
NeFS: Network Encrypted File System

Robin Cheng, Xunjie Li, Ronnachai Jaroensri
{robinc, xunjieli, tiam}@mit.edu

6.858 Final Project December 13, 2013

1 Introduction

In recent years, many convenient file sharing solutions have been developed: Google
Drive[1], Dropbox[2], Microsoft’s Skydrive[3], etc. However, in all these commercial
products, end users do not have control over file servers. It is not uncommon to see
cases of data breach on remote servers[4]. On the other hand, currently several
encrypted file systems exist, such as BitLocker[5] and TrueCrypt[6], but they only
encrypt local file data and do not support sharing.

Our goal is to develop a remote encrypted file system that enables easy file sharing with
a strong data confidentiality guarantee. We are able to find several recent projects in this
area. The first is SPORC(2010)[7], a project that deals with fork-consistency in group
collaboration on an untrusted server. Depot(2011)[8] improves liveness of an untrusted
server, by making the file system distributed. K2C(2012)[9] proposes an lazy key
revocation scheme to improve the performance of a remote file server. Authenticated
Storage Using Small Trusted Hardware(2013)[10] designs a novel solution to use a small
trusted hardware to ensure the data security of file server. However, these solutions
deal with very specific problems, and thus we do not find them very relevant to our goal.
Nevertheless, it shows that there are many possible ideas and novel solutions that we
can look into.

Our project builds upon SiRiUS(2003) [11], a solution to securing remote untrusted
storage. SiRiUS embeds file encryption and file signature keys directly with the file.
Users gain access to files by gaining access to the file keys encrypted using their public
key(a trusted PKI will be needed). This way, sharing of file can be done with minimal out
of band communication. We designed NeFS, a network encrypted file system, by
extending SiRiUS’s design to meet the security requirement set out by 6.858 course
staff [12]. In particular, our system places minimal trust on the server, which makes it
very easy to defend against attack by a malicious server, or a malicious client connecting

1

to the server. This, however, comes at a cost of more complicated client, as we shall see
in section 3 and 4.

In this paper, we will explain the design of NeFS, and illustrate the key features of a
prototype. We will discuss performance of our design, and conclude by noting the
possible future directions of this project.

2 Threat Model

As shown in Figure 1, there are three system components in NeFS -- clients, a file server
and a public key repository. We assume the public key repository is a trusted party
which always provides correct public key for each user in the system. The primary goal
of NeFS is to ensure data confidentiality and integrity while allowing sharing of files. We
address two threats against confidentiality and integrity of user data: malicious client
and compromised server.

Figure 1 NeFS System Diagram and Threat Model

Malicious Client: An adversary may have full control of his client machine and
possibly has a legitimate account within the system, but he should not be able to read the
plain texts of the files that he doesn’t have access to. Furthermore, he should not be able
to compromise the integrity of data, by creating new file, or replacing content of a given
file that he doesn’t have proper permission to. The server may collude with him, and

2

their goal to compromise confidentiality (read plain text), or integrity (altering file
content) should not succeed or go undetected.

Compromised Server: A file server may be compromised, either by a hacker or a
curious administrator. An adversary who has full control of the server machine should
not be able to read plain text of the data store on it. Of course, since the file is store on
the server, the adversary will be able to write anything on the disk, replacing any
content that the [legitimate] user may have put there. Equally bad, the adversary may
decide to supply the content of one file with another. However, this class of attacks
should not go unnoticed, and the user will be able to tell if their data has been tampered
with the next time they communicate with the server.

Note that the current version NeFS does not provide freshness guarantee, and the
server may return stale file resulting in successful rollback attack.

