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Abstract
Heap spraying is a security attack that increases the ex-
ploitability of memory corruption errors in type-unsafe
applications. In a heap-spraying attack, an attacker co-
erces an application to allocate many objects containing
malicious code in the heap, increasing the success rate of
an exploit that jumps to a location within the heap. Be-
cause heap layout randomization necessitates new forms
of attack, spraying has been used in many recent security
exploits. Spraying is especially effective in web browsers,
where the attacker can easily allocate the malicious ob-
jects using JavaScript embedded in a web page. In this
paper, we describe NOZZLE, a runtime heap-spraying de-
tector. NOZZLE examines individual objects in the heap,
interpreting them as code and performing a static analysis
on that code to detect malicious intent. To reduce false
positives, we aggregate measurements across all heap ob-
jects and define a global heap health metric.

We measure the effectiveness of NOZZLE by demon-
strating that it successfully detects 12 published and 2,000
synthetically generated heap-spraying exploits. We also
show that even with a detection threshold set six times
lower than is required to detect published malicious
attacks, NOZZLE reports no false positives when run
over 150 popular Internet sites. Using sampling and con-
current scanning to reduce overhead, we show that the
performance overhead of NOZZLE is less than 7% on av-
erage. While NOZZLE currently targets heap-based spray-
ing attacks, its techniques can be applied to any attack that
attempts to fill the address space with malicious code ob-
jects (e.g., stack spraying [42]).

1 Introduction
In recent years, security improvements have made it in-
creasingly difficult for attackers to compromise systems.
Successful prevention measures in runtime environments
and operating systems include stack protection [10], im-
proved heap allocation layouts [7, 20], address space lay-
out randomization [8, 36], and data execution preven-

tion [21]. As a result, attacks that focus on exploiting
memory corruptions in the heap are now popular [28].

Heap spraying, first described in 2004 by
SkyLined [38], is an attack that allocates many objects
containing the attacker’s exploit code in an application’s
heap. Heap spraying is a vehicle for many high profile
attacks, including a much publicized exploit in Internet
Explorer in December 2008 [23] and a 2009 exploit of
Adobe Reader using JavaScript embedded in malicious
PDF documents [26].

Heap spraying requires that an attacker use another se-
curity exploit to trigger an attack, but the act of spraying
greatly simplifies the attack and increases its likelihood
of success because the exact addresses of objects in the
heap do not need to be known. To perform heap spray-
ing, attackers have to be able to allocate objects whose
contents they control in an application’s heap. The most
common method used by attackers to achieve this goal
is to target an application, such as a web browser, which
executes an interpreter as part of its operation. By pro-
viding a web page with embedded JavaScript, an attacker
can induce the interpreter to allocate their objects, allow-
ing the spraying to occur. While this form of spraying at-
tack is the most common, and the one we specifically con-
sider in this paper, the techniques we describe apply to all
forms of heap spraying. A number of variants of spraying
attacks have recently been proposed including sprays in-
volving compiled bytecode, ANI cursors [22], and thread
stacks [42].

In this paper, we describe NOZZLE, a detector of heap
spraying attacks that monitors heap activity and reports
spraying attempts as they occur. To detect heap spray-
ing attacks, NOZZLE has two complementary compo-
nents. First, NOZZLE scans individual objects looking
for signs of malicious intent. Malicious code commonly
includes a landing pad of instructions (a so-called NOP
sled) whose execution will lead to dangerous shellcode.
NOZZLE focuses on detecting a sled through an analysis
of its control flow. We show that prior work on sled de-
tection [4, 16, 31, 43] has a high false positive rate when
applied to objects in heap-spraying attacks (partly due to



the opcode density of the x86 instruction set). NOZZLE
interprets individual objects as code and performs a static
analysis, going beyond prior sled detection work by rea-
soning about code reachability. We define an attack sur-
face metric that approximately answers the question: “If I
were to jump randomly into this object (or heap), what is
the likelihood that I would end up executing shellcode?”

