization information
provided by REPRIV. To measure the convergence of a profile,
we require a notion of its final form. All of our measurements
are taken over anonymized browsing history traces collected
from IE 8 users who have opted into data collection, so the
final profile that we use in these measurements is simply the
profile computed by our classifier after processing an entire
trace. All convergence measurements for a given trace are
taken relative to the final profile for that trace, computed in
this manner.

The measure of convergence we use is the percentage of
entries in the current top-ten list of interest categories that are
also present in the final top-ten list. We foresee many web sites
querying REPRIV for top interests using the protocol outlined

in Section III, so this measure characterizes the stability of the
information returned in these queries.

The results of these experiments are presented in Figure 9,
and correspond to the anonymized browsing histories of 28
IE 8 users. They key point to notice about this curve is the state
of the computed interest profile after 20% completion: 50% of
the final top-ten categories are already present, and the global
convergence curve has reached a point of gradual decline. This
implies that the results returned by the core mining algorithm
will not change dramatically from this point: one-fifth of the
way through the trace, the REPRIV’s estimate of the users’
interests has converged.
In-browser vs. public data mining: We claim that a major in-
centive for web service providers to utilize the personalization
features enabled by REPRIV is the high quality of personal
information that is available within the browser, relative to
other types of information used for this purpose. One may
think that similar information can be derived by examining the
publicly-accessible corpus of information available about an
individual on the web, e.g. social networking profiles, tweets,
etc. In fact, this approach is being used by a number of
websites to facilitate personalization [32]. In this subsection,
we compare REPRIV’s mining algorithm when used over
single-user browsing history data to the results obtained by
these techniques.

We see a fundamental problem with this approach, in that
most names have several homonyms, and the precision and
accuracy of a behavior profile will be adversely affected by this
condition. To demonstrate this fact, we began by measuring
the number of distinct homonyms for 48 names selected at
random from a phone book. To take this measurement, we used
a search engine called “WebMii” [35] which returns a listing of
much of the publicly-available information about a particular
name on the web, in addition to a list of homonyms for that
name. Our results are presented in detail in the technical
report [9]. Noteworthy among our findings is the fact that
only ten of the names were found to be unique on WebMii;
the remaining names either had no visible web presence, or
from dozens to hundreds of homonyms. Clearly, these names
would be very difficult to build an accurate profile for content
personalization without additional input.

Another issue with this technique is the degree of noise
likely present in the source data. Our technical report [9]
presents detailed findings of this metric. Intuitively, we mea-
sured the confidence that our classifier places in a hypothesis
about the user’s interests, given the training data (browser
histories versus publicly-attainable information). Our results
show that in all but very few cases, the behavior mining
algorithm was able to come to a much stronger conclusion
given browsing histories. This supports our claims about the
availability of high-quality behavior information within the
browser, as opposed to other sources.

In future work, we would like to evaluate the interest mining
capabilities of large third-party tracking networks such as
DoubleClick and Facebook in comparison to the ability to do
so inside the browser. Intuitively, the results inside the browser

307

89

52

22 23
13 9 14

5 10

0

50

100

150

200

250

300

350

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

Se

ar
ch

e
s

Change in Result Location

Fig. 10: Search personalization effectiveness.

must be at least as good as those attainable by such networks,
as the browser has access to at least as much of the user’s
behavior.

VI. CASE STUDIES

While the previous section provided a basic experimental
evaluation of both the core mininig strategy and miners used
in REPRIV, this section goes more in depth using two case
studies, both evaluated on large quantities of real data. Sec-
tion VI-A talks about our search personalization experiment.
Section VI-B discusses news personalization.

A. Search Personalization

We wrote an extension that uses REPRIV’s APIs to person-
alize the results produced by the main Bing search engine. The
extension operates by observing the user’s previous behavior
on Bing, and memoizing certain aspects relevant to future
searches. Specifically, for a given search term, the extension
records which sites the user selected from the results pages,
as well as the frequency with which each host is selected in
search results (across all searches). When a new search query
is submitted, the extension checks its history of previously-
recorded searches for an identical match, and places the
previously-selected results at the top of the current ranking.
The remaining results are ranked by the frequency with which
the user visits the host of each result.

