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Analyzing intrusions today is an arduous, largely manual task because system administrators
lack the information and tools needed to understand easily the sequence of steps that occurred in
an attack. The goal of BackTracker is to identify automatically potential sequences of steps that
occurred in an intrusion. Starting with a single detection point (e.g., a suspicious file), BackTracker
identifies files and processes that could have affected that detection point and displays chains
of events in a dependency graph. We use BackTracker to analyze several real attacks against
computers that we set up as honeypots. In each case, BackTracker is able to highlight effectively
the entry point used to gain access to the system and the sequence of steps from that entry point
to the point at which we noticed the intrusion. The logging required to support BackTracker added
9% overhead in running time and generated 1.2 GB per day of log data for an operating-system
intensive workload.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Infor-
mation flow controls: invasive software (e.g., viruses, worms, Trojan horses); K.6.4 [Management of
Computing and Information Systems]: System Management-management audit; K.6.5 [Man-
agement of Computing and Information Systems]: Security and Protection—Invasive soft-
ware (e.g., viruses, worms, Trojan horses); unauthorized access (e.g., hacking, phreaking)

General Terms: Management, Security

Additional Key Words and Phrases: Computer forensics, intrusion analysis, information flow

1. INTRODUCTION

The frequency of computer intrusions has been increasing rapidly for several
years [CERT 2002a]. It seems likely that, for the foreseeable future, even the
most diligent system administrators will continue to cope routinely with com-
puter breakins. After discovering an intrusion, a diligent system administrator
should do several things to recover from the intrusion. First, the administrator
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should understand how the intruder gained access to the system. Second, the
administrator should identify the damage inflicted on the system (e.g., modi-
fied files, leaked secrets, installed backdoors). Third, the administrator should
fix the vulnerability that allowed the intrusion and try to undo the damage
wrought by the intruder. This article addresses the methods and tools an ad-
ministrator uses to understand how an intruder gained access to the system.

Before an administrator can start to understand an intrusion, she must
first detect that an intrusion has occurred [CERT 2001]. There are numer-
ous ways to detect a compromise. A tool such as TripWire [Kim and Spafford
1994] can detect a modified system file; a network or host firewall can no-
tice a process conducting a port scan or launching a denial-of-service attack;
a sandboxing tool can notice a program making disallowed or unusual pat-
terns of system calls [Goldberg et al. 1996; Forrest et al. 1996] or executing
foreign code [Kiriansky et al. 2002]. We use the term detection point to refer
to the state on the local computer system that alerts the administrator to the
intrusion. For example, a detection point could be a deleted, modified, or addi-
tional file, or it could be a process that is behaving in an unusual or suspicious
manner.

Once an administrator is aware that a computer is compromised, the next
step is to investigate how the compromise took place [CERT 2000]. Adminis-
trators typically use two main sources of information to find clues about an
intrusion: system/network logs and disk state [Farmer and Venema 2000]. An
administrator might find log entries that show unexpected output from vulnera-
ble applications, deleted or forgotten attack toolkits on disk, or file modification
dates which hint at the sequence of events during the intrusion. Many tools exist
that make this job easier. For example, Snort can log network traffic; Ethereal
can present application-level views of that network traffic; and The Coroner’s
Toolkit can recover deleted files [Farmer 2001] or summarize the times at which
files were last modified, accessed, or created [Farmer 2000] (similar tools are
Guidance Software’s EnCase, Access Data’s Forensic Toolkit, Internal Revenue
Services’ ILook, and ASR Data’s SMART).

Unfortunately, current sources of information suffer from one or more limi-
tations. Host logs typically show only partial, application-specific information
about what happened, such as HTTP connections or login attempts, and they
often show little about what occurred on the system after the initial compro-
mise. Network logs may contain encrypted data, and the administrator may not
be able to recover the decryption key. The attacker may also use an obfuscated
custom command set to communicate with a backdoor, and the administrator
may not be able to recover the backdoor program to help understand the com-
mands. Disk images may contain useful information about the final state, but
they do not provide a complete history of what transpired during the attack. A
general limitation of most tools and sources of information is that they inter-
mingle the actions of the intruder (or the state caused by those actions) with
the actions/state of legitimate users. Even in cases where the logs and disk
state contain enough information to understand an attack, identifying the se-
quence of events from the initial compromise to the point of detection point is
still largely a manual process.
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This article describes a tool called BackTracker that attempts to address the
shortcomings in current tools and sources of information and thereby help an
administrator more easily understand what took place during an attack. Work-
ing backward from a detection point, BackTracker identifies chains of events
that could have led to the modification that was detected. An administrator can
then focus her detective work on those chains of events, leading to a quicker
and easier identification of the vulnerability. In order to identify these chains
of events, BackTracker logs the system calls that induce most directly depen-
dencies between operating system objects (e.g., creating a process, reading and
writing files). BackTracker’s goal is to provide helpful information for most
attacks; it does not provide complete information for every possible attack.

We have implemented BackTracker for Linux in two components: an on-line
component that logs events and an off-line component that graphs events re-
lated to the attack. BackTracker currently tracks many (but not all) relevant
operating-system (OS) events. We found that these events can be logged and
analyzed with moderate time and space overhead and that the output gener-
ated by BackTracker was helpful in understanding several real attacks against
computers we set up as honeypots.

2. DESIGN OF BACKTRACKER

BackTracker’s goal is to reconstruct a time-line of events that occur in an attack.
Figure 1 illustrates this with BackTracker’s results for an intrusion on our
honeypot machine that occurred on March 12, 2003. The graph shows that
the attacker caused the Apache Web server (httpd) to create a command shell
(bash), downloaded and unpacked an executable (/tmp/xploit/ptrace), then ran
the executable using a different group identity (we believe the executable was
seeking to exploit a race condition in the Linux ptrace code to gain root access).
We detected the intrusion by seeing the ptrace process in the process listing.

There are many levels at which events and objects can be observed.
Application-level logs such as Apache’s log of HTTP requests are semantically
rich. However, they provide no information about the attacker’s own programs,
and they can be disabled by an attacker who gains privileged access. Network-
level logs provide more information for remote attacks, but they can be rendered
useless by encryption or obfuscation. Logging low-level events such as machine
instructions can provide complete information about the computer’s execution
[Dunlap et al. 2002], but these can be difficult for administrators to understand
quickly.