In addition to local object detection, NOZZLE aggre-
gates information about malicious objects across the en-
tire heap, taking advantage of the fact that heap spraying
requires large-scale changes to the contents of the heap.
We develop a general notion of global “heap health” based
on the measured attack surface of the applicatoin heap
contents, and use this metric to reduce NOZZLE’s false
positive rates.

Because NOZZLE only examines object contents and
requires no changes to the object or heap structure, it can
easily be integrated into both native and garbage-collected
heaps. In this paper, we implement NOZZLE by inter-
cepting calls to the memory manager in the Mozilla Fire-
fox browser (version 2.0.0.16). Because browsers are the
most popular target of heap spray attacks, it is crucial for
a successful spray detector to both provide high success-
ful detection rates and low false positive rates. While the
focus of this paper is on low-overhead online detection
of heap spraying, NOZZLE can be easily used for offline
scanning to find malicious sites in the wild [45]. For of-
fline scanning, we can combine our spraying detector with
other checkers such as those that match signatures against
the exploit code, etc.

1.1 Contributions
This paper makes the following contributions:

• We propose the first effective technique for detect-
ing heap-spraying attacks through runtime interpre-
tation and static analysis. We introduce the concept
of attack surface area for both individual objects and
the entire heap. Because directing program control
to shellcode is a fundamental property of NOP sleds,
the attacker cannot hide that intent from our analysis.

• We show that existing published sled detection tech-
niques [4, 16, 31, 43] have high false positive rates
when applied to heap objects. We describe new tech-
niques that dramatically lower the false positive rate
in this context.

• We measure Firefox interacting with popular web
sites and published heap-spraying attacks, we show
that NOZZLE successfully detects 100% of 12
published and 2,000 synthetically generated heap-
spraying exploits. We also show that even with a
detection threshold set six times lower than is re-
quired to detect known malicious attacks, NOZZLE

reports no false positives when tested on 150 popular
Alexa.com sites.

• We measure the overhead of NOZZLE, showing
that without sampling, examining every heap object
slows execution 2–14 times. Using sampling and
concurrent scanning, we show that the performance
overhead of NOZZLE is less than 7% on average.

• We provide the results of applying NOZZLE to
Adobe Reader to prevent a recent heap spraying ex-
ploit embedded in PDF documents. NOZZLE suc-
ceeds at stopping this attack without any modifica-
tions, with a runtime overhead of 8%.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2
provides background on heap spraying attacks. Section 3
provides an overview of NOZZLE and Section 4 goes into
the technical details of our implementation. Section 5
summarizes our experimental results. While NOZZLE is
the first published heap spraying detection technique, our
approach has several limitations, which we describe fully
in Section 6. Finally, Section 7 describes related work and
Section 8 concludes.

2 Background
Heap spraying has much in common with existing stack
and heap-based code injection attacks. In particular, the
attacker attempts to inject code somewhere in the address
space of the target program, and through a memory cor-
ruption exploit, coerce the program to jump to that code.
Because the success of stack-based exploits has been re-
duced by the introduction of numerous security measures,
heap-based attacks are now common. Injecting and ex-
ploiting code in the heap is more difficult for an attacker
than placing code on the stack because the addresses of
heap objects are less predictable than those of stack ob-
jects. Techniques such as address space layout random-
ization [8, 36] further reduce the predictability of objects
on the heap. Attackers have adopted several strategies for
overcoming this uncertainty [41], with heap spraying the
most successful approach.

Figure 1 illustrates a common method of implementing
a heap-spraying attack. Heap spraying requires a memory
corruption exploit, as in our example, where an attacker
has corrupted a vtable method pointer to point to an in-
correct address of their choosing. At the same time, we
assume that the attacker has been able, through entirely
legal methods, to allocate objects with contents of their
choosing on the heap. Heap spraying relies on populating
the heap with a large number of objects containing the at-
tacker’s code, assigning the vtable exploit to jump to an
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Figure 1: Schematic of a heap spraying attack.

1. <SCRIPT language="text/javascript">

2. shellcode = unescape("%u4343%u4343%...");

3. oneblock = unescape("%u0D0D%u0D0D");

4.

5. var fullblock = oneblock;

6. while (fullblock.length<0x40000) {

7. fullblock += fullblock;

8. }

9.