This type of search personalization is appealing for two
reasons. First, the quality of results it provides is quite good,
as discussed below. Second, it is not particularly invasive,
as it requires observing user interaction on a single domain
(bing.com). Furthermore, this information is leaked back to
no site other than Bing.com through re-arranging the result
pages of queries submitted to the search engine; if the user
has cookies enabled, then bing.com learns this information
by default. It is also important to note that information is only
leaked to bing.com if the results pages contain JavaScript
code that reflects on the layout of the DOM, and takes note of
the relative position of search results. This activity would not
be possible to hide from the Internet community, effectively
minimizing its risk to end-user privacy and giving bing.com

disincentive to do it.
To provide this functionality, the extension needs the fol-

lowing capabilities:

• To determine which search results the user selects from
bing.com sessions, the extension must be able to receive
onclick events from pages hosted by bing.com.

• To access a full list of search results over which it can
perform re-ranking, the extension uses a public web API.
For this, it must be able to make HTTP requests to
either bing.com, yahoo.com, or google.com (search
API providers).

• To re-arrange the results pages from bing.com, the
extension must be able to change the TextContent of
HTML elements on bing.com, as well as well as call
change the href attribute of a elements.

• To memoize search engine interactions, the extension
must be able to write data from bing.com to the personal
store.

Implementation details: We implemented the extension
for C3 as 382 lines of Fine. The code is presented in
our corresponding technical report. The extension uses sev-
eral of the API’s exposed by REPRIV: XMLHttpRequest,
SetAttribute, SetTextContent, GetElementById, and
GetChildren. When loaded into the browser, the extension
requires approximately 200 KB of memory.
Experimental methodology: To evaluate the effectiveness of
search personalization, we utilized the histories of nineteen
users of the Bing search toolbar. Each history represents seven
months of Bing search activity. Our methodology for eval-
uating the effectiveness of search personalization algorithm
is based on the results selected by users for a given query.
For each search performed by a particular user, we split the
search history into two chronologically-contiguous halves. We
construct the relevant portions of a personal store needed to
perform search personalization using the first half, and use
the second half to evaluate the effectiveness of the algorithm.
For each query in the second half of each trace, we evaluated
the effectiveness of our search personalization algorithm as
follows:

1) Submit the query to the Yahoo BOSS API [37], and
collect the default search result ranking.

2) Re-rank the results according to the algorithm discussed
above.

3) Note the difference in position for the search result se-
lected by the user between the default and personalized
rankings. A positive difference indicates that the se-
lected result is ranked higher in the personalized results,
whereas a negative difference indicates the opposite.

This process simulates the user’s interaction with a personal-
ized and non-personalized search engine, giving us a baseline
for comparison.
Evaluation: The results of our evaluation are summarized in
Figure 10. This histogram shows the number of positions the
user’s selected result moved towards the top of the ranking
when the search personalization extension was able to improve
results.

We found that for a given user, the extension was able
to improve results 49.1% of the time by raising the user’s

R
an

d
o

m

D
ef

au
lt

Pe

rs
o

n
al

iz
ed

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0
.0

Fig. 11: News personalization effectiveness.

selected result 8.2 positions toward the top, on average. 7.7%
of the time, the extension lowered the ranking of the user’s
selected result, but when this occurred, the result was moved
downwards an average of only 2.4 positions. For the remaining
percentage of time, 43.2%, the extension had no effect on the
ranking of the user’s selected result. These results show that
our search personalization algorithm is able to provide useful
functionality for a large portion of the user’s web searching
activities, while giving the user explicit control over the way
in which personal information is used in the process.

B. News Personalization

We wrote an extension that uses REPRIV’s computed be-
havior profile to personalize the New York Times front page.
The extension utilizes the collaborative filtering provided by
the digg.com community by matching the user’s top interest
categories with topic names understood by Digg, and period-
ically querying its web API for “hot” stories in those topics.
When the user visits nytimes.com in their browser, New York
Times articles cached from Digg API queries are presented at
the top of the page, in place of the default headlines.

