SplitSecure

SplitSecure
A Distributed Credential Storage System

P. KAUNDINYA, D. NARAYANAN, Q. NGUYEN, R. MAHAJAN
{pranavk, deepakn, qdnguyen, rohanm}@ mit.edu

12t" December, 2013

1 Abstract

Password databases of several high profile companies such as Sony, LinkedIn, and Adobe have been
compromised in recent years. These security breaches affect millions of users and result in millions
of dollars in damage along with a lot of negative publicity. Despite the obvious security hazards,
companies often store passwords in clear text or hashed but unsalted form. As computing power
becomes cheaper, even salted passwords are becoming vulnerable.

We designed a scalable distributed server-side password storage system with the objective of
forcing adversaries to compromise multiple servers in order to obtain any sensitive information.

2 Related Work

Although distributed cryptography is a well established field, prior to 2012, there were no commer-
cially available distributed password storage and authentication systems. With security breaches
becoming more frequent and computation becoming cheaper, there is now a market for such a
distributed password storage system.

Some key ideas in our design are inspired by the following prior work.

2.1 Distributed Credential Protection (DCP)

The first commercially available distributed password storage system was released by RSA in 2012
and is called Distributed Credential Protection (DCP) [1]. This scheme forces an adversary to
compromise multiple servers in order to obtain any useful information. It stores the password using
a combination of two servers - one server which stores the password XORed with a random number
and the other which stores the random number itself. The system verifies the password without
reconstructing it. The mechanics of this scheme are shown in Figure 1.

Scalability is a concern in this system because during authentication, the server needs to contact
all databases which are involved in storing the user’s password.



SplitSecure

Registration Authentication
Client Client
- a

T

PI

A = RODR’ if P==P’.
Therefore, if A==B,
P==pP’

N

A= P’G)R'

Figure 1: RSA Distributed Credential Protection [1]]: DCP stores each password using two servers - one
server which stores the password XORed with a random number and the other which stores the
random number itself. During registration, the client sends a password XORed with a random
number to one server and the random number to the other server. During authentication, the
client sends the password XORed with a new random number to the first server and the random
number to the second. The system verifies the password without reconstructing it.

2.2 Shamir’s Secret Sharing Scheme

Shamir’s Secret Sharing [2] is a k-out-of-n threshold secret sharing scheme in which a secret is split
among a group of n entities. Each entity holds a unique share, and any k of these n entities are
sufficient reconstruct the secret.

The core idea behind Shamir’s Secret Sharing scheme is that a polynomial of degree k — 1 can
be uniquely determined by k points. If a secret is encoded as the constant term of a degree k — 1
polynomial with randomly chosen coefficient and arbitrary points on the polynomial are chosen as
shares of the secret, k shares are sufficient to reconstruct the polynomial and obtain the secret. The
individual points by themselves contain no information about the polynomial whatsoever. Shamir’s
Secret Sharing scheme can be shown to be information theoretically secure.

3 Design

We designed our system with the following design goals:

e To never reconstruct user passwords or store complete passwords on any one machine



SplitSecure

e To make the system more scalable than existing systems
e To minimize the computation load on the client

Our system consists of two main components:

e Authentication server: This is the main machine that the client communicates with while
registering and authenticating.

e Database servers: These are the machines which actually store password information. Let
the number of database servers containing a share of any given user’s password be n, and the
number of databases involved in authentication be k. Note that no server stores more than
one share of a user’s password.

We describe our design in more detail in the following sections.

3.1 Threat Model

The main aim of our system is to protect users’ passwords in the event that one or more server-
side machines are compromised. We assume that each server-side machine is well isolated so that
attacking one server successfully doesn’t make it any easier to attack the other servers.

Our design assumes that the network is safe. There are several existing solutions to deal with
network vulnerabilities. The goal of our design is to protect against server attacks. All communi-
cation of sensitive data in our system is encrypted and we use certificates and signatures to verify
authenticity. However, our design is still vulnerable to attacks where an adversary modifies packet
routing or intercepts packets.

3.2 Registration

Consider the registration protocol shown in figure Figure 2. The following steps are involved in
registration:

1. The client issues a registration request to the authentication server. This request contains the
username of the user trying to register. The authentication server first checks if there already
exists an entry for that particular username in the username-database servers table. If so,
registration fails and the client is notified. Otherwise, the authentication server creates a new
entry for the user in the username-database servers table. This table stores a list of n tuples
for each user in which the first element in each tuple is the address of a database server and
the second element is a randomly chosen challenge point.

2. The authentication server responds to the registration request with a list of n (database server,
random challenge point) tuples that tell the client which databases it needs to talk to, along
with the corresponding challenge points. The n database servers are chosen randomly from the
pool of database servers available and recorded in the username-database server table. The
authentication server also sends the client a digitally signed token containing the username.
This token is used by the client to communicate with the database servers.