3 Design

3.1 Overview

The key idea of our design lies in the cryptographic keys. Each file on the server is
encrypted by a symmetric file encryption key (FEK) and signed by an asymmetric file
signature key (FSK). Sharing of the file is done by giving collaborators access of FEK or
both FEK and FSK depending on whether read or write access to grant. Each user holds
an asymmetric master encryption key (MEK), and an asymmetric master signature key
(MSK). The FEK and FSK are encrypted by owner’s MEK for each collaborator, and are
embedded directly in the metadata accompanying the file itself.

To sum up, Figure 2 illustrates the keys used in NeFS:

3

Figure 2 Key Overview

In Section 3.2, we will explain these keys, as well as how they interact with files. We use
a shorthand, {content}key , to mean content is encrypted with key.

3.2 File Encryption and Representation

Upon uploading a file to the remote server, NeFS client will generate file keys for the file.
NeFS client then generates a data file and a metadata file.

A data file consists of:
1. File data encrypted with FEK (using AES).
2. a SHA-1 hash of file data signed with FSK.

Figure 3 Data File

A metadata file consists of:
1. A owner encrypted key block, tagged with username of the owner

a. Containing FEK and FSK encrypted with owner’s MEK
2. An encrypted key block for each collaborator, with unencrypted tag which

includes username of the collaborator, and permission flag (read/write).
The key block is encrypted with the collaborator’s MEK, and contains:

a. both FEK and FSK for collaborator who has write access
b. FEK for collaborator who has read-only access

3. Unencrypted File Verification Key (FVK)
4. Encrypted file metadata block:

a. File ID
b. A boolean of whether the file represents a directory
c. timestamp of the last metadata modification time

5. A signature (signed with MSK) of the hash of the metadata content

4

Figure 4 Metadata File

3.3 System Components and Interaction

As illustrated in Figure 1, there are three components in NeFS. In this section, we will
explain the responsibilities, and document the major operations for each components.

3.3.1 Client

NeFS client provides an interface for users to interact with the remote file server.
Because files are encrypted on the server, the server itself does not know file names,
types, or directory structures. NeFS client hides this complexity of an encrypted file
system from the end user, with its convenient APIs that facilitate file lookup, retrieval,
modification, removal, and sharing. In this section, we describe different aspect of the
client, and how it abstracts low-level detail from the end users.

Directory Structure and Changing Directory

The server has a flat file hierarchy, and all files are referred by their file IDs which
consist of username, underscore, and an integer number, as illustrated in Figure 5.
Directory structure is exposed entirely by the client. Each directory is a file, mapping file
names to file IDs. These file IDs are the way by which the client and the server identify a
file. File IDs are generated upon file creation by the client, and do not reveal anything
about the file name or content. All directory files are encrypted just like regular files. The
user continues to refer to the file by its filename, as long as they have the read
permission on the containing directory file, and on the file itself.

5

Figure 5 Flat Hierarchy on File Server and Obtaining Hierarch by Recursive Querying.
Alice’s root directory has a file ID of Alice_0. Fetching “/Alice/Dir_a/Dir_b/helloWorld.txt” involves
recursive querying of three containing directory files.

The client keeps a local copy of the current remote directory file, and its parent
directory. The current directory starts at the user’s root directory, and changes upon
user actions (eg. “cd”). When a user “cd” into a directory, the client fetches the new
directory file, decrypts and perform checks. It then updates its internal state (current
directory and its parent directory). If the user doesn’t have read access to the file, the
client reports the error, and restores the previous state.

Upload a File

The client checks if the file already exists (by look up the name given by user). If the file
doesn’t exists, the client generates file keys (FEK, FSK, and FVK) for the local file, along
with metadata as specified in section 3.2. The client also generates a file ID which an
integer incremented from the last used value (saved from session to session, for the
user’s life time). It also adds an entry to the directory mapping. If the file does exists
(there is a directory mapping from file name to file ID), it recognizes the operation as
updating the file, and retrieves FEK and FSK necessary for file modification. The client
finally encrypts the data file with FEK, signs it with FSK, and uploads the files to the
server.