To perform this personalization, the extension needs several
capabilities.

• To query the Digg API, it must be able to send HTTP
requests to Digg and access the formatted responses
containing news stories.

• To locate the appropriate HTML elements on the
nytimes.com front page for personalized re-formatting,
the extension must be able to call GetElementById

and GetAttribute("class") on DOM nodes hosted
by nytimes.com.

• To re-format the nytimes.com front page, the ex-
tension must be able to change the TextContent

of nodes on nytimes.com nodes, as well as call
SetAttribute("href") on them.

• To construct the appropriate query to Digg, it must be
able to query the personal store to learn the top interests
of the user.

Implementation details: We implemented the extension for
C3 as 124 lines of Fine. The code is presented in our
corresponding technical report.

The extension uses several of the API’s exposed by
REPRIV: XMLHttpRequest, GetAttribute, SetAttribute,
SetTextContent, GetTopInterests, GetElementById,
SetTimeout, and GetChildren. When loaded into the
browser, the extension requires approximately 200 KB of
memory. When navigating to nytimes.com, we found that the
extension introduced a latency of 6% over the default loading
time without any personalization, which is a consequence of
the fact that the extension modifies the DOM after initial
loading is complete. This overhead does not reflect the time
needed to query the Digg API, which occurs periodically in a
background thread that runs when the CPU is otherwise idle.

Experimental methodology: We performed a set of ex-
periments using Amazon’s Mechanical Turk service [25] to
demonstrate that our news personalization system does not
trivialize the problem of delivering personalized content in
fulfilling the goal of preserving user privacy. In other words,
we sought to show that the type of personalization offered by
our extension is relevant to internet users.

To do so, we generated 1,920 artificial behavior profiles. 900
of the profiles contained three randomly-selected user interest
topics, and the rest contained three topics related by the
same top-level ODP category. This distribution models users
with both focused and diverse interests. We then seeded our
personalization algorithm with each profile, and captured an
image of the stories that would be presented by the extension.
The image contained the headline of each story, as well as a
short summary of each story, in a manner similar to the default
nytimes.com layout.

Using the images and interest profiles, we generated a set
of Mechanical Turk surveys. Each survey consisted of twelve
questions, where each question paired a news content image
with a potential behavior profile, and asked the user how
relevant the stories presented in the image were to the given
set of interest topics, on a scale of 1 to 10. For each survey,
approximately half of the questions matched the image with
the interest profile our algorithm used to generate them, and
the other half were paired randomly. Each survey contained
an additional question that paired the default nytimes.com

front page stories with a random interest profile. The latter two
pairings served as our control, to determine how relevant users
found hypothetical interest profiles to general news stories.

Evaluation: “Personalized” denotes real pairings of person-
alized news stories to behavior profiles, “Random” refers to
pairings of news stories to randomly-generated behavior pro-
files that do not bear a meaningful connection, and “Default”
denotes the stories presented on the default nytimes.com

front page paired with a random behavior profile. For each
column, the statistical mean among survey responses, as
well as the surrounding vicinity of one standard-deviation, is
plotted.

As the Figure 11 indicates, respondents gave stories person-
alized with our algorithm significantly higher relevance scores
than the control samples. For personalized content, ratings
between 6.5 and 8 recieved the most responses, with markedly

lower variance than the control. While some overlap in re-
sponse exists between personalized content and the control,
the majority of control responses mass around low relevance
scores, indicatating a clear improvement in percieved relevance
for content personalized using our algorithm.

In summary, the results of this news personalization ex-
periment show that REPRIV enables useful and effective
personalization of news content without sacrificing control
over private information.

VII. DISCUSSION

In this section, we discuss issues surrounding the adoption
and feasibility of REPRIV.

Usability Concerns & Distribution Model: At some point,
the user must manually consent to the information being
disseminated by REPRIV. The structure of core mining data
was designed to be highly informative to content providers and
intuitive for end-users: when prompted with a list of topics
that will be communicated to a remote party, most users will
understand the nature and degree of information sharing that
will take place if they consent.

