

Combatting Browser Fingerprinting with ChromeDust

 Ram Bhaskar <rambhask@mit.edu>

Rishikesh Tirumala <rrt@mit.edu>
Timmy Galvin <tgalvin@mit.edu>

6.858 Final Project (Lab 7)
December 12, 2013

Introduction

 Online advertising is a multi-billion dollar industry. There exists a constant pressure to

improve the techniques used to further influence consumer habits. At the core of online

advertising efforts lies directed advertisements–ads shown for a specific user to align with their

interests. This individualized approach is mainly accomplished by tracking a user’s online

browsing habits to build a model of his/her interests and behaviors. The main way to track a

user’s browsing activity since 1994 has been cookies. However, cookies have recently faced both

legal and technical limitations, so advertisers have adopted a new method to track user activity:

browser fingerprinting. Fingerprinting is the process of identifying a user using various metadata

accessible through their browsers (e.g., user agent string, screen resolution). This method has

gained prominence in the last four years and stands as a threat to users’ privacy.

Problem Statement

 While users have methods with which to protect themselves from tracking cookie-based

tracking, attempts to interfere with browser fingerprinting are next to non-existent. The reason

for this void of options is multi-fold: the technology, more specifically the approach, only

became well-known in 2009, solutions must be constantly updated, and the attack surface is not

well-defined. While these are daunting challenges, we believe the solution is an open-source

browser extension that interferes with common fingerprinting techniques without sacrificing

usability too much. So while our research made it clear that we could not stop fingerprinting, we

hope our project will help raise awareness of browser fingerprinting and focus efforts on

generating solutions.

A Closer Look at Fingerprinting

Although it may not seem like it, fighting fingerprinting is a complicated task. There are

so many parameters that can act as personal identifiable information (PII) and it is near

impossible to protect against all of these. Different levels of fingerprint tracking are implemented

in today’s web ecosystem. The first is that of a source that collects information from HTTP

Headers and JavaScript objects, and stores these values. Then, once a repeat fingerprint is

observed, adversaries can match the data and begin to collect information and track users’

actions. The second kind is much more sophisticated. These are mostly commercial

fingerprinting services such as BlueCava, Iovation, and ThreatMatrix. These services go above

and beyond the rudimentary tracking mechanisms and extract additional information from the

user’s browser. Figure 1 shows a comparison between Panopticlick and these other three

companies in terms of what features they are tracking in their applications.

Figure 1: List of features used by Panopticlick and other fingerprinting services.
1

As one may notice, these companies track much more sophisticated information than

their basic counterparts. One common exploit is through Flash. There are specific vulnerabilities

1
 N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna. Cookieless Monster:

Exploring the Ecosystem of Web-based Device Fingerprinting. In IEEE Symposium on Security and Privacy, San

Francisco, CA, USA, May 2013.

that allow for font detection, proxy detection, and even Windows Registry and IP information

which could prove to be enough to identify an user uniquely. Many other tricks involve the

navigator and the screen object of the window. These objects, the navigator in particular, are

very powerful as they contain incredible amount of information. For example, the navigator has

properties such as userAgent, plugins, appName, platform, language, etc. However, there are

also properties of the navigator object that are unique to certain browsers. For example, Firefox

has properties such as mozAlarms, mozDoNotTrack, mozSettings, etc that are usually only

prevalent in Firefox. Similarly, Internet Explorer has properties such as msPointerEnabled,

msMaxTouchPoints, etc. that only exist in IE. Adversaries can use the information present to

detect which browser users are using. Also, different versions of the same browser have different

properties as well, which also complicates protection against this detection scheme. Other tricky

ways of fingerprinting utilized by these services include math constant detection, using css size

to determine fonts, assessing the mutability of navigator object, preserving enumeration of

JavaScript objects, and detecting mismatch in userAgent information gather from http headers

and JavaScript objects.

Code Design and Implementation

Our code follows the basic structure of a Chrome Extension. On a high level, the

manifest.json file holds information about the extension as a whole, including what permissions

are required from the user. We ask for access to local storage, tabs, and the http headers that the

user’s browser sends to various websites. The manifest also identifies the various javascript files

where most of the extension’s functionality lies.

 The user interfaces with the extension through options.html and options.js, the options

page which is opened through the extension’s menu. The options page allows a user to see which

pieces of PII are available to manipulate. Previously, we had allowed users to choose what to

spoof their data as, but we removed that functionality. Our scheme works best when each user is

seen as unique over the same sites and sessions, since the randomness prevents a site from being

able to track a user over his/her trawl across the world wide web. The options page handles the

storing and displaying of this data to the user, along with passing messages to background.js,

which holds the state machines relating to user preferences.

 Inside background.js, each potential PII data-point is given a boolean variable, mapping

to whether or not the user wants to spoof that data-point. Background.js handles listening for

messages from other areas of the extension (specifically options.js), along with user-triggered

actions that we are interested in. When the user switches tabs, we are able to spoof his/her http

headers, specifically the user-agent string. This file also handles sending variable states to

content.js, which handles client-side JavaScript.

 One of the roadblocks we ran into while developing ChromeDust was the realization that

Chrome extensions execute in a different executable environment from the web page client-side

JavaScript code. By changing code in the extension’s JavaScript executable environment, we

were not able to spoof what the server-side code could see. Instead, we inject JavaScript code

into the DOM to spoof PII attributes on to the page that the user is viewing, and this functionality

is handled in content.js. The file also holds an array of plausible user-agent strings and version

numbers so that there are a large number of permutations of valid configurations.

Conclusion

 We believe that our project is the beginning of an open-source solution to browser

fingerprinting in the form of a browser extension. We focused mainly on interfering with

common fingerprinting techniques while maintaining usability as best we could. We hope that

others will build upon the work that we have done so far and will continue to raise awareness of

browser fingerprinting while providing users with an easy-to-use solution.