BackTracker works by observing OS-level objects (e.g., files, filenames, pro-
cesses) and events (e.g., system calls). This level is a compromise between the
application level (semantically rich but easily disabled) and the machine level
(difficult to disable but semantically poor). Unlike application-level logging,
OS-level logging cannot separate objects within an application (e.g., user-level
threads), but rather considers the application as a whole. While OS-level se-
mantics can be disrupted by attacking the kernel, gaining kernel-mode control
can be made considerably more difficult than gaining privileged user-mode
control [Huagang 2000]. Unlike network-level logging, OS-level events can be
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Fig. 1. Filtered dependency graph for ptrace attack. Processes are shown as boxes (labeled by
program names called by execve during that process’s lifetime); files are shown as ovals; sockets
are shown as diamonds. BackTracker can also show process IDs, file inode numbers, and socket
ports. The detection point is shaded.

interpreted even if the attacker encrypts or obfuscates his network communi-
cation.

This section’s description of BackTracker is divided into three parts (increas-
ing in degree of aggregation): objects, events that cause dependencies between
objects, and dependency graphs. The description and implementation of Back-
Tracker is given for Unix-like operating systems.

2.1 Objects

Three types of OS-level objects are relevant to BackTracker’s analysis: pro-
cesses, files, and filenames.

A process is identified uniquely by a process ID and a version number.
BackTracker keeps track of a process from the time it is created by a fork
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or clone system call to the point where it exits. The one process that is not cre-
ated by fork or clone is the first process (swapper); BackTracker starts keeping
track of swapper when it makes its first system call.

A file object includes any data or metadata that is specific to that file, such as
its contents, owner, or modification time. A file is identified uniquely by a device,
an inode number, and a version number. Because files are identified by inode
number rather than by name, BackTracker tracks a file across rename opera-
tions and through symbolic links. BackTracker treats pipes and named pipes
as normal files. Objects associated with System V IPC (messages, shared mem-
ory, semaphores) can also be treated as files, though the current BackTracker
implementation does not yet handle these.

A filename object refers to the directory data that maps a name to a file
object. A filename object is identified uniquely by a canonical name, which is an
absolute pathname with all ./ and ../ links resolved. Note the difference between
file and filename objects. In Unix, a single file can appear in multiple places
in the filesystem directory structure, so writing a file via one name will affect
the data returned when reading the file via the different name. File objects are
affected by system calls such as write, whereas filename objects are affected by
system calls such as rename, create, and unlink.

It is possible to keep track of objects at a different granularity than processes,
files, and filenames. One could keep track of finer-grained objects, such as file
blocks, or coarser-grained objects, such as all files within a directory. Keeping
track of objects on a finer granularity reduces false dependencies (similar to
false sharing in distributed shared memory systems), but is harder and may
induce higher overhead.

2.2 Potential Dependency-Causing Events

BackTracker logs events at runtime that induce dependency relationships be-
tween objects, that is, events in which one object affects the state of another
object. These events are the links that allow BackTracker to deduce timelines
of events leading to a detection point. A dependency relationship is specified by
three parts: a source object, a sink object, and a time interval. For example, the
reading of a file by a process causes that process (the sink object) to depend on
that file (the source object). We denote a dependency from a source object to a
sink object as source⇒sink.

We use time intervals to reduce false dependencies. For example, a process
that reads a file at time 10 does not depend on writes to the file that occur
after time 10. Time is measured in terms of an increasing event counter. Unless
otherwise stated, the interval for an event starts when the system call is invoked
and ends when the system call returns. A few types of events (such as shared
memory accesses) are aggregated into a single event over a longer interval
because it is difficult to identify the times of individual events.

There are numerous events which cause objects to affect each other. This
section describes potential events that BackTracker could track. Section 2.3
describes how BackTracker uses dependency-causing events. Section 2.4 then
describes why some events are more important to track than others and
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identifies the subset of these dependencies logged by the current BackTracker
prototype. We classify dependency-causing events based on the source and
sink objects for the dependency they induce: process/process, process/file, and
process/filename.

2.2.1 Process/Process Dependencies. The first category of events are those
for which one process directly affects the execution of another process. One pro-
cess can affect another directly by creating it, sharing memory with it, or sig-
naling it. For example, an intruder may login to the system through sshd, then
fork a shell process, then fork a process that performs a denial-of-service at-
tack. Processes can also affect each other indirectly (e.g., by writing and reading
files), and we describe these types of dependencies in the next two sections.

If a process creates another process, there is a parent⇒child dependency
because the parent initiated the existence of the child and because the child’s
address space is initialized with data from the parent’s address space.

Besides the traditional fork system call, Linux supports the clone system
call, which creates a child process that shares the parent’s address space (these
are essentially kernel threads). Children that are created via clone have an ad-
ditional bidirectional parent⇔child dependency with their parent due to their
shared address space. In addition, clone creates a bidirectional dependency be-
tween the child and other processes that are currently sharing the parent’s
address space. Because it is difficult to track individual loads and stores to
shared memory locations, we group all loads and stores to shared memory into
a single event that causes the two processes to depend on each other over a
longer time interval. We do this grouping by assuming conservatively that the
time interval of the shared-memory dependency lasts from the time the child
is created to the time either process exits or replaces its address space through
the execve system call.

2.2.2 Process/File Dependencies. The second category of events are those
for which a process affects or is affected by data or attributes associated with
a file. For example, an intruder can edit the password file (process⇒file de-
pendency), then log in using the new password file (file⇒process dependency).
Receiving data from a network socket can also be treated as reading a file, al-
though the sending and receiving computers would need to cooperate to link
the receive event with the corresponding send event.

System calls like write and writev cause a process⇒file dependency. System
calls like read, readv, and execve cause a file⇒process dependency.

Files can also be mapped into a process’s address space through mmap, then
accessed via load/store instructions. As with shared memory between processes,
we aggregate mapped-file accesses into a single event, lasting from the time the
file is mmap’ed to the time the process exits. This conservative time interval
allows BackTracker to not track individual memory operations or the unmap-
ping or remapping of files. The direction of the dependency for mapped files
depends on the access permissions used when opening the file: mapping a file
read-only causes a file⇒process dependency; mapping a file write-only causes
a process⇒file dependency; mapping a file read/write causes a bidirectional
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process⇔file dependency. When a process is created, it inherits a dependency
with each file mapped into its parent’s address space.