However, the usability problems posed by miners is more
difficult. While the privacy policies imposed on miners are
expressive and precise, it is difficult to make their implications
explicit to an average user. To remedy this, we suggest a
distribution model that provides high-level policy review of
miners prior to their release, and allows for revocation. This
model is similar to that adopted by Firefox, Apple, and
Symbian for supporting third-party functionality. The owner
of such a repository is expected to possess considerably
more technical sophistication than most browser users. Unlike
existing distribution mechanisms, the automatic verification of
miners discussed in Section III-B allows the repository owner
to focus entirely on the high-level privacy implications of
miner policies, assured that the code cannot subvert it.

Anonimization and Privacy Modes: Recently, major
browsers have come to support some form of a “private
browsing mode” [1]. Although the precise meaning of this
term varies between browsers, the common idea behind this
feature is to prevent web sites from reading persistent data
such as cookies for a particular session. There have been
a number of other browser add-ons and modifications that
attempt to anonymize the user on the web; an incomplete
list includes TrackMeNot [15], Torbutton, SafeCache [30],
SafeHistory [30], and IE8’s InPrivate browsing. While it is
clear that a truly anonymous browsing mode would force
content providers to use REPRIV, no such mode has been
successfully implemented [1], and it is not clear that do-
ing so is technically feasible [7]. However, we assert that
REPRIV does in fact facilitate end-user privacy on the web,
by creating incentives for content providers to use privacy-
sensitive personalization techniques, rather than relying on
the invasive collection mechanisms currently available. In
this respect, REPRIV is complementary to private browsing
modes; it provides a mechanism for allowing personalized

content without the need for the tracking mechanisms currently
used by content providers, which are not compatible with
anonymous browsing.

Profile Management: The behavior profiles generated by
REPRIV are currently maintained entirely within the browser,
and are distinct on a per-user, per-browser basis. However,
there is no reason to preclude additional profile management
schemes in REPRIV. One possibility is to maintain the primary
copy on a cloud server, encrypted using a symmetric key.
Because the cloud does not need direct access to profile data,
key distribution for this scheme is straightforward: the user
manually loads the symmetric key into each browser that
updates or consumes the profile; this is realistic assuming the
user is physically present at each browser that accesses the
profile. Updates to the personal profile are performed locally
at each browser instance, and synced with the cloud server
periodically. The major upshot of this scheme is that the
behavior profile is no longer constrained on a per-browser
basis, as the user can transfer the same profile between
multiple instances using the cloud host.

Attacks Against REPRIV: There are a few ways that an ad-
versary can compromise the principles embodied in REPRIV.
First, because REPRIV does not prevent remote parties from
tracking the user, one could imagine an adversary collecting
additional data through unwanted tracking. This class of attack
is best addressed by using REPRIV in tandem with the private
browsing modes supported by most commercial browsers [1],
or various browser extensions [15]. We consider this to be an
orthogonal issue to REPRIV; as better private browsing modes
are developed, they can be “dropped in” for use with REPRIV.

Similarly, a group of colluding sites can share the infor-
mation provided to them through REPRIV, in order to learn
more about a particular user than explicitly consented to at
each individual site. We note that this attack can also be
addressed by private browsing modes. In order for a set of
colluding adversaries to perpetrate this attack, they must be
able to identify the user across visits to each distinct site; if
the attackers cannot link the data provided to each site to a
single user, then the chances of it affecting the user are quite
small. Private browsing modes can prevent this by thwarting
the ability of third parties to track the user.

However, not all of the pitfalls can be resolved through
private browsing modes. Another possible attack is a type of
denial of service in which an attacker inundates a user with
meaningless REPRIV prompts in an attempt to berate him into
giving the site full permissions to personal data. The best way
to deal with this behavior is to limit the ability of sites to
prompt the user for data – perhaps forcing all prompts to
occur in a single dialog when the site is first rendered. At
this point, attempts to trick or coerce the user into agreeing
to permissions against his interest can be dealt with through
interface design [20].

