
PCFS: Portable EnCrypted File System

6.858 Final Project Report

Xinyue Ye
heyitsye@mit.edu

Maosen Hu
mjhu@mit.edu

Jiashan Liang
jliang3@mit.edu

December 13, 2013

Abstract

PCFS is a portable encrypted file system built
on top of the Unix file system and is compat-
ible with the Linux operating system. While
there are many encrypted file systems built for
sharing files across a network of users, there are
not many systems that allow users to easily en-
crypt and share files from any portable device
such as a USB. Our project seeks to build a
quick portable plug-and-use file system with a
Python shell user interface to allow such encryp-
tion and sharing.

1 Introduction

PCFS supports the same basic set of file I/O
functionalities as any filesystem. Users can cre-
ate, read, write, and delete files and directories.
They can also set permissions and share files
and directories with other users. To provide
confidentiality, PCFS encrypts all filenames, di-
rectory names, and file content so they cannot
be seen by unwanted eyes. Additionally, any
unauthorized changes to files or directories will
be detected by PCFS and reported to autho-
rized users of the modified files and directories.

An advantage of PCFS is that it is not tied
to any single file server, so clients can use the
encrypted file system with any untrusted file
server, including the local file server on their
machines. It can also be used in conjunction
with other file systems and easily integrates into
the Linux OS.

In the following sections, we discuss in depth

the design of PCFS (§ 2), the implementation
details (§ 3), and conclude with possible future
improvements (§ 4).

2 Design

We present the design of PCFS and discuss the
data structures used and overall control flow
through the system.

2.1 File Data Structure

A regular file in a Unix file system is represented
in PCFS slightly differently. There is some ex-
tra metadata that PCFS needs to keep track
of, similar to the metadata the UnixFS needs
to keep track of. Each file contains a checksum,
a list of users with read and/or write permis-
sions for that file, and the actual file contents
that the user inputs (See Figure 1).

As shown in Figure 1, the header is used
to signify that the file is an encrypted file that
belongs to PCFS. For files that do not contain
the header, PCFS simply reads the content in
the file without any pre-processing. The check-
sum is used to detect any unauthorized modifi-
cations to the file. Whenever an authorized user
opens a file for reading or writing, the checksum
stored in the file is validated against a newly
computed checksum of the file and the user will
be notified if the validation fails. The permis-
sions list is simply a representation of the users
that have read and/or write permissions for that
file and it is stored in the format:

username1:r, username2:rw

1



PCFS: Portable EnCrypted File System 2

Figure 1: . File format data structure showing the header, checksum, permissions, and content for each file.

This additional metadata for each file allows
PCFS to ensure the confidentiality and security
of the system.

2.2 PCFS Encryption/ Decryption

When a user first logs onto the file system, a
unique key is generated from their password us-
ing PBKDF2 which we will call K. When the
user creates a file/directory, a new random key
will be generated and stored in a master key file
as shown in Figure 2b along with its checksum.
This master key file will be encrypted with K
and is hidden from all users.

For encryption, the entire file data is en-
crypted using AES-CBC and each file has its
own file key, then the encryptions are encoded
in hex. An untrusted file server will only see
the encoded version of the filename, directory
name, and filecontent, as shown in Figure 2a;
unauthorized users will not even be able to see
the files on PCFS. This provides confidentiality
and security against malicious users or servers
attempting to read the files.

Now when the user wants to open a file, as-
suming they have authorized access to the file,
PCFS first gets the encrypted filename of the
file and then uses the AES key for that file from
the master key file to decrypt the entire file, in-
cluding the permissions and checksum. If the
user does not have authorized access to a file
that they are trying to open, ie. the filename is
not in the master key file, then PCFS will at-
tempt to use a default key, which is simply 16
null bytes that will fail to decrypt anything.

3 Implementation

We discuss the implementation details of our file
system by by breaking it into the milestones of
the project.

3.1 Basic I/O Functionalities

Read/write functionalities of a file/directory de-
pends on the users unique key since everything
is stored as its AES encryption. If they are au-
thenticated then everything will able to be de-
crypted, otherwise the files/directories will be
decrypted using the wrong key and hence re-
main confidential.

Most of the basic I/O operations that can
be performed on the Unix file system can be
performed on PCFS, including (’ls’, ’rm’, ’mv’,
’cat’, ’vi’, and ’mkdir’). These commands are
executed by making their respective OS com-
mand calls after thorough processing by the
PCFS.