A process can also affect or be affected by a file’s attributes, such as the file’s
owner, permissions, and modification time. System calls that modify a file’s
attributes (e.g., chown, chmod, utime) cause a process⇒file dependency. System
calls that read file attributes (e.g., fstat) cause a file⇒process dependency. In
fact, any system call that specifies a file (e.g., open, chdir, unlink, execve) causes
a file⇒process dependency if the filename specified in the call exists, because
the return value of that system call depends on the file’s owner and permissions.

2.2.3 Process/Filename Dependencies. The third category of events are
those that cause a process to affect or be affected by a filename object. For
example, an intruder can delete a configuration file and cause an application
to use an insecure default configuration. Or an intruder can swap the names
of current and backup password files to cause the system to use out-of-date
passwords.

Any system call that includes a filename argument (e.g., open, creat, link,
unlink, mkdir, rename, rmdir, stat, chmod) causes a filename⇒process depen-
dency, because the return value of the system call depends on the existence
of that filename in the file system directory tree. In addition, the process is
affected by all parent directories of the filename (e.g., opening the file /a/b/c
depends on the existence of /a and /a/b). A system call that reads a directory
causes a filename⇒process dependency for all filenames in that directory.

System calls that modify a filename argument cause a process⇒filename
dependency if they succeed. Examples are creat, link, unlink, rename, mkdir,
rmdir, and mount.

2.3 Dependency Graphs

By logging objects and dependency-causing events during runtime, Back-
Tracker saves enough information to build a graph that depicts the depen-
dency relationships between all objects seen over that execution. Rather than
presenting the complete dependency graph, however, we would like to make
understanding an attack as easy as possible by presenting only the relevant
portion of the graph. This section describes how to select the objects and events
in the graph that relate to the attack.

We assume that the administrator has noticed the compromised system and
can identify at least one detection point, such as a modified, extra, or deleted
file, or a suspicious or missing process. Starting from that detection point, our
goal is to build a dependency graph of all objects and events that causally affect
the state of the detection point [Lamport 1978]. The part of the BackTracker
system that builds this dependency graph is called GraphGen. GraphGen is
run offline, that is, after the attack.

To construct the dependency graph, GraphGen reads the log of events,
starting from the last event and reading toward the beginning of the log
(Figure 2). For each event, GraphGen evaluates whether that event can affect
any object that is currently in the dependency graph. Each object in the
evolving graph has a time threshold associated with it, which is the maximum
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Fig. 2. Constructing a dependency graph. This code shows the basic algorithm used to construct
a dependency graph from a log of dependency-causing events with discrete times.

Fig. 3. Dependency graph for an example set of events with discrete times. The label on each edge
shows the time of the event. The detection point is file X at time 10. By processing the event log,
GraphGen prunes away events and objects that do not affect file X by time 10.

time that an event can occur and be considered relevant for that object.
GraphGen is initialized with the object associated with the detection point,
and the time threshold associated with this object is the earliest time at which
the administrator knows the object’s state is compromised. Because the log is
processed in reverse time order, all events encountered in the log after the de-
tection point will occur before the time threshold of all objects currently in the
graph.

Consider how this algorithm works for the set of events shown in Figure 3a
(Figure 3(b) pictures the log of events as a complete dependency graph):

(1) GraphGen is initialized with the detection point, which is file X at time
10. That is, the administrator knows that file X has the wrong contents by
time 10.

(2) GraphGen considers the event at time 8. This event does not affect any
object in the current graph (i.e., file X), so we ignore it.

(3) GraphGen considers the event at time 7. This event also does not affect
any object in the current graph.

(4) GraphGen considers the event at time 6. This event affects file X in time
to affect its contents at the detection point, so GraphGen adds process C
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to the dependency graph with an edge from process C to file X. GraphGen
sets process C’s time threshold to be 6, because only events that occur
before time 6 can affect C in time to affect the detection point.

(5) GraphGen considers the event at time 5. This event affects an object in
the dependency graph (process C) in time, so GraphGen adds file 1 to the
graph with an edge to process C (at time 5).

(6) GraphGen considers the event at time 4. This event affects an object in
the dependency graph (process C) in time, so GraphGen adds process A to
the dependency graph with an edge to process C (at time 4).

(7) GraphGen considers the event at time 3. This event affects process A in
time, so we add file 0 to the graph with an edge to process A (at time 3).

(8) GraphGen considers the event at time 2. This event does not affect any
object in the current graph.

(9) GraphGen considers the event at time 1. This event affects file 1 in time,
so we add process B to the graph with an edge to file 1 (at time 1).

(10) GraphGen considers the event at time 0. This event affects process B in
time, so we add an edge from process A to process B (process A is already
in the graph).

The resulting dependency graph (Figure 3(c)) is a subset of the graph in
Figure 3(b). We believe this type of graph to be a useful picture of the events
that lead to the detection point, especially if it can reduce dramatically the
number of objects and events an administrator must examine to understand
an attack.

The full algorithm is a bit more complicated because it must handle events
that span an interval of time, rather than events with discrete times. Con-
sider a scenario where the dependency graph currently has an object O with
time threshold t. If an event P⇒O occurs during time interval [x-y], then we
should add P to the dependency graph iff x < t, that is, this event started to
affect O by O’s time threshold. If P is added to the dependency graph, the time
threshold associated with P would be minimum(t, y), because the event would
have no relevant effect on O after time t, and the event itself stopped after
time y.

Events with intervals are added to the log in order of the later time in their
interval. This order guarantees that GraphGen sees the event and can add the
source object for that event as soon as possible (so that the added source object
can in turn be affected by events processed subsequently by GraphGen).