Lastly, one should also consider possibilities of the user
being untruthful about their preferences: when prompted for
her interests, she can simply substitute random or bogus

values in place of the interests computed by REPRIV. We
feel that applying remote attestation and software verification
techniques to the browser stack will allow us to remediate
some of these attacks. Furthermore, the user has incentive to
provide honest preferences, as they stand to gain more in terms
of the quality of personalized content that is provided.

VIII. RELATED WORK

Privacy and Web Applications: As a reaction to the decrease
in privacy on the web, many have started exploring techniques
that can be applied to restore some degree of privacy while still
allowing for the rich web applications that people have come to
expect. The P3P Project [4], sponsored by the W3 Consortium,
is an attempt to formalize and mechanize the specification
and distribution of privacy policies on the web. It does not
have provisions for providing personal information to content
providers, however, making the issue of providing personalized
functionality rather difficuclt. Jakobsson et al. [17] considered
the problem of third-party sites mining users’ navigation
history. They developed a system that allows third parties to
learn aggregate information about users’ navigation histories,
rather than the full listing. All privacy assurances offered by
this system derive from the fact that its mechanism is easily
auditable by end-users, so parties who wish to mine history
data have disincentive to cheat.

Becker and Chen [2] found that it is possible to deduce
specific personal characteristics given only a list of their
friends on a social network. Worse yet, they found that it is
very difficult to defend against this type of inference, assuming
an attacker has access to the user’s entire social graph: on
average, they found that users would have to remove hundreds
of friends from their connections in order to ensure the privacy
of their own characteristics.

Narayanan and Shmatikov [27] studied the privacy im-
plications of social network participation. Their observation
is that the operators of online social networking sites now
share user data with third parties, but only scrub personally-
identifying information in an ad-hoc fashion. They developed
a re-identification algorithm that relates users’ privacy in a
social network to node anonymity in the social network graph,
and attempts to identify particular users from scrubbed social
network data. They found that if a user subscribed to both
Twitter and Flickr, then the algorithm can correctly identify
them with 88% accuracy.

McSherry and Mironov [24] attempted to restore a certain
degree of privacy to collaborative recommendation algorithms,
such as those used by Netflix and amazon.com. Citing the
work of Narayanan and Shmatikov [26] in de-anonymizing
users who take part in such systems, they worked in the
framework of differential privacy [6] to build a an algorithm
that preserves the privacy of each individual rating entered by
a participating user. The performance is comparable to that of
the original Netflix recommendation algorithm.

Privacy in Advertising: One problem that has received much
recent attention is that of delivering targeted advertisements

to web users without violating their privacy. Freudiger et
al. [10] observe that the prevalent mechanism for targeting
advertisements to individual users is the third-party cookie.
They propose a browser extension that allows users to directly
manage third-party cookies in order to decide the degree to
which advertisers are able to track them. However, unlike
with REPRIV, this solution does not give users arbitrary, fine-
grained control over the type of information that is given
to third-parties. Furthermore, advertisers have no incentive to
obey the privacy safeguards instantiated by this mechanism.
In a slightly different vein, several recent systems [14, 19,
34] attempt to remedy the problem by storing the necessary
sensitive personal data on the client, along with all possible
ads in the network. When an ad is displayed, it is matched to
personal information locally, thus sidestepping the need to leak
to the ad network. Accounting and click-fraud prevention are
addressed using either additional semi-trusted parties, or ho-
momorphic encryption. The primary difference between these
systems and REPRIV is generality: REPRIV asks the user to
provide content providers (in this case, an advertising network)
with small amounts of selected personal data in return for full
application generality, whereas these tools effectively hide all
personal data needed to drive the single application of targeted
advertising.