Read a File

The client obtained the file ID from directory mapping (user refers to file by file name,
usually), then it downloads the desired data file (correspond to the requested file). The

6

client decrypts the file as followed: it first obtains the encrypted key block (see Figure 4)
that corresponds to user’s username, and decrypts it using the user’s MDK. Finally, the
client verifies the integrity of the file in two steps: 1. verify the authenticity of the
metadata file using the owner’s MVK, and 2. verify the integrity of the data file using the
FVK (embedded in the metadata file). Once the client obtains the desired data file, it
decrypts the data file using the file’s FEK. Then it returns the decrypted file to the user.
The client may need to recursively query directory files in the path to obtain the final file
ID, but since directory file is the same as regular file, reading a directory file follows the
same procedure except the result is used to update the client’s internal state instead of
being returned to the user.

Note that, without read access, the user can at most see who owns the file, who has
access to it, and the file verification key (from the metadata file), but not the file type, file
ID, or the plain text of the file.

Link/Unlink a File

Linking and unlinking involves modification to the directory file. When the user wishes to
link a file, the client looks up the file ID of the containing directory (which is defaulted to
the user’s root directory), decrypts it, adds the desired mapping, re-encrypts, and
uploads to the server. Unlinking works in the opposite direction, the client removes the
directory entry. Note that write permission on the destination directory is required in
order to perform these actions.

Rename a File

Renaming a file involves update the mappings in the containing directory file, which is
equivalent to modify the content of directory file. The file ID remains the same.

Share a File

When a user wants to share a file with another user, the client obtains MEK of the
collaborator from the public key repository, encrypts FEK or FSK as appropriate into a
key block tagged with the collaborator’s username, puts it in the metadata file, updates
the metadata file on the server. Note, only the owner of a file is allowed to carry out
sharing, since the metadata is signed with the master signature key.

To facilitate file access for users, each user has a google doc-styled “shared” folder living
separately from their root. For instance, Alice may “befriend” Bob, and create a folder

7

called “Bob” in her shared folder, and give Bob write access to that folder. When Bob
shares a file with Alice, in addition to giving adding Alice’s key block to the file, Bob’s
client will also link the file to Alice’s shared folder titled “Bob”, so Alice has access to all
files shared with her without having to remember file ID of each file.

Unshare a File

Unsharing a file is slightly more complicated. In addition to removing user’s FEK and
FSK from the metadata, the client will also need to generate a new FEK and FSK, and
re-encrypt the file, and re-sign the file and metadata. This is because the user being
revoked access may have saved the encryption key offline, changing the keys
completely, will prevent his future access to the file, while storing keys in the metadata
avoids notifying all other collaborator of the change.

Account Creation

When a user registers for an account, the client generates MEK, MDK, MSK, and MVK
for the user. The client then registers the user with the public key repository, and sets
the public keys (MEK and MVK) on the repository. The client will keep the private keys
(MDK and MSK), in addition to MEK and MSK locally for convenience and offline
operations.

3.3.2 Server

NeFS server has a flat file hierarchy (see Figure 5) , and is incognizant of file information
other than who the file’s owner and collaborators are. It enforces access control, and
prevents unauthorized users from corrupting file data. It exposes the following APIs to
the client. In this section, we will explain what these APIs do, and how access control is
incorporated. Here we assume that client with username, client_id, has been
authenticated (See 3.3.4 Authentication).

READ_FILE(client_id, fileID):

The server checks the encrypted key blocks of the metadata file correspond to file
ID, fileID. The server makes sure there is an encrypted key block correspond
to the user with username, client_id, and the permission type is
PERMISSION_READor PERMISSION_WRITE. When the verification passes, the
server responded with {metadata file, data file} .

READ_METADATA(client_id, fileID):

8

This API is identical to READ_FILE, except it returns {metadata file}.