10. sprayContainer = new Array();

11. for (i=0; i<1000; i++) {

12. sprayContainer[i] = fullblock + shellcode;

13. }

14. </SCRIPT>

Figure 2: A typical JavaScript heap spray.

arbitrary address in the heap, and relying on luck that the
jump will land inside one of their objects. To increase the
likelihood that the attack will succeed, attackers usually
structure their objects to contain an initial NOP sled (in-
dicated in white) followed by the code that implements
the exploit (commonly referred to as shellcode, indicated
with shading). Any jump that lands in the NOP sled will
eventually transfer control to the shellcode. Increasing the
size of the NOP sled and the number of sprayed objects in-
creases the probability that the attack will be successful.

Heap spraying requires that the attacker control the
contents of the heap in the process they are attacking.
There are numerous ways to accomplish this goal, in-
cluding providing data (such as a document or image)
that when read into memory creates objects with the de-
sired properties. An easier approach is to take advantage
of scripting languages to allocate these objects directly.
Browsers are particularly vulnerable to heap spraying be-
cause JavaScript embedded in a web page authored by the
attacker greatly simplifies such attacks.

The example shown in Figure 2 is modelled after a pre-
viously published heap-spraying exploit [44]. While we

are only showing the JavaScript portion of the page, this
payload would be typically embedded within an HTML
page on the web. Once a victim visits the page, the Java-
Script payload is automatically executed. Lines 2 allo-
cates the shellcode into a string, while lines 3–8 of the
JavaScript code are responsible for setting up the spray-
ing NOP sled. Lines 10–13 create JavaScript objects each
of which is the result of combining the sled with the shell-
code. It is quite typical for published exploits to contain a
long sled (256 KB in this case). Similarly, to increase the
effectiveness of the attack, a large number of JavaScript
objects are allocated on the heap, 1,000 in this case. Fig-
ure 10 in Section 5 provides more information on previ-
ously published exploits.

3 Overview

While type-safe languages such as Java, C#, and Java-
Script reduce the opportunity for malicious attacks, heap-
spraying attacks demonstrate that even a type-safe pro-
gram can be manipulated to an attacker’s advantage.
Unfortunately, traditional signature-based pattern match-
ing approaches used in the intrusion detection literature
are not very effective when applied to detecting heap-
spraying attacks. This is because in a language as flexi-
ble as JavaScript it is easy to hide the attack code by ei-
ther using encodings or making it polymorphic; in fact,
most JavaScript worms observed in the wild use some
form of encoding to disguise themselves [19, 34]. As
a result, effective detection techniques typically are not
syntactic. They are performed at runtime and employ
some level of semantic analysis or runtime interpretation.
Hardware support has even been provided to address this
problem, with widely used architectures supporting a “no-
execute bit”, which prevents a process from executing
code on specific pages in its address space [21]. We dis-
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Figure 3: NOZZLE system architecture.

cuss how NOZZLE complements existing hardware solu-
tions in Section 7. In this paper, we consider systems that
use the x86 instruction set architecture (ISA) running the
Windows operating system, a ubiquitous platform that is
a popular target for attackers.

3.1 Lightweight Interpretation

Unlike previous security attacks, a successful heap-
spraying attack has the property that the attack influences
the contents of a large fraction of the heap. We propose
a two-level approach to detecting such attacks: scanning
objects locally while at the same time maintaining heap
health metrics globally.

At the individual object level, NOZZLE performs light-
weight interpretation of heap-allocated objects, treating
them as though they were code. This allows us to recog-
nize potentially unsafe code by interpreting it within a safe
environment, looking for malicious intent.

The NOZZLE lightweight emulator scans heap objects
to identify valid x86 code sequences, disassembling the
code and building a control flow graph [35]. Our analysis
focuses on detecting the NOP sled, which is somewhat of
a misnomer. The sled can be composed of arbitrary in-
structions (not just NOPs) as long as the effect they have
on registers, memory, and the rest of the machine state do
not terminate execution or interfere with the actions of the
shellcode. Because the code in the sled is intended to be
the target of a misdirected jump, and thus has to be exe-
cutable, the attacker cannot hide the sled with encryption
or any means that would prevent the code from execut-
ing. In our analysis, we exploit the fundamental nature of
the sled, which is to direct control flow specifically to the
shellcode, and use this property as a means of detecting
it. Furthermore, our method does not require detecting or

assume there exists a definite partition between the shell-
code and the NOP sled.