For example, consider how GraphGen would handle an event process B⇒file
1 in Figure 3(b) with a time interval of 1–7. GraphGen would encounter this
event at a log time 7 because events are ordered by the later time in their
interval. At this time, file 1 is not yet in the dependency graph. GraphGen re-
members this event and continually reevaluates whether it affects new objects
as they are added to the dependency graph. When file 1 is added to the graph
(log time 5), GraphGen sees that the event process B⇒file 1 affects file 1 and
adds process B to the graph. The time threshold for process B would be time 5
(the lesser of time 5 and time 7).
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GraphGen maintains several data structures to accelerate its processing of
events. Its main data structure is a hash table of all objects currently in the
dependency graph, called GraphObjects. GraphGen uses GraphObjects to de-
termine quickly if the event under consideration affects an object that is already
in the graph. GraphGen also remembers those events with time intervals that
include the current time being processed in the log. GraphGen stores these
events in an ObjectsIntervals hash table, hashed on the sink object for that
event. When GraphGen adds an object to GraphObjects, it checks if any events
in the ObjectsIntervals hash table affect the new object before the time thresh-
old for the new object. Finally, GraphGen maintains a priority queue of events
with intervals that include the current time (prioritized by the starting time
of the event). The priority queue allows GraphGen to find and discard events
quickly whose intervals no longer include the current time.

2.4 Dependencies Tracked By Current Prototype

Section 2.2 lists numerous ways in which one object can potentially affect an-
other. It is important to note, however, that affecting an object is not the same
as controlling an object. Dependency-causing events vary widely in terms of
how much the source object can control the sink object. Our current implemen-
tation of BackTracker focuses on tracking the events we consider easiest for an
attacker to use to accomplish a task; we call these events high-control events.

Some examples of high-control events are changing the contents of a file or
creating a child process. It is relatively easy for an intruder to perform a task
by using high-control events. For example, an intruder can install a backdoor
easily by modifying an executable file, then creating a process that executes it.

Some examples of low-control events are changing a file’s access time or cre-
ating a filename in a directory. Although these events can affect the execution of
other processes, they tend to generate a high degree of noise in the dependency
graph. For example, if BackTracker tracks the dependency caused by reading
a directory, then a process that lists the files in /tmp would depend on all pro-
cesses that have ever created, renamed, or deleted filenames in /tmp. Timing
channels [Lampson 1973] are an example of an extremely low-control event;
for example, an attacker may be able to trigger a race condition by executing a
CPU-intensive program.

Fortunately, BackTracker is able to provide useful analysis without tracking
low-control events, even if low-control events are used in the attack. This is
because it is difficult for an intruder to perform a task solely by using low-
control events. Consider an intruder who wants to use low-control events to
accomplish an arbitrary task; for example, he may try to cause a program to
install a backdoor when it sees a new filename appear in /tmp.

Using an existing program to carry out this task is difficult because existing
programs do not generally perform arbitrary tasks when they see incidental
changes such as a new filename in /tmp. If an attacker can cause an existing
program to perform an arbitrary task by making such an incidental change,
it generally means that the program has a bug (e.g., buffer overflow or race
condition). Even if BackTracker does not track this event, it will still be able to
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highlight the buggy existing program by tracking the chain of events from the
detection point back to that program.

Using a new, custom program to carry out an arbitrary task is easy. However,
it will not evade BackTracker’s analysis because the events of writing and ex-
ecuting such a custom program are high-control events and BackTracker will
link the backdoor to the intruder’s earlier actions through those high-control
events. To illustrate this, consider in Figure 3(b) if the event “file 1⇒process
C” was a low-control event, and process C was created by process B (rather
than by process A as shown). Even if BackTracker did not track the event “file
1⇒process C,” it would still link process B to the detection point via the event
“process B⇒process C.”

BackTracker currently logs and analyzes the following high-control events:
process creation through fork or clone; load and store to shared memory; read
and write of files and pipes; receiving data from a socket; execve of files; load and
store to mmap’ed files; and opening a file. We have implemented partially the
logging and tracking of file attributes and filename create, delete, and rename
(these events are not reflected in Section 5’s results). We plan to implement
logging and tracking for System V IPC (messages, shared memory, semaphores)
and signals.

3. IMPLEMENTATION STRUCTURE FOR LOGGING EVENTS AND OBJECTS

While the computer is executing, BackTracker must log information about ob-
jects and dependency-causing events to enable the dependency-graph analysis
described in Section 2. The part of BackTracker that logs this information is
called EventLogger. After the intrusion, an administrator can run GraphGen
offline on a log (or concatenation of logs spanning several reboots) generated by
EventLogger. GraphGen produces a graph in a format suitable for input to the
dot program (part of AT&T’s Graph Visualization Project), which generates the
human-readable graphs used in this article.

There are several ways to implement EventLogger, and the results of Back-
Tracker’s analysis are independent of where EventLogger is implemented.

The strategy for our main BackTracker prototype is to run the target op-
erating system (Linux 2.4.18) and applications inside a virtual machine and
to have the virtual-machine monitor call a kernel procedure (EventLogger) at
appropriate times (Figure 4). The operating system running inside the virtual
machine is called the guest operating system to distinguish it from the oper-
ating system that the virtual machine is running on, which is called the host
operating system. Guest processes run on the guest operating system inside the
virtual machines; host processes run on the host operating system. The entire
virtual machine is encapsulated in a host process. The log written by EventLog-
ger is stored as a host file (compressed with gzip). The virtual-machine monitor
prevents intruders in the guest from interfering with EventLogger or its log file.

EventLogger gleans information about events and objects inside the target
system by examining the state of the virtual machine. The virtual-machine
monitor notifies EventLogger whenever a guest application invokes or returns
from a system call or when a guest application process exits. EventLogger learns
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Fig. 4. System structures for logging events. We have implemented the EventLogger portion of
BackTracker in two ways. In the virtual-machine implementation (Figure 4(a)), we run the target
operating system and applications in a virtual machine and log events in the virtual-machine moni-
tor running below the target operating system. The virtual-machine monitor (VMM) kernel module
calls a kernel procedure (EventLogger), then EventLogger reads information about the event from
the virtual machine’s physical memory. In the standalone implementation (Figure 4(b)), we run
applications directly on the host operating system and log events from within that operating system.

about the event from data passed by the virtual-machine monitor and from the
virtual machine’s physical memory (which is a host file). EventLogger is com-
piled with headers from the guest kernel and reads guest kernel data struc-
tures from the guest’s physical memory to determine event information (e.g.,
system call parameters), object identities (e.g., file inode numbers, filenames,
process identifiers), and dependency information (e.g., it reads the address map
of a guest process to learn what mmap’ed files it inherited from its parent). The
code for EventLogger is approximately 1300 lines, and we added 40 lines of code
to the virtual-machine monitor to support EventLogger. We made no changes
to the guest operating system.