UPLOAD_FILE(client_id, fileID, metadata_file, data_file):

The server checks thatfileIDis well formatted, and is in the client’s namespace.
It also checks whether a file,with the same id exists. If all checks pass, the server
saves the metadata_file and data_file under fileID, with corresponding suffixes
(see Figure 5).

MODIFY_METADATA(client_id, fileID, metadata_file):

The server checks to see if the client is the owner of the file, by verifying whether
the owner key block is tagged with client_id. Only if the client is the owner of
the file, the server replaces the current metadata file with metadata_file.

MODIFY_DATAFILE(client_id, fileID, data_file):

The server checks to see if the client has write permission, by verifying there is
an encrypted key block withPERMISSION_WRITEcorresponded to the client. Only
if there is, the server replaces the current data file with data_file.

REMOVE_FILE(client_id, fileID):

The server only allows the owner of the file to remove the file. Checking involves
verifying the fileID and the owner’s encrypted key block in metadata file.

3.3.3 Public Key Repository

The public key repository is a trusted component. It can be implemented using an
external trusted key distribution infrastructure, such as PGP public key servers and
Identity Based Encryption (IBE) master key servers. In the real deployment, the public
key repository should provide functionality for the user to securely create and account,
and securely set/reset their public key. The getter can be open to public. At the
minimum, it provides the following,

SET_MASTER_ENCRYPTION_KEY(KEY) :
 sets MEK of the client

GET_MASTER_ENCRYPTION_KEY(USER_ID):

gets MEK of a client with username USER_ID

SET_MASTER_VERIFICATION_KEY(KEY):

9

sets MVF of the client

GET_MASTER_VERIFICATION_KEY(USER_ID):

gets MVK of a client with username USER_ID

3.3.4 Authentication and Communication Protocols

Figure 6 Authentication Protocol

The authentication process is essential for the server to ensure that a client is who it
claims to be. Because we use RPC instead of raw sockets, we do not have persistent state
per session; this is similar to HTTP, where browsers need to keep cookies in order to
authenticate with the server for every request. We do something similar here, by
designing a simple authentication protocol as shown in Figure 6. Note that one obvious
choice for authentication is to set up the server as an HTTPS server, or to make the RPC
go over SSL. However, setting up HTTPS server or SSL is tedious and we did not choose
to do so in a prototyping environment.

10

For each user, there is an incrementing integer called the “authentication counter”
stored at the server. The counter is initialized to zero at account creation. Every time the
client wants to start a session with the server, it asks for the authentication counter from
the server, increments it by 1, and signs the new counter with its MSK, and sends it over
to the server. The server then checks if the number is greater than the last one it has
seen, and checks that the signature is correct. If the authentication counter sent by the
client is valid as well as the signature, then this proves that the client does in fact have
the ability to sign messages with MSK. The reason why we use an incrementing counter
is to prevent against replay attacks, as an authentication message can only be used once.
After validation, the server generates a random AES key, and sends it back to the client,
encrypted by the client’s MEK. The client decrypts the AES key and use this key as the
session key. If the client is legitimate, the decryption will succeed and provide the same
AES key as generated by the server.

Along with each subsequent RPC call, a token is sent to the server. The token is the
encryption of the message counter, which starts with 0 right after authentication
completes, and increments for each RPC call. The encryption uses the AES key in CBC
mode, which includes a random initialization vector so as to make sure that the input to
the AES cipher is random enough (it’s not obvious from a cryptographic point of view
whether this is really needed, or if AES without an IV is already secure for this purpose).
The server decrypts the message counter and verifies that it monotonically increases.
Note here that we did not simply use a stream cipher, because individual RPCs can
theoretically be lost.

The authentication protocol is specific to this implementation. In a real implementation it
would be preferable to use a more established protocol such as SSL.

4 Implementation

We implemented a prototype of NeFS in python to illustrate the feasibility of our design.
Our prototype has a shell interface, offering convenient UNIX style commands. Although
we did not integrate with an existing OS, it is in theory easy to do if given sufficient time.
In this section, we will explain how we implemented our prototype.