Because the attack jump target cannot be precisely con-
trolled, the emulator follows control flow to identify ba-
sic blocks that are likely to be reached through jumps
from multiple offsets into the object. Our local detec-
tion process has elements in common with published
methods for sled detection in network packet process-
ing [4, 16, 31, 43]. Unfortunately, the density of the x86
instruction set makes the contents of many objects look
like executable code, and as a result, published methods
lead to high false positive rates, as demonstrated in Sec-
tion 5.1.

We have developed a novel approach to mitigate this
problem using global heap health metrics, which effec-
tively distinguishes benign allocation behavior from ma-
licious attacks. Fortunately, an inherent property of heap-
spraying attacks is that such attacks affect the heap glob-
ally. Consequently, NOZZLE exploits this property to
drastically reduce the false positive rate.

3.2 Threat Model

We assume that the attacker has access to memory vulner-
abilities for commonly used browsers and also can lure
users to a web site whose content they control. This pro-
vides a delivery mechanism for heap spraying exploits.
We assume that the attacker does not have further access
to the victim’s machine and the machine is otherwise un-
compromised. However, the attacker does not control the
precise location of any heap object.

We also assume that the attacker knows about the NOZ-
ZLE techniques and will try to avoid detection. They
may have access to the browser code and possess detailed
knowledge of system-specific memory layout properties



such as object alignment. There are specific potential
weaknesses that NOZZLE has due to the nature of its run-
time, statistical approach. These include time-of-check
to time-of-use vulnerabilities, the ability of the attacker
to target their attack under NOZZLE’s thresholds, and the
approach of inserting junk bytes at the start of objects to
avoid detection. We consider these vulnerabilities care-
fully in Section 6, after we have presented our solution in
detail.

4 Design and Implementation
In this section, we formalize the problem of heap spray
detection, provide improved algorithms for detecting sus-
picious heap objects, and describe the implementation of
NOZZLE.

4.1 Formalization
This section formalizes our detection scheme informally
described in Section 3.1, culminating in the notion of a
normalized attack surface, a heap-global metric that re-
flects the overall heap exploitability and is used by NOZ-
ZLE to flag potential attacks.

Definition 1. A sequence of bytes is legitimate, if it can
be decoded as a sequence of valid x86 instructions. In a
variable length ISA this implies that the processor must be
able to decode every instruction of the sequence. Specif-
ically, for each instruction, the byte sequence consists of
a valid opcode and the correct number of arguments for
that instruction.

Unfortunately, the x86 instruction set is quite dense,
and as a result, much of the heap data can be inter-
preted as legitimate x86 instructions. In our experiments,
about 80% of objects allocated by Mozilla Firefox contain
byte sequences that can be interpreted as x86 instructions.

Definition 2. A valid instruction sequence is a legitimate
instruction sequence that does not include instructions in
the following categories:

• I/O or system calls (in, outs, etc)
• interrupts (int)
• privileged instructions (hlt, ltr)
• jumps outside of the current object address range.

These instructions either divert control flow out of the
object’s implied control flow graph or generate exceptions
and terminate (privileged instructions). If they appear in
a path of the NOP sled, they prevent control flow from
reaching the shellcode via that path. When these instruc-
tions appear in the shellcode, they do not hamper the con-
trol flow in the NOP sled leading to that shellcode in any
way.

Semi-lattice L bitvectors of length N
Top > 1̄
Initial value init(Bi) 0̄
Transfer function TF (Bi) 0 . . . 010 . . . 0 (ith bit set)
Meet operator ∧(x, y) x ∨ y (bitwise or)
Direction forward

Figure 4: Dataflow problem parametrization for comput-
ing the surface area (see Aho et al.).