For ’cat’ and ’vi’, these two commands are
trying to gain read access to the file, so the
checksum and permissions must be first verified,
and then the decryption process takes place as
described in § 2.2. After the entire file is de-
crypted, the user should only be able to see the
file contents, so only the file contents are printed
to the user or written to the file and all other
metadata stay hidden.

In order to delete a file, the user must have
authorized access to the file and have the file
key before they can call ’rm’ on the filename.

The other commands pertain more to check-
sum verification and directories so they will be
discussed further in § 3.2 and § 3.4.

3.2 Checksum

Checksums are generated for each file and direc-
tory to ensure that unauthorized activity can at
least be detected. For files, the checksum is a
MD5 hash of the contents in the file. For di-
rectories, the checksum is a MD5 hash of the
contents in the directory.

The command ’ls’ on a directory will acti-
vate the checksum validation to check that no
malicious activity occurred. When an unautho-
rized user or untrustworthy file server tries to



PCFS: Portable EnCrypted File System 3

Figure 2: . PCFS Structure. Figure 2a shows the encoding that an untrusted file server who does not have the file or
directory keys would see. Figure 2b shows the control flow of the file system. When a file needs to opened, PCFS will
get the file key from the master file, which is encrypted with the user’s key K. The master file is written to disk and is
structured as a hashtable in memory that maps an encrypted filename to the file key. Figure 2c shows the successfully
decrypted names of the directories and files

modify the structure of the directory, ie. by
removing files, making new files, making new
inner directories, or moving and renaming files,
then the new recomputed checksum for that di-
rectory will not match the checksum stored in
the directory originally and the user will be no-
tified of this unauthorized activity.

For files, when a file is opened for reading
or writing, such as in commands like ’vi’ and
’cat’, the checksum will be validated. The file
will open successfully if the validation passes
and fail otherwise and the user will be notified.

3.3 File Permissions and Sharing

There are three possible permissions mode, read
(r), write (w), or both (rw). For users that have
both read and write permissions, normal ex-
pected behaviour follows calling any command.
If a user only has read permissions for a file but
not write, then calling a command like ’vi’ will
open the file in read-only mode. If a user only
has write permissions but not read permissions,
then a command like ’vi’ will display a mes-
sage notifying the user that they have been de-
nied read permissions so anything they write in
the text editor will simply overwrite the existing
file.

File sharing is possible through the ’share’
command. The command takes in a filename, a
username, and the allowed permissions.

share [filename] [username] [rw]

The ’share’ command adds the new user and
his/her permissions to the file’s permissions and
returns a file sharing code. For the new user,
he/she must log in and call the ’unlock’ com-
mand and paste the file sharing code as the ar-
gument to the command. Once the file is un-
locked, then the file name is displayed in its
plain text form and the new user can perform
any action within his/her permissions bound-
ary. Because each file has a unique key, shar-
ing one file will not compromise any other file.
With the added permissions component, even
if an adversary obtains the key, without given
the correct permissions, they will not be able to
read or write to the file.

3.4 File Directories

File directories are treated similarly to files.
They are encrypted and decrypted just as files
are, however there are some differences.

The checksum for directories are different
from those in files as described in § 3.2. Further-
more, although directories support permissions
as well, users that have permissions for a direc-
tory are not guaranteed permissions for the files
or other directories within the directory. There-
fore, both the permissions for the directory and



PCFS: Portable EnCrypted File System 4

the files within the directory are needed to read
or write the files.

4 Conclusion

PCFS offers confidentiality and security bene-
fits on top of the basic features that regular file
systems provide. It not only satisfies all the
minimum requirements outlined in the Lab 7
description that relate to our design, but is also
portable and easily integrated into the Linux
operating system.

However, there is still much to improve on
for future work, not including code refactoring,
testing, and evaluation. For instance, currently
to share multiple files, the user needs to use the

share command once for every file. For more
robust sharing, it would be better to imple-
ment a command that can share multiple files
to the same user. In addition, we would like
to implement a command that will share one
file to multiple users at the same time. Addi-
tionally, there are constraints as to what users
can choose as valid names and new features and
functions can always be added to make PCFS
more user-friendly and convenient.

References

[1] J. Li, M. Krohn, D. Mazieres, and D.
Shasha, Secure untrusted data repository
(SUNDR),” In OSDI 2004.


