
CLIENT-SIDE
RUNTIME ANALYSIS
AND ENFORCEMENT

Ben Livshits, Microsoft Research

Overview of Today’s Lecture

 Background (rehash)

 Language restrictions
 AdSafe

FBJS

 Extensive rewriting
 Caja

 WebSandbox

 Better runtimes
 CSP

 HTML5 Sandbox

 Tradeoffs of different
containment strategies
and going forward

2

slide 3

JavaScript Security Model

 Script runs in a “sandbox”
 No direct file access

 Restricted network access

 Same-origin policy
 Code can only access properties of documents and

windows from the same origin

 Gives a degree of isolation

 Origin roughly is the URL, but not quite
 If the same server hosts unrelated sites, scripts from one site can

access document properties on the other

 Is the origin always representative of content?

This is Just the Beginning…
4

 Browser Security Handbook

 ... DOM access

 ... XMLHttpRequest

 ... cookies

 ... Flash

 ... Java

 ... Silverlight

 ... Gears

 Origin inheritance rules

XmlHttpRequest
5

 XmlHttpRequest is the foundation of AJAX-style
application on the web today

 Typically:

Virtually No Full Compatibility
6

Why is lack of compatibility bad?

Active Research and Development
7

How Do We Do Cross-Domain XHR?
8

 Server-side proxying

 Is this a good idea?

 Alternatives abound, no consensus

 XDomainRequest in IE8

 JSONRequest

 CS-XHR

Recent Developments

 Cross-origin network requests

Access-Control-Allow-Origin: <list of domains>

Access-Control-Allow-Origin: *

 Cross-origin client side communication

 Client-side messaging via postMessage

Site B Site A

Site A context Site B context

window.postMessage

 New HTML5 API for inter-frame communication

 Supported in latest betas of many browsers

 A network-like channel between frames

Add a contact

Share contacts

Facebook Connect Protocol

 SOP policy does not allow
a third-party site (e.g
TechCrunch), called
implementor, to
communicate with
facebook.com

 To support this
interaction, Facebook
provides a JavaScript
library for sites
implementing Facebook
Connect

 Library creates two
hidden iframes with an
origin of facebook.com
which in turn
communicate with
Facebook

 The cross-origin
communication between
hidden iframes and the
implementor window are
layered over
postMessage

11

Facebook Connect

 Facebook Connect is a system
that enables a Facebook user to
share his identity with third-
party sites

 Some notable users include
TechCrunch, Huffington Post,
ABC and Netflix

 After being authorized by a user,
a third party web site can query
Facebook for the user’s
information and use it to
provide a richer experience that
leverages the user’s social
connections

 For example, a logged-in
user can view his Facebook
friends who also use the
third-party web site, and
interact with them directly
there

 Note that the site now
contains content from
multiple principals—the
site itself and
facebook.com

12

Facebook Connect
13

The Emperor’s New APIs: On the (In)Secure Usage of
New Client-side Primitives, Hanna et. al, 2010

postMessage syntax

frames[0].postMessage("Attack at dawn!",

 "http://b.com/");

window.addEventListener("message", function (e) {

 if (e.origin == "http://a.com") {

 ... e.data ... }

}, false);

Attack at dawn!

Why Include The Target Origin?

 What goes wrong?
 frames[0].postMessage("Attack at dawn!");

if we just do this?

 Are there other issues with the use of
postMessage?

15

Trusted and Untrusted Web Content

 Two trust levels:
trusted and untrusted

 Trusted: code
belonging to host.

 Untrusted: all third-
party code

 What is the issue?
 Untrusted components

are sequentially
composed and placed in
a trusted context

 Model fits the case of
web pages with
advertisements,
iGoogle, Facebook
Apps

16

JavaScript Language Restrictions 17

Ad Scenario: Why ADsafe?
18

<script>
</script>

advertiser

Safe?

synd ad
network

Safe?

major ad
network

ad

ad

publisher

 Ensure safety of ads containing JavaScript

 Always a good idea?