SplitSecure

Authentication

Registration request Server

) username Store:

Client @ Username >

[(18.1.1.1,x,),(18.1.1.2,X,) , ... ]
P(x) = Ax2+Bx+C . Database servers: (address, point)
Aand B are random - [(18.1.1.1,x,),(18.1.1.2, %), (18.1.1.3, X;), ... ]
C = hashed password O
T Registration success/failure notification
3)

Registration successful if all
database servers report successful
registration

username

= Ax.2
P(x;) = Axz2+ Bxg+ C Yes/No

username
P(x,) = Ax,2+ Bx; + C

username
P(x,) = Ax,2+ Bx,+ C

Database server —18.1.1.2 Databas server —18.1.1.3

\
Stol

@

username, P(x,) = Ax,2+ Bx,+ C username, P(x,) = Ax,2+ Bx, + C username, P(x,) = Ax,2+ Bx;+ C

Figure 2: The registration protocol in our distributed password storage system.

3. The client then chooses random numbers A and B and hashes the entered password to obtain
a number C. The client constructs the polynomial P(z) = Az? + Bz + C, which is then
evaluated at the challenge points obtained from the authentication server. These evaluated
values (password shares) along with the client’s username are then sent to the corresponding
database servers. Communication between the client and authentication/database servers is
protected by SSL to maintain secrecy and authenticity.

4. Each database server processes the request it gets from the client by storing the value obtained
from the client (a password share) in a table mapping usernames to password shares. Before
processing a request, the database server verifies the signed username in the token presented
by the user.

5. Kach database server notifies the authentication server of successful registration

6. The authentication server notifies the client that the registration was successful if it receives
a successful registration signal from all the n database servers

3.3 Authentication

Consider the authentication protocol shown in figure Figure 3. The following steps are involved in
authentication:

1. The client issues an authentication request to the authentication server. This request contains
the username of the client. Using this username, the authentication server performs a lookup
in the username-database servers table.



SplitSecure

Q(x) = ax2+bx+c
aand b are random
¢ = hashed password

Authentication request
username

Authentication
Server
(A-a)x,?+ (B-b)x, + (C-c) =D, — |

(A-a)x,%+ (B-b)x,+ (C-c)=D, — I

Database servers: (address, point)
[(18.1.1.1,x,), (18.1.1.2, x,), (18.1.1.3, x,) ]

(A-a)x,? + (B-b)x, + (C-c) =D, — Il

X and D, are known,
(A-a) and (B-b) are unknowns

Authentication success/failure notification

If password is correct, C-c== 0

1 Assume C-c==0
2. Solve land Il for

username

Q(x,) = ax,* +bx,+c are equal, C-c==0

username
Q(x,) = ax,2 + bx,+ ¢
Database server — 18.1.1.1

Database server — 18.1.1.2 Database server — 18.1.1.3

Compute:
D, =Plx,) - Q(x,)

Compute:
D, = P(x;) - Q(x,)

Compute:
D, =P(x,) - Q(x,)

Stored: P(x,) = Ax,?+ Bx, + C

Stored: P(x,) = Ax,2+ Bx,+ C Stored: P(x,) = Ax,2+ Bx,+ C

Figure 3: The authentication protocol in our distributed password storage system for k = 3.

2. The authentication server responds to the authentication request with a list of database servers

that the client needs to talk to, together with the challenge points associated with those
database servers. This list consists of k of the n database servers containing the user’s password
shares. To balance the load, the k database servers are chosen so that the more loaded database
servers are less likely to be chosen. The authentication server also sends the client a digitally
signed token containing the username. This token is used by the client to communicate with
the database servers.

The client chooses random numbers a and b and hashes the password just entered by the
user to obtain a number ¢ (Note that these random numbers are different from those used
during registration - A and B). The client constructs the polynomial Q(z) = az? + bx + ¢
and then evaluates the polynomial @) at the challenge points obtained from the authentica-
tion server. These evaluated points are then sent (along with the client’s username) to the
corresponding database servers. As with registration, communication between the client and
authentication/database servers is protected by SSL to maintain secrecy and authenticity.

Each database server processes the request it gets from the client by computing the difference
D;. between the value stored in the database and the value obtained from the client. These
differences are then sent to the authentication server, where the authentication process actu-
ally happens. Before processing a request, the database server verifies the signed username
in the token presented by the user. The communication between the database servers and
authentication servers is encrypted with a symmetric key that is renewed periodically.

5. The authentication server rewrites each difference as a polynomial with unknown coefficients.

(A-a) and (B-b)
Qlx;) = ax,?+ by, + ¢ 3. Solve Il and Il for
(A-a) and (B-b)
username 4, If values obtained in (2) and (3)



SplitSecure

It then assumes that the password is correct, thus obtaining a system of k equations and k —1
unknowns. By choosing different subsets of these equations, solving for the unknowns, and
comparing the results, the authentication server can verify whether the password is correct.
The steps involved in this computation are illustrated for & = 3 in figure Figure 3.