Previous work on NOP sled detection focuses on exam-
ining possible attacks for properties like valid instruction
sequences [4, 43]. We use this definition as a basic ob-
ject filter, with results presented in Section 5.1. Using this
approach as the sole technique for detecting attacks leads
to an unacceptable number of false positives, and more
selective techniques are necessary.

To improve our selectivity, NOZZLE attempts to dis-
cover objects in which control flow through the object (the
NOP sled) frequently reaches the same basic block(s) (the
shellcode, indicated in Figure 1), the assumption being
that an attacker wants to arrange it so that a random jump
into the object will reach the shellcode with the greatest
probability.

Our algorithm constructs a control flow graph (CFG) by
interpreting the data in an object at offset ∆ as an instruc-
tion stream. For now, we consider this offset to be zero
and discuss the implications of malicious code injected at
a different starting offset in Section 6. As part of the con-
struction process, we mark the basic blocks in the CFG
as valid and invalid instruction sequences, and we modify
the definition of a basic block so that it terminates when
an invalid instruction is encountered. A block so termi-
nated is considered an invalid instruction sequence. For
every basic block within the CFG we compute the sur-
face area, a proxy for the likelihood of control flow pass-
ing through the basic block, should the attacker jump to a
random memory address within the object.

Algorithm 1. Surface area computation.

Inputs: Control flow graph C consisting of

• Basic blocks B1, . . . , BN

• Basic block weights, W̄ , a single-column vector of
size N where element Wi indicates the size of block
Bi in bytes

• A validity bitvector V̄ , a single-row bitvector whose
ith element is set to one only when block Bi contains
a valid instruction sequence and set to zero other-
wise.

• MASK1, . . . ,MASKN , where MASKi is a
single-row bitvector of size N where all the bits are
one except at the ith position where the bit is zero.
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Figure 5: Semi-lattice used in Example 1.

Outputs: Surface area for each basic block
SA(Bi), Bi ∈ C.

Solution: We define a parameterized dataflow problem
using the terminology in Aho et al. [2], as shown in
Figure 4. We also relax the definition of a conventional
basic block; whenever an invalid instruction is encoun-
tered, the block prematurely terminates. The goal of the
dataflow analysis is to compute the reachability between
basic blocks in the control graph inferred from the con-
tents of the object. Specifically, we want to determine
whether control flow could possibly pass through a given
basic block if control starts at each of the other N − 1
blocks. Intuitively, if control reaches a basic block from
many of the other blocks in the object (demonstrating a
“funnel” effect), then that object exhibits behavior consis-
tent with having a NOP sled and is suspicious.

Dataflow analysis details: The dataflow solution com-
putes out(Bi) for every basic block Bi ∈ C. out(Bi) is a
bitvector of length N, with one bit for each basic block in
the control flow graph. The meaning of the bits in out(Bi)
are as follows: the bit at position j, where j 6= i indicates
whether a possible control path exists starting at block j
and ending at block i. The bit at position i in Bi is always
one. For example, in Figure 6, a path exists between block
1 and 2 (a fallthrough), and so the first bit of out(B2) is
set to 1. Likewise, there is no path from block 6 to block
1, so the sixth bit of out(B1) is zero.

The dataflow algorithm computes out(Bi) for each Bi

by initializing them, computing the contribution that each
basic block makes to out(Bi), and propagating interme-
diate results from each basic block to its successors (be-
cause this is a forward dataflow computation). When re-
sults from two predecessors need to be combined at a join
point, the meet operator is used (in this case a simple
bitwise or). The dataflow algorithm iterates the forward
propagation until the results computed for each Bi do not
change further. When no further changes occur, the final
values of out(Bi) have been computed. The iterative al-
gorithm for this forward dataflow problem is guaranteed
to terminate in no more than the number of steps equal to
the product of the semi-lattice height and the number of
basic blocks in the control flow graph [2].

Figure 6: The control flow graph for Example 1.