4.1 Architecture
The implementation consists of four modules: common, server, client, and

11

public_key_repo:
● common: Cryptographic primitives, authentication protocol, data packing,

configuration
● server: File server (RPC server), file manager (stores files on server’s disk)
● client: RPC client, user-friendly shell
● public_key_repo: A simple implementation of a trusted public key repository

server (RPC)

4.2 Cryptography
We use pycrypto as the underlying cryptographic library. On top of this, we provide
convenient wrapper functions to abstract out the details in pycrypto. The very import
ones are:

● Generation of symmetric key. This returns a random key from pycrypto’s
cryptographically secure Crypto.Random module.

● Generation of asymmetric key. This is done directly by the Crypto.Public.RSA
module and returns as a tuple of (N, e, d) for easy processing.

● Encryption/decryption using symmetric key. This uses Crypto.Cipher.AES in CBC
mode.

● Encryption/decryption of small messages using asymmetric keys. This uses
Crypto.Cipher.PKCS1_OAEP.

● Encryption/decryption of large messages using asymmetric keys. Public key
encryption does not directly support encrypting arbitrarily large messages due to
the finite RSA modulus. So we split the message into chunks and separately
encrypt each chunk in ECB mode (chunk-by-chunk independently). This still
provides IND-CPA security, but not IND-CCA2 security anymore due to
malleability by reordering blocks. However, because the only usage of encrypting
long messages with a public key is to encrypt keys in the metadata, which itself is
signed with a signature, an adversary does not have the power to choose
ciphertext. In other words, this scheme is still secure.

● Signing/Verification of messages using asymmetric keys. This uses
Crypto.Signature.PKCS1_PSS after SHA1 hashing.

● Importing/exporting of keys. This converts keys between string and tuples of
RSA values, for communication and storage of keys.

4.3 Data packing
It’s an important consideration of what format various data should be stored in. For
example, encrypted keys in the metadata needs to be stored in a structured way, and
RPC requests need to be serialized to binary streams. Such serialization and
deserialization needs to be done in a safe way, so that adversaries who modify serialized

12

streams cannot exploit code that deserialize the stream.

We considered several existing approach to doing this:
● JSON. This scheme is easy to use and deserialization cannot execute arbitrary

code, but it cannot embed binary streams directly (such as encrypted data), and
doing so would require string escapes or base64 encoding, both of which increase
data size considerably. Furthermore, JSON does not restrict the data types or
structure, meaning that code that expects a string as an argument may get a
number instead, and if not careful, this can lead to exploitable bugs.

● XML (as in xmlrpclib). This is very similar to JSON, and has similar issues as
JSON. Furthermore, it is noted in the xmlrpclib documentation that the XML
parser may not be secure.

● Google’s Protocol Buffer. Protocol buffers provide strict data structure
guarantees, and encodes data in a very efficient manner. However, setting up
protocol buffers is very inconvenient, and the API is not as flexible, so it is not a
great option to use when prototyping.

Since none of these approaches are perfect for what we want to do, we invented our own
scheme for packing data. There are two primitives for our scheme:

1. Packing a tuple of strings. This is done by writing a 4-byte string count, followed
by a sequence of 4-byte string lengths, followed by a concatenation of the strings.
When decoding, the count and the lengths are verified to ensure that they are
valid, including checking whether the lengths are non-negative and whether they
sum to the correct length from the encoded stream.

2. Packing arbitrary data involving six data types. NoneType, int, str, bool, tuple,
and list. This is done by encoding a type tag (a constant byte predefined for each
type), followed by the encoded stream of that type, which are:

○ NoneType: The empty stream
○ int: A 4-byte stream (packed with “<i”)
○ str: The string itself
○ bool: a byte of 0x00 or 0xff
○ tuple: Pack each element of the tuple into binary strings, and then pack the

binary strings using string packing.
○ list: Same as tuple.

