KeystrokeAuth

Forrest Pieper
Kenneth Seibert
Ameesh Goyal
Carlo Biedenharn

December 13th, 2013

1 Introduction

KeystrokeAuth is an example website implementation that uses keystroke timing to provide stronger
user authentication. Measuring keystroke timing is a method for passive biometric authentication.
Traditional biometric authentication such as fingerprint or retinal scanners require external hard-
ware and is not suited for web service authentication where users may login from a variety of
machines. Keystroke timing can be gathered using Javascript embedded in the login and registra-
tion pages. Thus this method requires no additional hardware. The user must enter her password
several times during registration instead of just once or twice, but otherwise the method is largely
unobtrusive. Authenticating passwords with keystroke timing makes it more difficult for an attacker
who possesses a user’s plaintext password to compromise the account. Additionally, it discourages
account sharing which may be useful for highly secure systems and premium accounts. In this pa-
per we describe past work on the topic, introduce our example implementation, analyze the added
security of our system, and examine a small set of test data.

2 Background and Related Work

Many different studies have been done in the past about fingerprinting users based on keystroke
cadence, two of which are referenced below. However, many of these studies focus on running a
keylogger in the background of a user session and collecting a large amount of keystrokes before
making a decision. The training data that these keystrokes are compared to can also be quite large.
In contrast, KeystrokeAuth can only compare the timing data from a short password entry to the
timing data of a small bank of previously entered passwords. This makes detecting adversaries
much more difficult.

In our system, we avoided the legwork of comparing multiple algorithms for what may be the
best fit for us. Instead, we chose a few of the top performing algorithms described in [1] to test in
a password context with a much smaller bank of training data (in contrast to 400 in the paper).
In particular, the Mahalanobis distance described below performed very well in [1] and is described
in more detail in [2]. We believe that a bank of 400 passwords is unrealistic for most websites to
request of a user. In KeystrokeAuth, we settle on 10 password entries upon registration, which is
much more reasonable.



3 KeystrokeAuth Implementation

KeystrokeAuth is a Flask website that uses Javascript to capture the timestamps on each keydown
and keyup event while typing the password. During registration, the user enters her password 10
times. The data is sent to the server and KeystrokeAuth computes a model specific to that user
and password. When logging in, the user enters the password once and KeystrokeAuth compares
the new timing data to the registered training data. If the timing data differs too much, the user
will not be logged in.

3.1 Gathering Timing Data

Timing data is gathered with Javascript event handlers on key presses in the registration and login
pages. Timing data is only gathered when the focus is on the password field. The password field
is reset whenever it gains focus (via the onFocus event handler). While gathering timing data,
any key that is not a valid password character, e.g. backspace or the arrow keys, causes the entire
password field to reset. This ensures we only get timing data for a continuous entry of password
characters.

The timing data for each password entry consists of a list of objects with keycode, keyup,
and keydown fields. The keyup and keydown fields are timestamps normalized by subtracting the
keydown timestamp for the first character in the password entry. During login, only one password
entry is gathered. During registration, a counter keeps track of entries and won’t submit until the
password has been entered 10 times.

Some tables and logs indicating which of the models passed and failed are printed out to the
page after submission of the login page. This is useful for debugging purposes, but should be turned
off for a real-world implementation.

3.2 Generating User Timing Models

In order to have success with verifying users using keystroke dynamics, we first have to establish
the set of training data. The keystroke dynamics that we are interested in include the following;:

Down time: The time that each key is pressed down at, where the first key pressed down
equates to a time of zero

Down-Down time: The time in-between two consecutive key down events

Flight time: The time in-between a key up and the following key down event. This value
can be negative as a key may not be released before the next is pressed down.

Dwell time: The time that a given key is held down

We are able to calculate all of these values from the initial 10 password entries that are passed
in during registration. These metrics will be passed to the distance algorithm described below to
determine if the entry is close enough to permit login.

3.3 Login Authentication Algorithm

We make use of the Mahalanobis distance to compute the similarity between two password timings,
represented as vectors.



Dyu(@) = /(& — §)TS1(F ~ )

Mahalanobis distance is used in two different authentication functions. The first function takes the
mean of the training data vectors and computes the distance between the login attempt and the
computed mean vector. If the distance from the mean vector is below a certain threshold the login
attempt is accepted.

The 2nd function that we employ takes the login attempt and finds its distance from each of the
training vectors. If the k closes distances all fall below a threshold the login attempt is accepted.

The threshold is computed using the training data. We find the Mahalanobis distance between
each vector in the training data (n? distances). We then compute the average distance. The
threshold is set to be one standard deviation away from the mean in the direction of smaller
distances. In other words we only accept login attempts where the distance of the attempt is within
one deviation from our computed mean distance. We found that this worked better than a universal
threshold because some users are more erratic in their password entry.

4 Security Analysis

KeystrokeAuth makes it more difficult for an attacker with knowledge of a user’s plaintext password
to gain access to the user’s account. Users should still try to keep their passwords secret. Since
KeystrokeAuth is intended to augment standard password-based authentication for web services, it
must not weaken any of the security features of the standard scheme. For it to be useful in practice,
the login process must not be much more difficult for actual users. At the same time, the login
process should be more difficult for an attacker with a user’s plaintext password.

The following two terms are useful for describing how KeystrokeAuth meets these goals:

False Negative: When an authentic user enters the correct password but is not logged in.
If the false negative rate is high, users will get very annoyed about not being able to log in
consistently.