Another strategy is to add EventLogger to the target operating system and
not use a virtual machine. To protect EventLogger’s log from the intruder, one
could store the log on a remote computer or in a protected file on the local
computer. We have ported EventLogger to a standalone operating system (Linux
2.4.18) to give our local system administrators the option of using BackTracker
without using a virtual machine. To port EventLogger to the target operating
system, we modified the code that gleans information about events and objects;
this porting took one day.

The main advantage of the virtual-machine-based system is its compati-
bility with ReVirt, which enables one to replay the complete, instruction-by-
instruction execution of a virtual machine [Dunlap et al. 2002]. This ability to
replay executions at arbitrarily fine detail allows us to capture complete in-
formation about workloads (e.g., real intrusions) while still making changes
to EventLogger. Without the ability to replay a workload repeatably, we would
only be able to analyze information captured by the version of EventLogger that
was running at the time of that workload. This ability is especially important
for analyzing real attacks, since real attackers do not reissue their workloads
upon request. EventLogger can log events and objects during the original run
or during a replaying run. All results in this article are collected using the
virtual-machine implementation of EventLogger.

One of the standard reasons for using a virtual machine—correctness in
the presence of a compromised target operating system—does not hold for
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BackTracker. If an attacker gains control of the guest operating system, she
can carry out arbitrary tasks inside the guest without being tracked by Back-
Tracker (in contrast, ReVirt works even if the attacker gains control of the guest
operating system).

We use a version of the UMLinux virtual machine [Buchacker and Sieh 2001]
that uses a host kernel (based on Linux 2.4.18) that is optimized to support vir-
tual machines [King et al. 2003]. The virtualization overhead of the optimized
UMLinux is comparable to that of VMWare Workstation 3.1. CPU-intensive
applications experience almost no overhead, and kernel-intensive applications
such as SPECweb99 and compiling the Linux kernel experience 14–35% over-
head [King et al. 2003].

4. PRIORITIZING PARTS OF A DEPENDENCY GRAPH

Dependency graphs for a busy system may be too large to scrutinize each object
and event. Fortunately, not all objects and events warrant the same amount
of scrutiny when a system administrator analyzes an intrusion. This section
describes several ways to prioritize or filter a dependency graph in order to
highlight those parts that are mostly likely to be helpful in understanding an
intrusion. Of course, there is a tradeoff inherent to any filtering. Even objects
or events that are unlikely to be important in understanding an intrusion may
nevertheless be relevant, and filtering these out may accidentally hide impor-
tant sequences of events.

One way to prioritize important parts of a graph is to ignore certain ob-
jects. For example, the login program reads and writes the file /var/run/utmp.
These events cause a new login session to depend on all prior login sessions.
Another example is the file /etc/mtab. This file is written by mount and umount
and is read by bash at startup, causing all events to depend on mount and
umount. A final example is that the bash shell commonly writes to a file named
.bash history when it exits. Shell invocations start by reading .bash history, so
all actions by all shells depend on all prior executions of bash. While these are
true dependencies, it is easier to start analyzing the intrusion without these
objects cluttering the graph, then to add these objects if needed.

A second way to prioritize important parts of a graph is to filter out certain
types of events. For example, one could filter out some low-control events.

These first two types of filtering (objects and events) may filter out a vital link
in the intrusion and thereby disconnect the detection point from the source of
the intrusion. Hence they should be used only for cases where they reduce noise
drastically with only a small risk of filtering out vital links. The remainder of
the filtering rules do not run the risk of breaking a vital link in the middle of
an attack sequence.

A third way to simplify the graph is to hide files that have been read but
not written in the time period being analyzed (read-only files). For example, in
Figure 3(c), file 0 is read by process A but is not written during the period being
analyzed. These files are often default configuration or header files. Not showing
these files in the graph does not generally hinder one’s ability to understand an
attack because the attacker did not modify these files in the time period being
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considered and because the processes that read the files are still included in
the dependency graph. If the initial analysis does not reveal enough about the
attack, an administrator may need to extend the analysis further back in the
log to include events that modified files which were previously considered read-
only. Filtering out read-only files cannot break a link in any attack sequence
contained in the log being analyzed, because there are no events in that log
that affect these files.

A fourth way to prioritize important parts of a graph is to filter out helper
processes that take input from one process, perform a simple function on that
input, then return data to the main process. For example, the system-wide bash
startup script (/etc/bashrc) causes bash to invoke the id program to learn the
name and group of the user, and the system startup scripts on Linux invoke the
program consoletype to learn the type of the console that is being used. These
usage patterns are recognized easily in a graph: they form a cycle in the graph
(usually connected by a pipe) and take input only from the parent process and
from read-only files. As with the prior filtering rule, this rule cannot disconnect
a detection point from an intrusion source that precedes the cycle, because these
cycles take input only from the main process, and the main process is left in
the dependency graph.

A fifth way to prioritize important parts of a graph is to choose several
detection points, then take the intersection of the dependency graphs formed
from those dependency points. The intersection of the graphs is likely to high-
light the earlier portion of an attack (which affect all detection points), and these
portions are important to understanding how the attacker initially gained con-
trol in the system.

We implement these filtering rules as options in GraphGen. GraphGen in-
cludes a set of default rules which work well for all attacks we have experienced.
A user can add to a configuration file regular expressions that specify additional
objects and events to filter. We considered filtering the graph after GraphGen
produced it, but this would leave in objects that should have been pruned (such
as an object that was connected only via an object that was filtered out).

Other graph visualization techniques can help an administrator understand
large dependency graphs. For example, a postprocessing tool can aggregate
related objects in the graph, such as all files in a directory, or show how the
graph grows as the run progresses.

We expect an administrator to run GraphGen several times with different
filtering rules and log periods. She might first analyze a short log that she hopes
includes the entire attack. She might also filter out many objects and events to
try to highlight the most important parts of an intrusion without much noise
from irrelevant events. If this initial analysis does not reveal enough about the
attack, she can extend the analysis period further back in the log and use fewer
filtering rules.

