
CLIENT-SIDE
RUNTIME ANALYSIS
AND ENFORCEMENT

Ben Livshits, Microsoft Research

Overview of Today’s Lecture

 Background (rehash)

 Language restrictions
 AdSafe

FBJS

 Extensive rewriting
 Caja

 WebSandbox

 Better runtimes
 CSP

 HTML5 Sandbox

 Tradeoffs of different
containment strategies
and going forward

2

slide 3

JavaScript Security Model

 Script runs in a “sandbox”
 No direct file access

 Restricted network access

 Same-origin policy
 Code can only access properties of documents and

windows from the same origin

 Gives a degree of isolation

 Origin roughly is the URL, but not quite
 If the same server hosts unrelated sites, scripts from one site can

access document properties on the other

 Is the origin always representative of content?

This is Just the Beginning…
4

 Browser Security Handbook

 ... DOM access

 ... XMLHttpRequest

 ... cookies

 ... Flash

 ... Java

 ... Silverlight

 ... Gears

 Origin inheritance rules

XmlHttpRequest
5

 XmlHttpRequest is the foundation of AJAX-style
application on the web today

 Typically:

Virtually No Full Compatibility
6

Why is lack of compatibility bad?

Active Research and Development
7

How Do We Do Cross-Domain XHR?
8

 Server-side proxying

 Is this a good idea?

 Alternatives abound, no consensus

 XDomainRequest in IE8

 JSONRequest

 CS-XHR

Recent Developments

 Cross-origin network requests

Access-Control-Allow-Origin: <list of domains>

Access-Control-Allow-Origin: *

 Cross-origin client side communication

 Client-side messaging via postMessage

Site B Site A

Site A context Site B context

window.postMessage

 New HTML5 API for inter-frame communication

 Supported in latest betas of many browsers

 A network-like channel between frames

Add a contact

Share contacts

Facebook Connect Protocol

 SOP policy does not allow
a third-party site (e.g
TechCrunch), called
implementor, to
communicate with
facebook.com

 To support this
interaction, Facebook
provides a JavaScript
library for sites
implementing Facebook
Connect

 Library creates two
hidden iframes with an
origin of facebook.com
which in turn
communicate with
Facebook

 The cross-origin
communication between
hidden iframes and the
implementor window are
layered over
postMessage

11

Facebook Connect

 Facebook Connect is a system
that enables a Facebook user to
share his identity with third-
party sites

 Some notable users include
TechCrunch, Huffington Post,
ABC and Netflix

 After being authorized by a user,
a third party web site can query
Facebook for the user’s
information and use it to
provide a richer experience that
leverages the user’s social
connections

 For example, a logged-in
user can view his Facebook
friends who also use the
third-party web site, and
interact with them directly
there

 Note that the site now
contains content from
multiple principals—the
site itself and
facebook.com

12

Facebook Connect
13

The Emperor’s New APIs: On the (In)Secure Usage of
New Client-side Primitives, Hanna et. al, 2010

postMessage syntax

frames[0].postMessage("Attack at dawn!",

 "http://b.com/");

window.addEventListener("message", function (e) {

 if (e.origin == "http://a.com") {

 ... e.data ... }

}, false);

Attack at dawn!

Why Include The Target Origin?

 What goes wrong?
 frames[0].postMessage("Attack at dawn!");

if we just do this?

 Are there other issues with the use of
postMessage?

15

Trusted and Untrusted Web Content

 Two trust levels:
trusted and untrusted

 Trusted: code
belonging to host.

 Untrusted: all third-
party code

 What is the issue?
 Untrusted components

are sequentially
composed and placed in
a trusted context

 Model fits the case of
web pages with
advertisements,
iGoogle, Facebook
Apps

16

JavaScript Language Restrictions 17

Ad Scenario: Why ADsafe?
18

<script>
</script>

advertiser

Safe?

synd ad
network

Safe?

major ad
network

ad

ad

publisher

 Ensure safety of ads containing JavaScript

 Always a good idea?