Managing Private Browser State: A number of researchers
have studied ways to identify users and preferences from
browser interactions. Wondracek et al. [36] found that a
subtlety in the W3C specification that allows browser history
to be inferred can be leveraged to de-anonymize users of
popular social networking sites. Jackson et al. [16] attributed
the problem of history sniffing to the fact that browsers do not
extend the same-origin policy to the history state leveraged
in the attack. Recently, Mozilla has taken steps to prevent
history sniffing [33], at the cost of breaking certain parts of the
W3C specification. In a broader development, Eckersley [7]
introduced a technique dubbed browser fingerprinting, wherein
a large number of publicly-visible browser attributes are com-
bined to produce an identifying string shared by only one in
about 286,777 browsers.

Several researchers have approached the technical problem
of maintaining user anonymity while browsing. Howe and
Nissenbaum [15] created TrackMeNot, a Firefox extension that
attempts to anonymize search behavior by periodically submit-
ting random search queries to major search engines. McKin-
ley [23] examined the privacy modes of popular browsers, as
well as their ability to clear private state when directed by
the user. She found that while some browsers do in fact clear
private state when instructed, none of the browsers’ privacy
modes performs as advertised; each browser left some form
of persistent state that could be later retrieved by web pages
in different browsing sessions.

Web Personalization and Mining: The basis on which
personalization is performed varies from application to ap-
plication. Pierrakos et al. [29] surveyed the topic of mining
users’ behavior on a set of web services to infer information

that will aid personalization. They found that almost all web
personalization efforts fall into one of four broad categories:
memorizing information for later replay, guiding the user
towards likely relevant information, customizing content to
match users’ interests, and supporting users’ efforts to com-
plete tasks. REPRIV is designed primarily to support the
implementation of the second and third points, but it can be
used to support aspects of all types of personalization.

IX. CONCLUSIONS

This paper presents REPRIV, an in-browser approach that
aims to perform personalization without sacrificing user pri-
vacy. REPRIV accomplishes this goal by requiring explicit
user consent in any transfer of sensitive user information. We
showed how efficient and effective behavior mining can be
added to a web browser to automatically infer the information
needed to facilitate many personalized web applications, and
evaluated this mechanism on real-world data. We also showed
how, with the help of static software verification, third-party
code can be incorporated into the system, and given access
to sensitive user information, without sacrificing control and
user consent. We presented two end-to-end case studies of
useful personalized applications, that showcase the abilities of
REPRIV. Much of the power of REPRIV comes from its focus
on what can be done on the client, be that a desktop browser,
a mobile browser, or the context of an entire mobile operating
system in the case of a user of a tablet device. This paper
shows that in REPRIV, personalized content and privacy can
coexist.

ACKNOWLEDGMENTS

We wanted to thank several researchers for their help with
various aspects of this project. This list is in no particular
order: Sue Dumais and Jaime Teevan for helpful conversations
on personalization, Qiang Wu for his help with document
classification, Peter Bailey for providing insight into search
personalization, Nikhil Swamy, Arjun Guha, and Jean Yang
for their insights and experience with Fine, AJ Cannon and
Michael Elizarov for sharing their opinions on the advantages
and pitfalls of personalization, and David Molnar for his input
and assistance throughout the course of this work, and Jay
Lorch for last-minute proof-reading help.

REFERENCES

[1] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An analysis
of private browsing modes in modern browsers. In Proceedings of the
Usenix Security Symposium, Jul. 2010.

[2] J. Becker and H. Chen. Measuring privacy risk in online social networks.
In Proceedings of the Workshop on Web 2.0 Security and Privacy, May
2009.

[3] The Bing Toolbar. http://www.discoverbing.com/toolbar.
[4] W. Consortium. Platform for Privacy Preferences (P3P) Project. http:

//www.w3.org/P3P.
[5] Spam database lookup. http://www.dnsbl.info.
[6] C. Dwork. Differential privacy: a survey of results. In Proceedings of

the International Conference on Theory and Applications of Models of
Computation, May 2008.

[7] P. Eckersley. How Unique Is Your Web Browser? Technical report,
Electronic Frontier Foundation, Mar. 2009.

[8] The Electronic Freedom Foundation. http://www.eff.org.
[9] M. Fredrikson and B. Livshits. RePriv: Re-imagining in-browser privacy.