5. EVALUATION

This section evaluates how well BackTracker works on three real attacks and
one simulated attack (Table I).
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Table I. Statistics for BackTracker’s Analysis of Attacks
(This table shows results for three real attacks and one simulated attack. Event counts include

only the first event from a source object to a sink object. GraphGen and the filtering rules
drastically reduce the amount of information that an administrator must peruse to understand an
attack. Results related to EventLogger’s log are combined for the bind and ptrace attacks because
these attacks are intermingled in one log. Object and events counts for the self attack are given for

two different levels of filtering.)

bind ptrace openssl-too self
(Figures 5–6) (Figure 1) (Figure 7) (Figure 8)

Time period being analyzed 24 h 61 h 24 h
# of objects and events in log 155,344 objects 77,334 objects 2,187,963 objects

1,204,166 events 382,955 events 55,894,869 events
# of objects and events in 5,281 objects 552 objects 495 objects 717 objects
unfiltered dependency graph 9,825 events 2,635 events 2,414 events 3,387 events
# of objects and events in 24 objects 20 objects 28 objects 56 (36) objects
filtered dependency graph 28 events 25 events 41 events 81 (49) events
Growth rate of EventLogger’s
log

0.017 GB/day 0.002 GB/day 1.2 GB/day

Time overhead of EventLogger 0% 0% 9%

To experience and analyze real attacks, we set up a honeypot machine
[Cheswick 1992; The Honeynet Project 2001] and installed the default config-
uration of RedHat 7.0. This configuration is vulnerable to several remote and
local attacks, although the virtual machine disrupts some attacks by shrinking
the virtual address space of guest applications. Our honeypot configuration is
vulnerable to (at least) two attacks. A remote user can exploit the OpenSSL
library used in the Apache Web server (httpd) to attain a nonroot shell [CERT
2002b], and a local user can exploit sendmail to attain a root shell [CIAC 2001].
After an attacker compromises the system, they have more-or-less free reign on
the honeypot—they can read files, download, compile, and execute programs,
scan other machines, etc.

We ran a variety of tools to detect intruders. We used a home-grown imitation
of TripWire [Kim and Spafford 1994] to detect changes to important system
files. We used Ethereal and Snort to detect suspicious amounts of incoming or
outgoing network traffic. We also perused the system manually to look for any
unexpected files or processes.

We first evaluate how necessary it is to use the filtering rules described
in Section 4. Consider an attack we experienced on March 12, 2003, that we
named the bind attack. The machine on this day was quite busy: we were the
target of two separate attacks (the bind attack and the ptrace attack), and
one of the authors logged in several times to use the machine (mostly to look
for signs of intruders, e.g., by running netstat, ps, ls, pstree). We detected the
attack by noticing a modified system binary (/bin/login). EventLogger’s log for
this analysis period covered 24 h and contained 155,344 objects and 1,204,166
events (all event counts in this article count only the first event from a specific
source object to a specific sink object).

Without any filtering, the dependency graph generated by GraphGen for this
attack contained 5281 objects and 9825 events. While this was two orders of
magnitude smaller than the complete log, it was still far too many events and
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objects for an administrator to analyze easily. We therefore considered what
filtering rules we could use to reduce the amount of information presented to
the administrator, while minimizing the risk of hiding important steps in the
attack.

Figure 5 shows the dependency graph generated by GraphGen for this attack
after filtering out files that were read but not written. The resulting graph
contained 575 objects and 1014 events. Important parts of the graph are circled
or labeled to point out the filtering rules we discuss next.

Significant noise came from several root login sessions by one of the authors
during the attack. The author’s actions are linked to the attacker’s actions
through /root/.bash history,/var/log/lastlog, and /var/run/utmp. /etc/mtab also
generates a lot of noise, as it is written after most system startup scripts and
read by each bash shell. Finally, a lot of noise was generated by helper processes
that take input only from their parent process, perform a simple function on that
input, then return data to the parent (usually through a pipe). Most processes
associated with S85httpd on the graph are helper processes spawned by find
when S85httpd starts.

Figure 6 shows the dependency graph for the bind attack after GraphGen
applied the following filtering rules: ignore files that were read but not writ-
ten; ignore files /root/.bash history, /var/run/lastlog, /var/run/utmp, /etc/mtab;
ignore helper processes that take input only from their parent process and re-
turn a result through a pipe. We used these same filtering rules to generate
dependency graphs for all attacks.

These filtering rules reduced the size of the graph to 24 objects and 28 events,
and made the bind attack fairly easy to analyze. The attacker gained access
through httpd, downloaded a rootkit using wget, then wrote the rootkit to the
file “/tmp/ /bind.” Sometime later, one of the authors logged in to the machine
noticed the suspicious file and decided to execute it out of curiosity (don’t try
this at home!). The resulting process installed a number of modified system
binaries, including /bin/login. This graph shows that BackTracker can track
across several login sessions. If the attacker had installed /bin/login without
being noticed, then logged in later, we would have been able to backtrack from
a detection point in her second session to the first session by her use of the
modified /bin/login.

Figure 1 shows the filtered dependency graph for a second attack that oc-
curred in the same March 12, 2003, log, which we named the ptrace attack. The
intruder gained access through httpd, downloaded a tar archive using wget,
then unpacked the archive via tar and gzip. The intruder then executed the
ptrace program using a different group identity. We later detected the intru-
sion by seeing the ptrace process in the process listing. We believe the ptrace
process was seeking to exploit a race condition in the Linux ptrace code to
gain root access. Figures 1 and 6 demonstrate BackTracker’s ability to sepa-
rate two intermingled attacks from a single log. Changing detection points from
/bin/login to ptrace is sufficient to generate distinct dependency graphs for each
attack.

Figure 7 shows the filtered dependency graph for an attack on March 2, 2003,
which we named the openssl-too attack. The machine was used lightly by one
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Fig. 5. Mostly unfiltered dependency graph generated by GraphGen for bind attack. The only
filtering used was to not show files that were read but not written. The circled areas and labels
identify the major portions of the graph. Of particular interest are the files we filter out in later
dependency graphs: /var/run/utmp, /etc/mtab, /var/log/lastlog, /root/.bash history. We will also filter
out helper processes that take input from one process (usually via a pipe), perform a simple function
on that input, then return data to the main process. Most objects associated with S85httpd are
helper processes spawned by find when S85httpd starts.
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Fig. 6. Filtered dependency graph for bind attack.

of the authors (to check for intrusions) during the March 1–3 period covered by
this log. The attacker gained access through httpd, downloaded a tar archive
using wget, then installed a set of files using tar and gzip. The attacker then ran
the program openssl-too, which read the configuration files that were unpacked.
We detected the intrusion when the openssl-too process began scanning other
machines on our network for vulnerable ports.