When decoding packed data, the caller may optionally specify a format specification to
mandate the structure of the decoded data stream, by giving a prototype of the decoded
stream. For example, a prototype of [(“”, 0)] indicates that the stream must represent a
list of 2-element tuples, where each tuple has elements of type string and integer. If the
decoded data does not match this format, then an exception is thrown.

13

This way, we provide code safety just like protocol buffers, and encode almost as
efficiently (binary strings are encoded as is), while at the same time providing
convenience when writing the code.

4.4 RPC
We considered using xmlrpclib, but that suffers from the XML problems discussed
previously in Section 4.3. And we could not find an RPC library that is both simple to use
and encodes data safely and efficiently.

As a result we used an RPC library derived from the rpclib we were given in the labs and
modified it to encode and decode requests and responses in the data packing format
from Section 4.3. Specifically, each request or response is sent as a 4-byte length of the
request/response body followed by a packed stream of the request/response body.

4.5 RPC Relays
After integrating all the components we discovered a serious drawback from using the
staff-provided rpclib, and possibly other RPC libraries: each socket is handled on a new
fork, so we cannot keep any shared state in the server, or they will not actually share
state, since each fork has its own copy of virtual memory. We considered several
solutions to this problem:

● Rewrite everything to use databases and keep no state at the server itself. This
would require a lot of work and we would have to think carefully about race
conditions. We decided not to do this due to this being a prototype and there being
no need to support multiple users’ concurrent actions in a prototype
implementation.

● Rewrite the RPC library or find a new RPC library so that synchronous I/O is
used, i.e. with select(), so that the server can still be single-threaded. We found no
easy-to-drop-in implementations of such RPC library or socket implementation.

So we decided to take advantage of NodeJS’s event-based I/O and set up a relay server
that accepts socket connections just like the actual RPC server would. The relay server
splits the streams into individual requests using the 4-byte length information, and
sends requests to the actual server on a single RPC connection. The relay server keeps
track of the requests sent, so that when it receives responses from the real server, it
knows which user to send the responses to.

Even though the relay server is more of a hack, the same idea can be used in other
contexts to opaquely setup load balancing, i.e. accept requests from any relay node, and
based on the load of individual servers, forward the request to an appropriate server.

14

4.6 Server and file manager
The server is a simple RPC server using techniques described in Section 4.4 and 4.5, and
exposes APIs described in Section 3.3.2. The file manager implements helper functions
and access control.

4.7 Client
The client is where most of the cryptography takes place. In our implementation, we
have defined abstractions such as creating files, uploading files, downloading files,
creating directories, linking and unlinking files, sharing files, etc. Each of these operations
eventually translate into reading and writing of metadata and data files, and only
encrypted versions of the metadata/data files are ever sent to the server.

4.8 CLI Shell
We implemented a CLI environment (like that of Python) that supports the following
commands:

1. cd <dir>: Change the current directory
2. ls: List the contents of the current directory
3. ul <local> <remote>: Recursively upload from local path to remote path
4. dl <remote> <local>: Recursively download from remote path to local path
5. rm <remote>: Recursively delete remote path
6. mv <from> <to>: Move/rename in NeFS
7. shr <path> <user> <shared name>: Share read permission to a file or directory

to a user under a certain name
8. shw <path> <user> <shared name>: Same as above, except also granting write

permission (read permission implied)
9. unshare <path> <user>: Unshare the file/directory from the user
10. friend <user>: Set up a shared folder for the user so that the user can now share

files with you

A remote path can be relative to the current directory, or be an absolute path that starts
with either:

● “~user”: The root directory of the user. If the user string is omitted, refers to the
user’s own root directory.

● “!user”: The shared directory of the user. If the user string is omitted, refers to
the user’s own shared directory.