ADsafe Example
19

ADsafe Goals

 ADsafe removes features

from JavaScript that are

either unsafe or grant

uncontrolled access to

unsafe browser

components or that

contribute to poor code

quality

20

ADsafe Restrictions

 Global variables: ADsafe's object capability
model prohibits the use of most global
variables.

 Limited access: Array, Boolean, etc.

 this: If a method is called as a
function, this is bound to the global object.
Since ADsafe needs to restrict access to the
global object, it must prohibit the use of this in
guest code.

 arguments: Access to the arguments pseudo-
array is not allowed.

 eval: The eval function provides access to the global
object.

 with statement: The with statement modifies the
scope chain, making static analysis impossible.

 Dangerous methods and properties: arguments callee
caller constructor eval prototype stack unwatch
valueOf watch

 Capability leakage can occur with these names in
at least some browsers, so use of these names
with . notation is prohibited.

 Names starting or ending with _: Some browsers have
dangerous properties or methods that have a
dangling _.

 [] subscript operator except when the subscript is a
numeric literal or string literal or an expression that
must produce a number value: Lookup of dynamic
properties could provide access to the restricted
members. Use
ADSAFE.get and ADSAFE.set instead

 Date and Math.random: Access to these sources of
non-determinism is restricted in order to make it
easier to determine how widgets behave

21

Trade-offs
22

expressiveness safety

full JavaScript ADsafe

FBJS: How FB Apps are Programmed

 Basics

 Facebook apps are either
IFRAMEd or integrated

 Integrated Facebook
applications are written in
FBML/FBJS

 FBJS: Facebook subsets of
HTML and JavaScript

 FBJS is served from
Facebook, after filtering and
rewriting

 Facebook libraries mediate
access to the DOM

 Security goals
 No direct access to the

DOM
 No tampering with the

execution environment
 No tampering with

Facebook libraries

 Isolation approach
 Blacklist variable names

that are used by
containing page

 Prevent access to global
scope object

23

FBJS By Example
24

obj.className = "SBGGiftItemImage";

obj.setClassName("SBGGiftItemImage");

obj.onmouseout = function() {
 this.className = "SBGGiftItemImage";};

obj.addEventListener("mouseout",
 function()
 {this.setClassName('SBGGiftItemImage');});

FBJS Restrictions
25

o[e] -> a12345_o[$FBJS.idx(e)]

 Other, indirect ways that malicious content might reach

the window object involve accessing certain standard or
browser-specific predefined object properties such as
__parent__ and constructor

 Therefore, FBJS blacklists such properties and rewrites
any explicit access to them in the code into an access to
the useless property unknown

More on FBJS
26

 Facebook Application Directory:

 http://www.facebook.com/apps/directory

 But also FBML and FBQL

 Subject of much research in 2009-2011
 Designing Malicious Applications in Social Networks

 Preventing Capability Leaks in Secure JavaScript Subsets

 Isolating JavaScript with Filters, Rewriting, and Wrappers

http://www.facebook.com/apps/directory
http://www.facebook.com/apps/directory
http://www.facebook.com/apps/directory

What Are the Pros/Cons of Static
Restriction vs. Code Rewriting

Question of the Day 27

Mashup Scenario: Developer’s Dilemma

28

Other people’s
code can’t be

trusted

Mashups mean
including code

Typical Mashup: Yelp + Google Maps
29

Web-based Counter

<div id="sitemeter" class="plain">
<!--WEBBOT bot="HTMLMarkup" startspan ALT="Site Meter" -->
<script type="text/javascript" language="JavaScript">var
site="s15gizmodo"</script>
<script type="text/javascript" language="JavaScript1.2"
 src="http://s15.sitemeter.com/js/counter.js?site=s15gizmodo">
</script>