Another intrusion occurred on our machine on March 13, 2003. The filtered
dependency graph for this attack is almost identical to the ptrace attack.

Figure 8(a) shows the default filtered dependency graph for an attack we
conducted against our own system (self attack). self attack was more complicated
than the real attacks we have been subjected to. We gained unprivileged access
via httpd, then downloaded and compiled a program (sxp) that takes advantage
of a local exploit against sendmail. When sxp runs, it uses objdump to find
important addresses in the sendmail binary, then executes sendmail through
execve to overflow an argument buffer and provide a root shell. We used this
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Fig. 7. Filtered dependency graph for openssl-too attack.

ACM Transactions on Computer Systems, Vol. 23, No. 1, February 2005.



70 • S. T. King and P. M. Chen

Fig. 8. Filtered dependency graph for self attack. Figure 8(a) shows the dependency produced by
GraphGen with the same filtering rules used to generate Figures 1, 6, and 7. Figure 8(b) shows the
dependency graph produced by GraphGen after adding a rule that filters out pipes. Figure 8(b) is
a subgraph of Figure 8(a).

root shell to add a privileged user to the password files. Later, we logged into the
machine using this new user and modify /etc/xinetd.conf. The detection point
for this attack was the modified /etc/xinetd.conf.

One goal for this attack was to load the machine heavily to see if Back-
Tracker could separate the attack events from normal events. Over the dura-
tion of the workload, we continually ran the SPECweb99 benchmark to model
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the workload of a Web server. To further stress the machine, we downloaded,
unpacked, and continually compiled the Linux kernel. We also logged in sev-
eral times as root and read /etc/xinetd.conf. The dependency graph shows that
BackTracker separated this legitimate activity from the attack.

We anticipate that administrators will run GraphGen multiple times with
different filtering rules to analyze an attack. An administrator can filter out new
objects and events easily by editing the configuration file from which GraphGen
reads its filter rules. Figure 8(b) shows the dependency graph generated with
an additional rule that filters out all pipes. While this rule may filter out some
portions of the attack, it will not usually disconnect the detection point from the
from an intrusion source, because pipes are inherited from a process’s ances-
tor, and BackTracker will track back to the ancestor through process creation
events. In Figure 8, filtering out pipes eliminates objdump, which is related to
the attack but not critical to understanding the attack.

Next we measured the space and time overhead of EventLogger (Table I). It
is nontrivial to compare running times with and without EventLogger, because
real attackers do not reissue their workloads upon request. Instead we used
ReVirt to replay the run with and without EventLogger and measure the dif-
ference in time. The replay system executes busy parts of the run at the same
speed as the original run (within a few percent). The replay system eliminates
idle periods, however, so the percentage overhead is given as a fraction of the
wall-clock time of the original run (which was run without EventLogger).

For the real attacks, the system was idle for long periods of time. The average
time and space overhead for EventLogger was very low for these runs because
EventLogger only incurs overhead when applications are actively using the
system.

The results for self attack represent what the time and space overheads would
be like for a system that is extremely busy. In particular, serving Web pages
and compiling the Linux kernel each invoke a huge number of relevant system
calls. For this run, EventLogger slowed the system by 9%, and its compressed
log grew at a rate of 1.2 GB/day. While this is a substantial amount of data, a
modern hard disk is large enough to store this volume of log traffic for several
months.

GraphGen is run after the attack (offline), so its performance is not as critical
as that of EventLogger. On a 2.8-GHz Pentium 4 with 1 GB of memory, the
version of GraphGen described in Section 2.3 took less than 20 s to process the
logs for each of the real attacks and 3 h for the self attack. Most of this time was
spent scanning through irrelevant events in the log. We implemented a version
of GraphGen that stores event records in a MySQL database, which allowed
GraphGen to query for events that affect specific objects and thereby skip over
events that do not affect objects in the graph [Goel et al. 2003]. This technique
reduced the time needed for GraphGen to process the self attack to 26 s.

6. ATTACKS AGAINST BACKTRACKER

In the prior section, we showed that BackTracker helped analyze several real
attacks. In this section, we consider what an intruder can do to hide his actions
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from BackTracker. An intruder may attack the layers upon which BackTracker
is built, use events that BackTracker does not monitor, or hide his actions within
large dependency graphs.

An intruder can try to foil BackTracker by attacking the layers upon which
BackTracker’s analysis or logging depend. One such layer is the guest oper-
ating system. BackTracker’s analysis is accurate only if the events and data
it sees have their conventional meaning. If an intruder can change the guest
kernel (e.g., to cause a random system call to create processes or change files),
then he can accomplish arbitrary tasks inside the guest machine without be-
ing tracked by BackTracker. Many operating systems provide interfaces that
make it easy to compromise the kernel or to work around its abstractions. Load-
able kernel modules and direct access to kernel memory (/dev/kmem) make it
trivial to change the kernel. Direct access to physical memory (/dev/mem) and
I/O devices make it easy to control applications and files without using the
higher-level abstractions that BackTracker tracks. Our guest operating system
disables these interfaces [Huagang 2000]. The guest operating system may also
contain bugs that allow an intruder to compromise it without using standard
interfaces [Ashcraft and Engler 2002]. Researchers are investigating ways to
use virtual machines to make it more difficult for intruders to compromise the
guest operating system, for example, by protecting the guest kernel’s code and
sensitive data structures [Garfinkel and Rosenblum 2003].

Another layer upon which the current implementation of BackTracker de-
pends is the virtual-machine monitor and host operating system. Attacking
these layers is considerably more difficult than attacking the guest kernel,
since the virtual-machine monitor makes the trusted computing base for the
host operating system much smaller than the guest kernel.

If an intruder cannot compromise a layer below BackTracker, he can still
seek to stop BackTracker from analyzing the complete chain of events from the
detection point to the source of the attack. The intruder can break the chain
of events tracked if he can carry out one step in his sequence using only low-
control events that BackTracker does not yet track. Section 2.4 explains why
this is relatively difficult.