ADsafe Example
19

ADsafe Goals

 ADsafe removes features

from JavaScript that are

either unsafe or grant

uncontrolled access to

unsafe browser

components or that

contribute to poor code

quality

20

ADsafe Restrictions

 Global variables: ADsafe's object capability
model prohibits the use of most global
variables.

 Limited access: Array, Boolean, etc.

 this: If a method is called as a
function, this is bound to the global object.
Since ADsafe needs to restrict access to the
global object, it must prohibit the use of this in
guest code.

 arguments: Access to the arguments pseudo-
array is not allowed.

 eval: The eval function provides access to the global
object.

 with statement: The with statement modifies the
scope chain, making static analysis impossible.

 Dangerous methods and properties: arguments callee
caller constructor eval prototype stack unwatch
valueOf watch

 Capability leakage can occur with these names in
at least some browsers, so use of these names
with . notation is prohibited.

 Names starting or ending with _: Some browsers have
dangerous properties or methods that have a
dangling _.

 [] subscript operator except when the subscript is a
numeric literal or string literal or an expression that
must produce a number value: Lookup of dynamic
properties could provide access to the restricted
members. Use
ADSAFE.get and ADSAFE.set instead

 Date and Math.random: Access to these sources of
non-determinism is restricted in order to make it
easier to determine how widgets behave

21

Trade-offs
22

expressiveness safety

full JavaScript ADsafe

FBJS: How FB Apps are Programmed

 Basics

 Facebook apps are either
IFRAMEd or integrated

 Integrated Facebook
applications are written in
FBML/FBJS

 FBJS: Facebook subsets of
HTML and JavaScript

 FBJS is served from
Facebook, after filtering and
rewriting

 Facebook libraries mediate
access to the DOM

 Security goals
 No direct access to the

DOM
 No tampering with the

execution environment
 No tampering with

Facebook libraries

 Isolation approach
 Blacklist variable names

that are used by
containing page

 Prevent access to global
scope object

23

FBJS By Example
24

obj.className = "SBGGiftItemImage";

obj.setClassName("SBGGiftItemImage");

obj.onmouseout = function() {
 this.className = "SBGGiftItemImage";};

obj.addEventListener("mouseout",
 function()
 {this.setClassName('SBGGiftItemImage');});

FBJS Restrictions
25

o[e] -> a12345_o[$FBJS.idx(e)]

 Other, indirect ways that malicious content might reach

the window object involve accessing certain standard or
browser-specific predefined object properties such as
__parent__ and constructor

 Therefore, FBJS blacklists such properties and rewrites
any explicit access to them in the code into an access to
the useless property unknown

More on FBJS
26

 Facebook Application Directory:

 http://www.facebook.com/apps/directory

 But also FBML and FBQL

 Subject of much research in 2009-2011
 Designing Malicious Applications in Social Networks

 Preventing Capability Leaks in Secure JavaScript Subsets

 Isolating JavaScript with Filters, Rewriting, and Wrappers

http://www.facebook.com/apps/directory
http://www.facebook.com/apps/directory
http://www.facebook.com/apps/directory

What Are the Pros/Cons of Static
Restriction vs. Code Rewriting

Question of the Day 27

Mashup Scenario: Developer’s Dilemma

28

Other people’s
code can’t be

trusted

Mashups mean
including code

Typical Mashup: Yelp + Google Maps
29

Web-based Counter

<div id="sitemeter" class="plain">
<!--WEBBOT bot="HTMLMarkup" startspan ALT="Site Meter" -->
<script type="text/javascript" language="JavaScript">var
site="s15gizmodo"</script>
<script type="text/javascript" language="JavaScript1.2"
 src="http://s15.sitemeter.com/js/counter.js?site=s15gizmodo">
</script>