Failure Should Not Be An Option

Sandboxing through Source-level Rewriting

 Browser offers
iFRAMEs as an
isolation mechanism

 Every iFRAME has (an
isolated) global object

 SOP prevents arbitrary
cross-frame
communication

 Not bad, but sometimes
too restrictive

 Framed applications are
confined to pre-determined
screen regions

 Interactions with other
iFrames require message
passing using the
postMessage API

32

Google Caja and Microsoft WebSandbox

Web Sandbox: The Big Picture

Transformation
Pipeline

(Server or Client-based)

Untrusted Content

Virtualize Code

Trusted Host
(e.g., Your Site)

Requests Content
(untrusted)

Sandboxed
Execution
Sandboxed
Execution

Virtual Machine
(JavaScript Library)

Web Sandboxed Gadget

<html>
 <head>
 <title>Clock Sample</title>
 <base href="http://www.websandbox.org/"/>
 <link href="Images/favicon.ico" rel="icon" />
 <style>
 .sampleTitle
 {font-family: Segoe UI, Tahoma; font-size: 11pt; font-weight:
bold; color: #07519A; }
 .clockSample { height: 130px; border: solid 1px lightgrey;
background: white; background-repeat: repeat-x; background-
position: left top; padding: 10px; overflow-y: auto;}
 </style>
 </head>
 <body>
 <div id="sample" class="clockSample">
 <div class="sampleTitle">Clock Sample</div>

 <script type="text/javascript">

 window.setInterval(function() {
 document.getElementById("currentTime").
 innerText = new Date();
 }, 999)
 </script>
 </div>
 </body>
</html>

Web Sandbox Rewriting

var settings = { css : {".sampleTitle" :

{"font-family":"Segoe UI,Tahoma", … };

var headerJavaScript =

function(a)

{

 var b = a.gw(this),

 c = a.g,

 d = a.i,

 e = c(b,"document");

 d(e,"initializeHTML",

[[{"body":{"c":[,"

",{"div":{"a":{"id":"sample","class":"clockS

ample"},“

c":[,"

",{"div":{"a":{"class":"sampleTitle"},"c":[,

"Clock Sample"]}}," ",{"br":{}},"

",{"span":{"a":{"id":"currentTime"}}},"

",{"script":{"__src__":"c20","a":{"type":"te

xt/javascript"}}}," "]}}," "]}}]])

};

var metadata =

{"author":"","description":"","imagepath":"","title":"Cloc

k Sample",…,

"scripts" : {"c20" :

function(a)

{

 var b = a.gw(this),

 c = a.g,

 d = a.s,

 e = a.i,

 f = a.n,

 g = a.f,

 h = c(b,"document");

 e(b,"setInterval",[g(function()

 {

d(e(h,"getElementById",["currentTime"]),"innerText",f(c(b,

"Date"),[]))

 }),999])

}}};

$Sandbox.registerCode(headerJavaScript, "2", settings,

metadata);

var SandboxInstance = new

$Sandbox(document.getElementById('g_2_0_inst'),

$Policy.Canvas, "2");

SandboxInstance.initialize();

Translation Continued
36

var metadata =
{"author":"","description":"","imagepath":"","title":"Your Gadget's
Title","preferredheight":0,"preferredwidth":0,"location":"","icon":"","
base":{"href":"","target":""},"scripts" : {"c00" :

function(a)

{

 var b = a.gw(this),

 c = a.g

}}};

$Sandbox.registerCode(headerJavaScript, "0", settings, metadata);

var SandboxInstance = new
$Sandbox(document.getElementById('g_0_0_inst'), $Policy.Canvas, "0");

SandboxInstance.initialize();

W3C CSP: Content Security Policy
37

 Example 1: A server wants all content to come from its own domain:

 X-Content-Security-Policy: default-src 'self‘

 Example 2: An auction site wants to allow images from anywhere, plugin content from a list of trusted
media providers including a content distribution network, and scripts only from a server under its control
hosting sanitized ECMAScript:

 X-Content-Security-Policy: default-src 'self'; img-src *;

 object-src media1.example.com media2.example.com *.cdn.example.com;

 script-src trustedscripts.example.com

 Example 3: A site operations group wants to globally deny all third-party scripts in the site, and a
particular project team wants to also disallow third-party media in their section of the site. Site
operations sends the first header while the project team sends the second header, and the user-agent
takes the intersection of the two headers to form the complete interpreted policy:

 X-Content-Security-Policy: default-src *; script-src 'self'

 X-Content-Security-Policy: default-src *; script-src 'self'; media-src 'self‘

 Example 4: Online banking site wants to ensure that all of the content in its pages is loaded over TLS to
prevent attackers from eavesdropping on insecure content requests:

 X-Content-Security-Policy: default-src https://*:443

HTML5 Sandbox
38

<iframe src="untrusted.html"

 sandbox="allow-scripts allow-forms">

</iframe>

 allow-scripts

 allow-forms

 allow-same-origin

 allow-top-navigation

 ms-allow-popups

HTML5 Sandbox in Action
39

ConScript
Specifying and Enforcing Fine-Grained Security Policies

for JavaScript in the Browser

Leo Meyerovich
UC Berkeley

Benjamin Livshits
Microsoft Research

[Oakland S&P 2010]

Only Allow eval of JSON

41

eval(“(*,‘hello’: ‘Oakland’-, 2010+)”)

eval(“(xhr.open(‘evil.com’);)”)

• Idea for a policy:
– Parse input strings instead of running them
– Use ConScript to advise eval calls

• AspectJ advice for Java

• How to do advice in JavaScript?
– No classes to speak of

void around call Window::eval (String s) { … }

heap

Advising Calls is Tricky

window.eval = function allowJSON() { … }

window

object

document

window

x

y

z

…

frames[0]

stack

function
allowJSON

eval

frame

object
eval

eval

function
eval

ConScript approach

– Deep advice for complete mediation

– Implemented within the browser for
efficiency and reliability

42

Example of Applying Advice in ConScript

43

1. <SCRIPT SRC=”facebook.js" POLICY="

2. var substr = String.prototype.substring;

3. var parse = JSON.parse;

4. around(window.eval,

5. function(oldEval, str) {

6. var str2 = uCall(str, substr, 1,

7. str.length - 1);

8. var res = parse(str2);

9. if (res) return res;

10. else throw "eval only for JSON";

11. });">

heap

Advising JavaScript Functions in IE8

44

fish

...

...

...

dog

stack

function
withBound

Checks

function
paint

around(paint, withBoundChecks);

dog.draw();

fish.display();

draw

display

Policies are Easy to Get Wrong

var okOrigin={"http://www.google.com":true};

around(window.postMessage,

 function (post, msg, target) {

 if (!okOrigin[target]) {

 throw ’err’;

 } else {

 return post.call(this, msg, target);

 }

});

45

1.

2.

3.

4.

5.

6.

7.

8.

9.

toString redefinition!

Function.prototype
poisoning!

Object.prototype
poisoning!

manifest of
script URLs

HTTP-only
cookies

resource
blacklists

limit eval

no foreign links

no dynamic
IFRAME creation

script whitelist

<noscript>

no URL
redirection

no pop-ups

enforce public
vs. private

Paper
presents

17
ConScript
Policies

46

around(document.createElement,

 function (c : K, tag : U) {

 var elt : U = uCall(document, c, tag);

 if (elt.nodeName == "IFRAME") throw ’err’;

 else return elt; });

DoCoMo Policy Enforcement Overhead
47

7%
1%

30%

73%

63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Google Maps (183ms) MSN (439ms) GMail (736ms)

R
u

n
ti

m
e

 o
ve

rh
e

ad

ConScript DoCoMo (JavaScript rewriting)

H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov,
“JavaScript instrumentation in practice,” 2008

Summary

 Background on SOP

 Language restrictions
 AdSafe

FBJS

 Extensive rewriting
 Caja

 WebSandbox

 Better runtimes
 CSP

 HTML5 Sandbox

 Tradeoffs of different
containment strategies
and going forward

48