False Positive: When an attacker enters the correct password and is logged in. If the false
positive rate is 100%, the security is the same as standard password authentication.

The threshold described in 3.3 can be adjusted to affect the error rates. Making the threshold
smaller increases the false negative rate but decreases the false positive rate, and vice versa. In
our authentication algorithm, the threshold is set such that the false negative rate is around 30%.
Although this seems high, 90% of users will login within 2 tries. This is a good trade-off between
security and convenience because our false positive rate is significantly less than 100%.

The standard password security strategy allows for the password database to be compromised
without revealing the users password. KeystrokeAuth was carefully designed not to violate this
security feature.

The timing model for each user is encrypted with AES CFB encryption using a salted and hashed
(PBKDF2) user password as the key. The salt in this case differs from the salt and hash of the
user password that is stored on the server. Thus, for each user, the server stores the username, two
different salts, the hashed and salted password, and the encrypted timing data. An attacker with a
compromised copy of the database but not the plaintext password would be unable to decrypt this



model, preventing him from using the timing information to guess the password. An attacker with
the plaintext password but no copy of the database would have no way of determining the user’s
timing model, so his only option would be to try to log in many times with various typing rhythms.

An attacker with both the plaintext password and a copy of the database would be able to
decrypt the model and use a script to send keypresses at the correct times to compromise the
account. Of course, in standard password authentication the attacker wouldn’t even need the copy
of the database. KeystrokeAuth is more secure in this regard.

5 Data Collection and Analysis

5.1 Data Overview

Timing data was recorded from twelve participants typing three phrases. In an effort to record rel-
evant data while not divulging the passwords of the participants, familiar phrases were used. Each
participant was instructed to type each phrase at least ten times, in any order. Each participant
had to type the same three phrases: facebookgoogle, phideltatheta, and biedenharn.

The phrase facebookgoogle was chosen as it is universally familiar to our participants, resulting in
very consistent typing rhythms. phideltatheta was used because a portion of our participants were
familiar with the phrase. The last phrase, biedenharn, was chosen as an example of an attack where
biedenharn was the account password of a user and the participants were trying to compromise the
account. Like a password, biedenharn was not familiar to any of our participants except for one of
the authors of this paper.

Even when looking at the messy graph in Figure la, it is clear that individuals have unique

typing rhythms with familiar words. Filtering the data down to a few participants in Figure 1b
shows this more directly.

1200 700

600
1000

500

800+
400

300

Milliseconds
Milliseconds

200

100

-100

-200

Keystroke Events Keystroke Events

(a) All data (b) Three individuals

Figure 1: Flight measurements for participants typing facebookgoogle. Fach distinct color represents
an individual.



5.2 Feature Comparison

In practice, the different features produce variably unique datasets. Though the graphs comparing
the up and down features are unique, it is easy to see in figure 2a that with practice an attacker
might be able to replicate a victim’s data. However with the flight and down-down graphs (figures
2f and 2b), the results are very consistent and unique. The green dataset has mostly positive flight
times while the blue dataset has mainly negative times.

2500 800 400

. 0
2000 + - 200 = _ s
B 500 = T e =
g 500 . 5
- LI ) :
E - L e — y T ~a00)
500 g . ;:[f”%r/%/é )= Z };; H Ff‘ o0
T =<
= e
] A — T 3 CR— S B A R
Keystoke Everts Keystoke Events Keystoke Everts
(a) down (b) down-down (c) dwell
— 7 600 600
2000 T 75 0 . 500

a
a

g 1500 . - & r ) + T = 4
to00 f}/ = R ; = _200) = 20 !
‘ s \ w| = /7 o
- y‘\;\ﬁrg
o of -
= Q S=—=a T ——
- 3 ol

3 5 2 3 5 6 7 5
Keystroke Events Keystroke Events

il
il

Mils

=~

(d) up (e) up-up (f) flight

Figure 2: Comparison of the six features. The blue data represents the phrase biedenharn typed
by somebody familiar with the phrase. The green data represents somebody unfamiliar with the
phrase.

6 Conclusion

KeystrokeAuth does not intend to be a complete solution to password theft and user authentication.
Instead, it is a model client/server website that provides much stronger authentication with minimal
inconvenience. We gathered a significant dataset to test against an array of keystroke models and
algorithms. The system is very usable with the thresholds we set, but the false negative rate could
be even lower with much more data collection and tuning.

Additionally, the implementation is designed to make expansions to the algorithm easier. For
example, a weighted mixture of models and algorithms could be used to decide whether a login is
successful. Also, the training set could be updated as successful login attempts are made. However,
this is risky in that an adversary could potentially skew the training data away from the actual
user.

An attempt at a secure, practical, keystroke-based authenticator has not been made before this
project. We believe that KeystrokeAuth shows that this is a very functional system for password



authentication that should be more widely used to protect users.

References

[1] Killourhy, Kevin S., and Roy A. Maxion. “Comparing anomaly-detection algorithms for
keystroke dynamics.” Dependable Systems € Networks, 2009. DSN’09. IEEE/IFIP Interna-
tional Conference on. IEEE, 2009.

[2] Cho, Sungzoon, et al. “Web-based keystroke dynamics identity verification using neural net-
work.” Journal of organizational computing and electronic commerce 10.4 (2000): 295-307.