Failure Should Not Be An Option

Sandboxing through Source-level Rewriting

 Browser offers
iFRAMEs as an
isolation mechanism

 Every iFRAME has (an
isolated) global object

 SOP prevents arbitrary
cross-frame
communication

 Not bad, but sometimes
too restrictive

 Framed applications are
confined to pre-determined
screen regions

 Interactions with other
iFrames require message
passing using the
postMessage API

32

Google Caja and Microsoft WebSandbox

Web Sandbox: The Big Picture

Transformation
Pipeline

(Server or Client-based)

Untrusted Content

Virtualize Code

Trusted Host
(e.g., Your Site)

Requests Content
(untrusted)

Sandboxed
Execution
Sandboxed
Execution

Virtual Machine
(JavaScript Library)

Web Sandboxed Gadget

<html>
 <head>
 <title>Clock Sample</title>
 <base href="http://www.websandbox.org/"/>
 <link href="Images/favicon.ico" rel="icon" />
 <style>
 .sampleTitle
 {font-family: Segoe UI, Tahoma; font-size: 11pt; font-weight:
bold; color: #07519A; }
 .clockSample { height: 130px; border: solid 1px lightgrey;
background: white; background-repeat: repeat-x; background-
position: left top; padding: 10px; overflow-y: auto;}
 </style>
 </head>
 <body>
 <div id="sample" class="clockSample">
 <div class="sampleTitle">Clock Sample</div>

 <script type="text/javascript">

 window.setInterval(function() {
 document.getElementById("currentTime").
 innerText = new Date();
 }, 999)
 </script>
 </div>
 </body>
</html>

Web Sandbox Rewriting

var settings = { css : {".sampleTitle" :

{"font-family":"Segoe UI,Tahoma", … };

var headerJavaScript =

function(a)

{

 var b = a.gw(this),

 c = a.g,

 d = a.i,

 e = c(b,"document");

 d(e,"initializeHTML",

[[{"body":{"c":[,"

",{"div":{"a":{"id":"sample","class":"clockS

ample"},“

c":[,"

",{"div":{"a":{"class":"sampleTitle"},"c":[,

"Clock Sample"]}}," ",{"br":{}},"

",{"span":{"a":{"id":"currentTime"}}},"

",{"script":{"__src__":"c20","a":{"type":"te

xt/javascript"}}}," "]}}," "]}}]])

};

var metadata =

{"author":"","description":"","imagepath":"","title":"Cloc

k Sample",…,

"scripts" : {"c20" :

function(a)

{

 var b = a.gw(this),

 c = a.g,

 d = a.s,

 e = a.i,

 f = a.n,

 g = a.f,

 h = c(b,"document");

 e(b,"setInterval",[g(function()

 {

d(e(h,"getElementById",["currentTime"]),"innerText",f(c(b,

"Date"),[]))

 }),999])

}}};

$Sandbox.registerCode(headerJavaScript, "2", settings,

metadata);

var SandboxInstance = new

$Sandbox(document.getElementById('g_2_0_inst'),

$Policy.Canvas, "2");

SandboxInstance.initialize();

Translation Continued
36

var metadata =
{"author":"","description":"","imagepath":"","title":"Your Gadget's
Title","preferredheight":0,"preferredwidth":0,"location":"","icon":"","
base":{"href":"","target":""},"scripts" : {"c00" :

function(a)

{

 var b = a.gw(this),

 c = a.g

}}};

$Sandbox.registerCode(headerJavaScript, "0", settings, metadata);

var SandboxInstance = new
$Sandbox(document.getElementById('g_0_0_inst'), $Policy.Canvas, "0");

SandboxInstance.initialize();

W3C CSP: Content Security Policy
37

 Example 1: A server wants all content to come from its own domain:

 X-Content-Security-Policy: default-src 'self‘

 Example 2: An auction site wants to allow images from anywhere, plugin content from a list of trusted
media providers including a content distribution network, and scripts only from a server under its control
hosting sanitized ECMAScript:

 X-Content-Security-Policy: default-src 'self'; img-src *;

 object-src media1.example.com media2.example.com *.cdn.example.com;

 script-src trustedscripts.example.com

 Example 3: A site operations group wants to globally deny all third-party scripts in the site, and a
particular project team wants to also disallow third-party media in their section of the site. Site
operations sends the first header while the project team sends the second header, and the user-agent
takes the intersection of the two headers to form the complete interpreted policy:

 X-Content-Security-Policy: default-src *; script-src 'self'

 X-Content-Security-Policy: default-src *; script-src 'self'; media-src 'self‘

 Example 4: Online banking site wants to ensure that all of the content in its pages is loaded over TLS to
prevent attackers from eavesdropping on insecure content requests:

 X-Content-Security-Policy: default-src https://*:443

HTML5 Sandbox
38

<iframe src="untrusted.html"

 sandbox="allow-scripts allow-forms">

</iframe>

 allow-scripts

 allow-forms

 allow-same-origin

 allow-top-navigation

 ms-allow-popups

HTML5 Sandbox in Action
39

ConScript
Specifying and Enforcing Fine-Grained Security Policies

for JavaScript in the Browser

Leo Meyerovich
UC Berkeley

Benjamin Livshits
Microsoft Research

[Oakland S&P 2010]

Only Allow eval of JSON

41

eval(“(*,‘hello’: ‘Oakland’-, 2010+)”)

eval(“(xhr.open(‘evil.com’);)”)

• Idea for a policy:
– Parse input strings instead of running them
– Use ConScript to advise eval calls

• AspectJ advice for Java

• How to do advice in JavaScript?
– No classes to speak of

void around call Window::eval (String s) { … }

heap

Advising Calls is Tricky

window.eval = function allowJSON() { … }

window

object

document

window

x

y

z

…

frames[0]

stack

function
allowJSON

eval

frame

object
eval

eval

function
eval

ConScript approach

– Deep advice for complete mediation

– Implemented within the browser for
efficiency and reliability

42

Example of Applying Advice in ConScript

43

1. <SCRIPT SRC=”facebook.js" POLICY="

2. var substr = String.prototype.substring;

3. var parse = JSON.parse;

4. around(window.eval,

5. function(oldEval, str) {

6. var str2 = uCall(str, substr, 1,

7. str.length - 1);

8. var res = parse(str2);

9. if (res) return res;

10. else throw "eval only for JSON";

11. });">

heap

Advising JavaScript Functions in IE8

44

fish

...

...

...

dog

stack

function
withBound

Checks

function
paint

around(paint, withBoundChecks);

dog.draw();

fish.display();

draw

display

Policies are Easy to Get Wrong

var okOrigin={"http://www.google.com":true};

around(window.postMessage,

 function (post, msg, target) {

 if (!okOrigin[target]) {

 throw ’err’;

 } else {

 return post.call(this, msg, target);

 }

});

45

1.

2.

3.

4.

5.

6.

7.

8.

9.

toString redefinition!

Function.prototype
poisoning!

Object.prototype
poisoning!

manifest of
script URLs

HTTP-only
cookies

resource
blacklists

limit eval

no foreign links

no dynamic
IFRAME creation

script whitelist

<noscript>

no URL
redirection

no pop-ups

enforce public
vs. private

Paper
presents

17
ConScript
Policies

46

around(document.createElement,

 function (c : K, tag : U) {

 var elt : U = uCall(document, c, tag);

 if (elt.nodeName == "IFRAME") throw ’err’;

 else return elt; });

DoCoMo Policy Enforcement Overhead
47

7%
1%

30%

73%

63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Google Maps (183ms) MSN (439ms) GMail (736ms)

R
u

n
ti

m
e

 o
ve

rh
e

ad

ConScript DoCoMo (JavaScript rewriting)

H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov,
“JavaScript instrumentation in practice,” 2008

Summary

 Background on SOP

 Language restrictions
 AdSafe

FBJS

 Extensive rewriting
 Caja

 WebSandbox

 Better runtimes
 CSP

 HTML5 Sandbox

 Tradeoffs of different
containment strategies
and going forward

48