Technical Report MSR-TR-2010-116, Microsoft Research, Aug. 2010.
[10] J. Freudiger, N. Vratonjic, and J.-P. Hubaux. Towards Privacy-Friendly

Online Advertising. In Proceedings of the Workshop on Web 2.0 Security
and Privacy, May 2009.

[11] Google AdSense privacy information. http://www.google.com/
privacy_ads.html#toc-faq.

[12] The Google Toolbar. http://toolbar.google.com.
[13] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security for

browser extensions. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2011.

[14] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and P. Francis. Serving
Ads from localhost for Performance, Privacy, and Profit. In Proceedings
of Hot Topics in Networking, Nov. 2009.

[15] D. C. Howe and H. Nissenbaum. TrackMeNot: Resisting surveillance
in web search. In I. Kerr, V. Steeves, and C. Lucock, editors, Lessons
from the Identity Trail: Anonymity, Privacy, and Identity in a Networked
Society, chapter 23. 2009.

[16] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting browser
state from web privacy attacks. In Proceedings of the International
Conference on World Wide Web, May 2006.

[17] M. Jakobsson, A. Juels, and J. Ratkiewicz. Privacy-Preserving History
Mining for Web Browsers. In Proceedings of the Workshop on Web 2.0
Security and Privacy, May 2010.

[18] W. S. Journal. What they know. http://blogs.wsj.com/wtk/, 2011.
[19] A. Juels. Targeted advertising ... and privacy too. In Proceedings of the

Conference on Topics in Cryptology, Apr. 2001.
[20] P. G. Kelley, L. Cesca, J. Bresee, and L. F. Cranor. Standardizing

privacy notices: An online study of the nutrition label approach. In
Proceedings of the International Conference on Human Factors in
Computing Systems, Apr. 2010.

[21] B. Lerner, H. Venter, B. Burg, and W. Schulte. An experimental
extensible, reconfigurable platform for HTML-based applications. In
submission, Oct. 2010.

[22] McAfee Inc. Spyware information. http://www.mcafee.com/us/
security_wordbook/spyware.html.

[23] K. McKinley. Cleaning Up After Cookies Version 1.0. Technical report,
ISEC Partners, Dec. 2010.

[24] F. McSherry and I. Mironov. Differentially private recommender sys-
tems: building privacy into the net. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining, Jun. 2009.

[25] Amazon Mechanical Turk. https://www.mturk.com/mturk/
welcome.

[26] A. Narayanan and V. Shmatikov. Robust de-anonymization of large
sparse datasets. In Proceedings of the IEEE Symposium on Security and
Privacy, May 2008.

[27] A. Narayanan and V. Shmatikov. De-anonymizing social networks. IEEE
Sympolsium on Security and Privacy, May 2009.

[28] The Open Directory Project. http://dmoz.org.
[29] D. Pierrakos, G. Paliouras, C. Papatheodorou, and C. D. Spyropoulos.

Web usage mining as a tool for personalization: A survey. User Modeling
and User-Adapted Interaction, 13(4), 2003.

[30] Same origin policy: Protecting browser state from web privacy attacks.
http://crypto.stanford.edu/safecache/.

[31] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and
information flow policies in fine. In In Proceedings of the European
Symposium on Programming, Mar. 2010.

[32] TargetAPI. http://www.targetapi.com.
[33] The Mozilla Team. Plugging the CSS History Leak.

http://blog.mozilla.com/security/2010/03/31/
plugging-the-css-history-leak, 2010.

[34] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas.
Adnostic: Privacy preserving targeted advertising. In Proceedings of the
Network and Distributed System Security Symposium, Feb. 2010.

[35] WebMii: A person search engine. http://www.webmii.com.
[36] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A practical attack

to de-anonymize social network users. In IEEE Symposium on Security
and Privacy, May 2010.

[37] Yahoo! BOSS API. http://developer.yahoo.com/search/boss/.
[38] The Yahoo Toolbar. http://toolbar.yahoo.com.