6. The authentication server notifies the client whether the authentication was successful or not.

4 Implementation

We implemented a simple prototype of our design to serve as a proof-of-concept. We implemented
the authentication server and database servers as python HTTP servers. We developed a client with
a simple user interface. We used Javascript to perform all the client-side computation.

SplitSecure

Fill in your username and password below to get
started!

Username

Password

Figure 4: User interface of our prototype implementation

The security of our design is based on the assumption that successfully compromising one



SplitSecure

database server doesn’t make it any easier to compromise any of the other database servers. There-

fore, successful implementation requires enforcing strong isolation between the database servers.

One way of achieving this is to virtualize the database servers using different operating systems. For

the purposes of our prototype, we assumed that such isolation methods were already in use.

5

5.1

Analysis

Security

e Authentication Server Attacks:

Since no passwords are stored on the authentication server, the adversary doesn’t obtain any
passwords by compromising the authentication server. Further, the authentication servers only
obtain the differences of shares from the database servers and the password isn’t reconstructed
during authentication. Even if an adversary listens to all communications with the client
and aggregation servers, he doesn’t obtain any sensitive information. In the worst case, an
adversary could misdirect a client to a false database server, but such an database server would
be unable to present a valid certificate to the client. Therefore the worst thing an adversary
could do is to mount a denial-of-service attack.

Database Server Attacks:

Since each database only stores a single share of each password, the adversary doesn’t obtain
any sensitive information by attacking a few database servers. Compromising a database server
would only give the attacker values of arbitrary polynomials evaluated at the challenge points.
The challenge points can easily be obtained by simply querying the authentication server.
However, a share stored in a database server provides no information about the polynomial
(and therefore the password) even if the corresponding challenge point is known. An adversary
needs to compromise k database servers in order to obtain any complete passwords since k
points are necessary in order to determine a k — 1 degree polynomial. The constant term of
the polynomial (which is the hashed password) cannot be determined without reconstructing
the entire polynomial.

5.2 Performance

Even though our scheme is more computationally expensive than a normal authentication scheme

we don’t believe that this excess computation is a major drawback. The excess computation is quite

simple and there exist several efficient algorithms to perform this computation. Besides the standard

cryptographic computations needed to make sure that data is sent securely over the network, the

additional computation that our design introduces is two-fold - the client now has to evaluate a

polynomial at n different points and the server needs to solve systems of linear equations. Eval-

uating the polynomial isn’t very computationally intensive (especially for low degree polynomials)

so the client isn’t burdened by heavy computations. Solving the system of linear equations is more

expensive, but this can be done reasonably efficiently using optimized matrix operations.



SplitSecure

However, our system consumes significantly more network bandwidth than ordinary authentica-
tion schemes. To authenticate itself, the client needs to make k requests (+1 depending on the exact
implementation) in our design instead of just a single request in normal authentication schemes.
Since the data being sent in each request is small, for small values of k, we believe that this overhead
is quite insignificant. The authentication server also needs to communicate with k database servers.
For a large-scale system, this could be a significant overhead.

While there will certainly be an increase in the time taken for authentication, we don’t expect
this impact to significantly affect user experience. Even though we simulated some load, it was hard
to get a quantitative measure of the impact on authentication time from our prototype. The fact
that our scheme is scalable and allows load balancing makes it possible to implement the scheme
in a way that minimizes the impact on authentication time. Further, we expect this system to be
primarily used in cases where users’ credentials are extremely valuable, so we believe that a slight
increase in authentication time is acceptable.

5.3 Hardware Overhead

Our system requires powerful and robust authentication servers because they perform most of the
computation. The authentication server also needs to store the database servers and challenge points
corresponding to users so it needs to have a database associated with it. A complete large-scale
implementation of our scheme would have multiple authentication servers.

Although database servers don’t perform any intense computation, they handle requests directly
from users and need to be capable of handling load. Our k-out-of-n scheme allows us for database
fault-tolerance to be built into the implementation.

6 Conclusion

Using Shamir’s k-out-of-n secret sharing scheme, we were able to design a password storage system
that is more scalable than RSA’s uted Credential Protection (DCP) at the cost of some extra
computational overhead. Unlike in DCP, there is no distinction database servers in our system.
By using a variation of Shamir’s Secret Sharing scheme and treating all the databases equally, our
system allows load balancing.

Ultimately, both DCP and our system only make stealing passwords more difficult on the server
side. The attacker can still steal the password directly from the user. However, recent security
breaches have shown that guarding credential databases against attacks is becoming an important
aspect of protecting users’ credentials.



SplitSecure

References

[1] RSA Security: Distributed Credential Protection (DCP)
http://www.emc.com/collateral /software/white-papers/h11013-rsa-dcp-0812-wp.pdf

[2] Shamir, Adi: How to Share a Secret
http://dl.acm.org/citation.cfm?doid=359168.359176



	Abstract
	Related Work
	Distributed Credential Protection (DCP)
	Shamir's Secret Sharing Scheme

	Design
	Threat Model
	Registration
	Authentication

	Implementation
	Analysis
	Security
	Performance
	Hardware Overhead

	Conclusion