Having calculated out(Bi), we are now ready to com-
pute the surface area of the basic block Bi. The surface
area of a given block is a metric that indicates how likely
the block will be reached given a random control flow
landing on this object. The surface area of basic block
Bi, SA(Bi), is computed as follows:

SA(Bi) = (out(Bi) ∧ V̄ ∧MASKi) · W̄

where out(Bi) is represented by a bitvector whose val-
ues are computed using the iterative dataflow algorithm
above. V̄ , W̄ , and MASKi are the algorithm’s inputs. V̄
is determined using the validity criteria mentioned above,
while W̄ is the size of each basic block in bytes. MASKi

is used to mask out the contribution of Bi’s weight to its
own surface area. The intuition is that we discard the con-
tribution from the block itself as well as other basic blocks
that are not valid instruction sequences by logically bit-
wise ANDing out(Bi), V̄ , and MASKi. Because the
shellcode block does not contribute to actual attack sur-
face (since a jump inside the shellcode is not likely to re-
sult in a successful exploit), we do not include the weight
of Bi as part of the attack surface. Finally, we perform
vector multiplication to account for the weight each basic
block contributes—or does not—to the surface area of Bi.

In summary, the surface area computation based on the
dataflow framework we described accounts for the contri-
bution each basic block, through its weight and validity,



has on every other blocks reachable by it. Our computa-
tion method can handle code with complex control flow
involving arbitrary nested loops. It also allows for the dis-
covery of malicious objects even if the object has no clear
partition between the NOP sled and the shellcode itself.

Complexity analysis. The standard iterative algorithm
for solving dataflow problems computes out(Bi) values
with an average complexity bound of O(N). The only
complication is that doing the lattice meet operation on
bitvectors of length N is generally an O(N) and not
a constant time operation. Luckily, for the majority of
CFGs that arise in practice — 99.08% in the case of
Mozilla Firefox opened and interacted on www.google.
com — the number of basic blocks is fewer than 64, which
allows us to represent dataflow values as long integers
on 64-bit hardware. For those rare CFGs that contain
over 64 basic blocks, a generic bitvector implementation
is needed.

Example 1 Consider the CFG in Figure 6. The semi-
lattice for this CFG of size 6 is partially shown in Fig-
ure 5. Instructions in the CFG are color-coded by instruc-
tion type. In particular, system calls and I/O instructions
interrupt the normal control flow. For simplicity, we show
W̄i as the number of instructions in each block, instead
of the number of bytes. The values used and produced by
the algorithm are summarized in Figure 7. The out′(Bi)
column shows the intermediate results for dataflow calcu-
lation after the first pass. The final solution is shown in
the out(Bi) column. �

Given the surface area of individual blocks, we com-
pute the attack surface area of object o as:

SA(o) = max(SA(Bi), Bi ∈ C)

For the entire heap, we accumulate the attack surface of
the individual objects.

Definition 3. The attack surface area of heap H , SA(H),
containing objects o1, . . . , on is defined as follows:∑

i=1,...,n

SA(oi)

Definition 4. The normalized attack surface area of
heap H , denoted as NSA(H), is defined as: SA(H)/|H|.

The normalized attack surface area metric reflects the
overall heap “health” and also allows us to adjust the fre-
quency with which NOZZLE runs, thereby reducing the
runtime overhead, as explained below.

4.2 Nozzle Implementation
NOZZLE needs to periodically scan heap object content in
a way that is analogous to a garbage collector mark phase.

By instrumenting allocation and deallocation routines, we
maintain a table of live objects that are later scanned asyn-
chronously, on a different NOZZLE thread.

We adopt garbage collection terminology in our de-
scription because the techniques are similar. For exam-
ple, we refer to the threads allocating and freeing objects
as the mutator threads, while we call the NOZZLE threads
scanning threads. While there are similarities, there are
also key differences. For example, NOZZLE works on an
unmanaged, type-unsafe heap. If we had garbage collec-
tor write barriers, it would improve our ability to address
the TOCTTOU (time-of-check to time-of-use) issue dis-
cussed in Section 6.

4.2.1 Detouring Memory Management Routines

We use a binary rewriting infrastructure called De-
tours [14] to intercept functions calls that allocate and
free memory. Within Mozilla Firefox these routines
are malloc, calloc, realloc, and free, defined in
MOZCRT19.dll. To compute the surface area, we main-
tain information about the heap including the total size of
allocated objects.