An intruder can also use a hidden channel to break the chain of events that
BackTracker tracks. For example, an intruder can use the initial part of his
attack to steal a password, send it to himself over the network, then log in
later via that password. BackTracker can track from a detection point during
the second login session up to the point where the intruder logged in, but it
cannot link the use of the password automatically to the initial theft of the
password. BackTracker depends on knowing and tracking the sequence of state
changes on the system, and the intruder’s memory of the stolen password is not
subject to this tracking. However, BackTracker will track the attack back to the
beginning of the second login session, and this will alert the administrator to a
stolen password. If the administrator can identify a detection point in the first
part of the attack, he can track from there to the source of the intrusion.

An intruder can also try to hide his actions by hiding them in a huge
dependency graph. This is futile if the events in the dependency graph are
the intruder’s actions because the initial break-in phase of the attack is not
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obfuscated by a huge graph after the initial phase. In addition, an intruder
who executes a large number of events is more likely to be caught.

An intruder can also hide his actions by intermingling them with innocent
events. GraphGen includes only those events that potentially affect the detec-
tion point, so an intruder would have to make it look as though innocent events
have affected the detection point. For example, an intruder can implicate an
innocent process by reading a file the innocent process has written. In the worst
case, the attacker would read all recently written files before changing the de-
tection point and thereby implicate all processes that wrote those files. As usual,
security is a race between attackers and defenders. GraphGen could address
this attack by filtering out file reads if they are too numerous and following the
chain of events up from the process that read the files. The attacker could then
implicate innocent processes in more subtle ways, etc.

Finally, an attacker can make the analysis of an intrusion more difficult by
carrying out the desired sequence of steps over a long period of time. The longer
the period of attack, the more log records that EventLogger and GraphGen have
to store and analyze. In conclusion, there are several ways that an intruder can
seek to hide his actions from BackTracker. Our goal is to analyze a substantial
fraction of current attacks and to make it more difficult to launch attacks that
cannot be tracked.

7. RELATED WORK

BackTracker tracks the flow of information [Denning 1976] across operating
system objects and events. The most closely related work is the Repairable
File Service [Zhu and Chiueh 2003], which also tracks the flow of information
through processes and files by logging similar events. The Repairable File Ser-
vice assumes an administrator has already identified the process that started
the intrusion; it then uses the log to identify files that potentially have been
contaminated by that process. In contrast, BackTracker begins with a process,
file, or filename that has been affected by the intrusion, then uses the log to
track back to the source of the intrusion. The two techniques are complemen-
tary: one could use backtracking to identify the source of the intrusion, then
use the Repairable File Service’s forward tracking to identify the files that po-
tentially have been contaminated by the intrusion. However, we believe that
an intruder can hide her actions much more easily from the forward tracking
phase, for example, by simply touching all files in the system. Even without
deliberately trying to hide, we believe an intruder’s changes to system files will
quickly cause all files and processes to be labeled as potentially contaminated.
For example, if an intruder changes the password file, all users who subse-
quently log into the system will read this file, and all files they modify will be
labeled as potentially contaminated.

In addition to the direction of tracking, BackTracker differs from the Re-
pairable File Service in the following ways: (1) BackTracker tracks additional
dependency-causing events (e.g., shared memory, mmap’ed files, pipes, and
named pipes; (2) BackTracker labels and analyzes time intervals for events,
which are needed to handle aggregated events such as loads/store to mmap’ed
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files; and (3) BackTracker uses filter rules to highlight the most important
dependencies. Perhaps most importantly, we use BackTracker to analyze real
intrusions and evaluate the quality of the dependency graphs it produces for
those attacks. The evaluation for the Repairable File Service has so far focused
on time and space overhead—to our knowledge, the spread of contamination
has been evaluated only in terms of number of processes, files, and blocks con-
taminated and has been performed only on a single benchmark (SPEC SDET)
with a randomly chosen initial process.

Work by Ammann et al. [2002] has tracked the flow of contaminated trans-
actions through a database and rolls data back if it has been affected directly or
indirectly by contaminated transactions. The Perl programming language also
tracks the flow of tainted information across perl program statements [Wall
et al. 2000]. Like the Repairable File Service, both these tools track the for-
ward flow of contaminated information rather than backtracking from a detec-
tion point to the source of the intrusion.

Program slicing is a programming language technique that identifies the
statements in a program that potentially affect the values at a point of interest
[Tip 1995]. Dynamic slicers compute the slice based on a specific set of inputs.
BackTracker could be viewed as a dynamic program slicer on a self-modifying
program, where variables are operating system objects, and program state-
ments are dependency-causing operating system events.

Several other projects assist administrators in understanding intrusions.
CERT’s Incident Detection, Analysis, and Response Project (IDAR) seeks to
develop a structured knowledge base of expert knowledge about attacks and
to look through the post-intrusion system for signs that match an entry in the
existing knowledge base [Christie 2002]. Similarly, SRI’s DERBI project looks
through system logs and file system state after the intrusion for clues about
the intrusion [Tyson 2001]. These tools automate common investigations after
an attack, such as looking for suspicious filenames, comparing file access times
with login session times, and looking for suspicious entries in the password
files. However, like investigations that are carried out manually, these tools are
limited by the information logged by current systems. Without detailed event
logs, they are unable to describe the sequence of an attack from the initial
compromise to the detection point.

8. CONCLUSIONS AND FUTURE WORK

We have described a tool called BackTracker that helps system administrators
analyze intrusions on their system. Starting from a detection point, such as a
suspicious file or process, BackTracker identifies the events and objects that
could have affected that detection point. The dependency graphs generated by
BackTracker help an administrator find and focus on a few important objects
and events to understand the intrusion. BackTracker can use several types of
rules to filter out parts of the dependency graph that are unlikely to be related
to the intrusion.

We used BackTracker to analyze several real attacks against computers we
set up as honeypots. In each case, BackTracker was able to highlight effectively
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the entry point used to gain access to the system and the sequence of steps from
the entry point to the point at which we noticed the intrusion.

In the future, we plan to track more dependency-causing events, such as
System V IPC, signals, and dependencies caused by file attributes. We have
also implemented a tool to track dependencies forward. The combination of
this tool and BackTracker will allow us to start from a single detection point,
backtrack to allow an administrator to identify the source of the intrusion, then
forward track to identify other objects that have been affected by the intrusion.
Significant research will be needed to filter out false dependencies when track-
ing forward because, unlike for backward tracking, an intruder can easily cause
an explosion of the dependency graph to include all files and processes.
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