5 Security Analysis

15

NeFS has a simple design, and addresses all the requirements in 6.858 Final Project’s
handout[12]. In this section, we will briefly explain, in context of our threat model, how
our design meets the requirements for data security.

NeFS addresses security requirements [12] as follows:
● File names (and directory names) should be treated as confidential.

○ file names and directory names are only available in the directory files,
which are encrypted just like ordinary files.

● Users should not be able to modify files or directories without being detected,
unless they are authorized to do so.

○ The files are signed with FSK, which is not available without write access,
and without the FSK, an adversary cannot modify the content of the file
and produce a valid signature at the same time.

○ An adversary can perform a rollback attack and provide an older version of
the file with the correct signature. However, since our system does not
provide freshness guarantee, this attack is beyond the scope of our project.

● If the server is not malicious, unauthorized users should not be able to corrupt the
file system.

○ Users are authenticated. Without both the private key and the signing key
of the user, an adversary cannot impersonate the user.

○ When modifying the metadata file, the server checks whether the user
owns the corresponding file.

○ When modifying the data file, the server checks whether the signature on
the file is valid, using the file verification key stored in the metadata file.

● The file server should not be able to read file content, file names, or directory
names.

○ File content is encrypted with FEK.
○ The FEK is encrypted with the MEKs of all the users who have read access.

The server does not have any MDKs, so it cannot decrypt the FEK.
○ File names and directory names are in directory files which are ordinary

files and are thus secure for the same reason.
● The server should not be able to take data from one file and supply it in response

to a client reading a different file.
○ The fact that the metadata is signed with the owner’s MSK ensures that

the FVK and the file ID must be supplied in the correct combination by the
server, i.e. the server cannot take the FVK of one file and the file ID of a
different file and combine them into a valid metadata file.

○ Therefore if the file ID matches the requested file ID, the FVK must also

16

be correct. Then, the server cannot supply the contents of a different file as
it will fail the signature check against FVK.

● A malicious file server should not be able to create or delete files or directories
without being detected.

○ File/directory creation: A malicious server cannot sign any metadata file,
so any metadata file that it creates will not pass validation by any client.
And without creating a metadata file, a file/directory cannot be created.

○ File/directory deletion: Even though the server can simply remove the
metadata and data file from its disk, it cannot unlink the file from its parent
directory (as that requires modifying the directory file), so when the user
tries to access it through the link, it will detect that the server fails to
provide the file.

6 Performance Analysis

The most expensive operation in this design is the generation of asymmetric keys. We
use PyCrypto to generate 1024-bit RSA keys. This is the smallest size allowed by the
PyCrypto library, and sizes above this (such as 4096) takes unacceptable time to
generate.

The generation of asymmetric keys is involved in two situations:
1. The creation of a user. This is not a big concern at all because this is done only

once per user.
2. The creation of a file/directory. This is especially noticeable when recursively

uploading a local folder. This is one reason why downloading is significantly faster
than uploading. To mitigate this, one may pre-generate keys when the system is
idle.

We benchmarked several uploading and downloading test cases. For each test case, we
repeat the same operation three times, and take the average time. The timing results
are shown in the following table:

Action Time 1
(sec)

Time 2
(sec)

Time 3
(sec)

Avg. Time
(sec)

Uploading one empty file 0.83 0.97 0.8 0.87

Uploading one file of size 1MB 0.91 1.39 0.79 1.03

17

Uploading one file of size 100MB 3.37 2.99 2.19 2.85

Uploading a 6.858 lab folder
(containing 93 files and folders)

83.86 80.63 78.41 80.97

Uploading the same lab folder but
with pre-generated keys

38.10 40.81 36.95 38.62

Downloading one empty file 0.12 0.10 0.12 0.11

Downloading one file of size 1MB 0.13 0.13 0.13 0.13

Downloading one file of size
100MB

1.42 1.61 1.38 1.47

Downloading the same lab folder 10.38 10.4 10.36 10.38

The performance of our prototype seems satisfactory. Most operation takes time in the
order of seconds. The bulk of computation time seems to go into cryptographic
operation. One may try to use a different cryptographic library or implement the system
in a faster language like C to gain performance.

