
6.858 Final Project - Encrypted File System
Ciara Kamahele, Tim Mickel, Brandon Vasquez

System design
We implemented our file system with Python for both the client and server. Our server stores
the files on the backend with a database (sqlite). The client and server communicate using a
JSON-based protocol over regular TCP sockets. The server provides remote procedures to
store and load data, and the client never communicates secret details (such as filenames or file
contents) to the server in an unencrypted way.

Users can register using the client. When registering, the user generates an RSA
public/private key pair and sends the public key to the server where it is distributed to the
other clients as soon as possible. A home directory is created for the new user as well.

User representation in the database:

unique user ID username (public) public key (public) updates []

When a new user registers or a file is shared with a user, the server pushes an update to the
user, for example, with the newly registered user’s public key. The client downloads all
updates sent while they were offline upon login and updates local stores of keys and data.

All communications between the client and server other than registration messages are signed
with RSA (using the user’s private key) and the connection to the server will be dropped if a
client attempts to falsify their identity by altering their local keys. Thus the server can verify
that it is actually talking to the user it thinks, as verified by the server’s copy of the user’s
public key.

Metadata and file structure in the database (name and data are encrypted on the client side,
signatures are generated on the client side):

unique ID
by server

ACL […]
by owner

ACL sign
by owner

name
encrypted

name sign
by writer

data
encrypted

data sign
by writer

Directories are implemented as files - a list of file references (by ID) is stored in the data
segment of the file.

When a user creates a file, they are prompted to share the file with other users. They can
select which users (by name) they want to share files with, if any, and give them read or
read/write access to generate the ACL for the shared file. Files that are created, whether they
are directories or files that are uploaded to the server, are encrypted using AES: a random
AES key is generated for each new file and is encrypted using the public RSA keys of everyone

the creator wants to share the file with. The server then pushes these encrypted keys to their
targeted users. However, the server never learns the AES keys, so the server is unable to
provide users with files encrypted by different keys (those will be decrypted as garbage).

Users who have write access can both write to files or rename them, which pushes the update
to all other users who have access to the file. All changes to the files are signed; the new name
and data of the file are signed with the writing user’s private key and that is first verified by
the server. If the user is not on the ACL, the server will reject the changes uploaded by the
user. When other users receive the updated files, the client further checks if the signer is
included as a writer on the ACL, and if there is some discrepancy, will alert the user and reject
the update. This allows the user to notice changes to files by a malicious server (or changes by
a malicious user if the server has a vulnerability). Since this protection is extended to
directories (directories are just files), the server cannot modify the user’s directory by adding a
file unknowingly. If the server removes a file (or makes it unreadable), the client is notified
that a file it thought it existed (since it appears in their directory) no longer exists, perhaps
indicating tampering.

When deleting files, if a user is the owner of the file, the file is removed from the database. If
the user is not an owner (i.e., the owner shared it with the user), then the file is just removed
from the users directory but the file still persists on the database. As a result, only the user can
permanently delete a file from their database.

Assumptions
In order for our system to be secure, we make a few assumptions. We assume that when a
user registers for the first time, the public keys of the other users that are distributed to them
are correct. We also assume that every time a new user registers, their public key is correctly
distributed to all existing users. Every time a client receives another user’s public key (whether
upon registration or during a general update push), the client checks each key. If the key is for
a user they have no record of, they store the key. If the client already has the key, they check
it against their stored copy for that user. If the keys do not match, the client alerts the user
that there is a problem with the server. Thus, if the server lied about the public key of a newly
registered user initially, the server could pretend to be the other user. However, if the server is
compromised at a later point, and attempts to push a falsified version of another user’s key,
the client will notice the discrepancy.

A similar assumption is made for our treatment of ACLs. When a file is created the user is
immediately prompted to create an access control list. A file cannot be created unless the ACL
is successfully specified. After a file is created, the ACL is immutable. The file owner is
recognized as the signer of the ACL, and the ACL is distributed to all users who can read the
file. Thus, if the server initially falsified the ACL and ACL signature before distributing it (for
example, the server made a fake ACL and signed the ACL itself to pose as the owner of the
file), the clients would save the false ACL and use it for reference in the future. However, the
server still would not have the secret AES key for the file, so it wouldn’t be able to read or

change any information in the file. We assume the server sends the correct ACL the first time,
and every subsequent time the client pulls the file, the client checks the file’s ACL and ACL
owner against its stored record and alerts the user if there is a change.

Future expansions
If we continued this project, the first thing that we would add would be peer-to-peer
integration so that we would not have to rely on a semi-trusted third party for key
distribution. Distributing the ACLs and secret AES keys for files, as well as directly distributing
public keys when new users register, would remove reliance on the server to not falsify any of
this information.

Another thing we could add to this project would be stronger consistency guarantees, e.g. fork
consistency. In the current implementation, a malicious server could serve two users of the
same shared file diverging versions of the file. The server can also hide all changes from a
single user by not pushing them to the user. We could solve this problem by adding file history
into the signatures (like in the SUNDR file system) and by distributing write notifications
peer-to-peer instead of through the server.