Note also that it is possible to modify the server API to allow more fine-grained read,
such as reading the data file without reading the metadata file, or letting the server
decode certain unencrypted parts in the metadata file. This can lead to increased
performance and decreased bandwidth. However, in this prototype, which we focus on
functionality and debuggability rather than performance, we do not include such
optimizations.

The code of our prototype is located at https://github.com/xunjieli/malicious .

7 Future Work

There are one major limitation of our design. First the server can carry out rollback
attacks, without being detected by the users. Specifically, the server can replace an
existing pair of data file and metadata file with an older version. The signature and
checksum will still pass client’s checks. A possible extension to this system is to add a
scheme to guarantee freshness, such as those described in [7] and [8].

Furthermore, because file sharing is tied to the user’s master encryption key, changing

18

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fxunjieli%2Fmalicious&sa=D&sntz=1&usg=AFQjCNEWnCq7AskSbciP7oilvtLoP2Pcng

user’s security credential can be extremely difficult. If a user’s MDK is leaked, all the
files that the user has access to will be compromised. The user will need to track down
every single file that he has access to, and request the file owner to re-encrypt the file
key for that him. This is a major drawback that comes with a method where the
encryption key is tied to a single file. We presently do not have a solution for this without
relaxing security guarantee (enforcing permission per folder instead of per file, for
example), and we believe this could be an interesting future work.

Another issue with our design is whether to allow “mixed ownership”. What this means
is, suppose user A shares with user B a folder owned by A, and gives user B write access
on that folder. Intuitively, user B should be able to create, rename, and delete files in this
folder. However, because only the owner of a file can sign the metadata of that file, if
user B were to create a file in the folder, that file would have been owned by user B,
which leads to mixed ownership in that folder, since the folder is owned by user A but a
file inside is owned by user B. This is not a big problem, because a file being in a folder is
only a matter of linking, but it introduces a lot of usability inconsistencies. For example, if
user A wants to further share the folder with user C, user A would not be able to grant
any access on the new file (which is owned by user B) to user C, creating an inconsistent
experience for both user A and user C. It would be interesting to find a way to work
around this, so that users can create files in a shared folder, while still being able to
transfer the ownership to the owner of the folder.

8 References

[1] Google Drive. http://drive.google.com

[2] Dropbox. http://dropbox.com

[3] Microsoft SkyDrive. http://skydrive.live.com

[4] A. Chen. GCreep: Google engineer stalked teens, spied on chats. Gawker, September
2010. http://gawker.com/5637234/.

[5] BitLocker.
http://windows.microsoft.com/en-us/windows7/products/features/bitlocker

[6] TrueCrypt. http://ww.truecrypt.org

19

[7] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC: Group
collaboration using untrusted cloud resources. In Proceedings of the 9th Symposium on
Operating Systems De- sign and Implementation, Vancouver, Canada, October 2010.

[8] J. Li, M. Krohn, D. Mazie`res, and D. Shasha. Secure untrusted data repository
(SUNDR). In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, pages 91– 106, San Francisco, CA, December 2004.

[9] Zarandioon, Saman, Danfeng Daphne Yao, and Vinod Ganapathy. "K2C:
Cryptographic cloud storage with lazy revocation and anonymous access."Security and
Privacy in Communication Networks. Springer Berlin Heidelberg, 2012. 59-76.

[10] H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing remote untrusted
storage. In Proceedings of the 10th Network and Distributed System Security
Symposium, 2003.

[11] H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing remote untrusted
storage. In Proceedings of the 10th Network and Distributed System Security
Symposium, 2003.

[12] http://css.csail.mit.edu/6.858/2013/labs/lab7.html

20