NOZZLE maintains a hash table that maps the addresses
of currently allocated objects to information including
size, which is used to track the current size and contents of
the heap. When objects are freed, we remove them from
the hash table and update the size of the heap accordingly.
Note that if NOZZLE were more closely integrated into the
heap allocator itself, this hash table would be unnecessary.

NOZZLE maintains an ordered work queue that serves
two purposes. First, it is used by the scanning thread as a
source of objects that need to be scanned. Second, NOZ-
ZLE waits for objects to mature before they are scanned,
and this queue serves that purpose. Nozzle only considers
objects of size greater than 32 bytes to be put in the work
queue as the size of any harmful shellcode is usually larger
than this

To reduce the runtime overhead of NOZZLE, we ran-
domly sample a subset of heap objects, with the goal of
covering a fixed fraction of the total heap. Our current
sampling technique is based on sampling by object, but as
our results show, an improved technique would base sam-
pling frequency on bytes allocated, as some of the pub-
lished attacks allocate a relatively small number of large
objects.

4.2.2 Concurrent Object Scanning

We can reduce the performance impact of object scanning,
especially on multicore hardware, with the help of multi-
ple scanning threads. As part of program detouring, we
rewrite the main function to allocate a pool of N scan-
ning threads to be used by NOZZLE, as shown in Figure 2.



Bi TF (Bi) V̄i W̄i out′(Bi) out(Bi) out(Bi) ∧ V̄ ∧MASKi SA(Bi)

1 100000 1 4 100000 111110 011010 8
2 010000 1 2 110000 111110 101010 10
3 001000 1 4 111000 111110 110010 8
4 000100 0 3 110100 111110 111010 12
5 000010 1 2 111110 111110 111000 10
6 000001 0 2 111111 111111 111010 12

Figure 7: Dataflow values for Example 1.

This way, a mutator only blocks long enough when allo-
cating and freeing objects to add or remove objects from
a per-thread work queue.

The task of object scanning is subdivided among the
scanning threads the following way: for an object at ad-
dress a, thread number

(a>>p) % N

is responsible for both maintaining information about that
object and scanning it, where p is the number of bits re-
quired to encode the operating system page size (typi-
cally 12 on Windows). In other words, to preserve the spa-
tial locality of heap access, we are distributing the task of
scanning individual pages among the N threads. Instead
of maintaining a global hash table, each thread maintains
a local table keeping track of the sizes for the objects it
handles.

Object scanning can be triggered by a variety of events.
Our current implementation scans objects once, after a
fixed delay of one object allocation (i.e., we scan the pre-
viously allocated object when we see the next object al-
located). This choice works well for JavaScript, where
string objects are immutable, and hence initialized imme-
diately after they are allocated. Alternately, if there are
extra cores available, scanning threads could pro-actively
rescan objects without impacting browser performance
and reducing TOCTTOU vulnerabilities (see Section 6).

4.3 Detection and Reporting
NOZZLE maintains the values NSA(H) and SA(H) for
the currently allocated heap H . The criteria we use to
conclude that there is an attack in progress combines an
absolute and a relative threshold:

(NSA(H) > thnorm) ∧ (SA(H) > thabs)

When this condition is satisfied, we warn the user about
a potential security attack in progress and allow them to
kill the browser process. An alternative would be to take
advantage of the error reporting infrastructure built into
modern browsers to notify the browser vendor.

Figure 8: Global normalized attack surface for
economist.com versus a published exploit (612).

These thresholds are defined based on a comparison of
benign and malicious web pages (Section 5.1). The guid-
ing principle behind the threshold determination is that for
the attacker to succeed, the exploit needs to be effective
with reasonable probability. For the absolute threshold,
we choose five megabytes, which is roughly the size of
the Firefox heap when opening a blank page. A real attack
would need to fill the heap with at least as many malicious
objects, assuming the attacker wanted the ratio of mali-
cious to non-malicious objects to be greater than 50%.

5 Evaluation
The bulk of our evaluation focuses on applying NOZZLE
to the Firefox web browser. Section 5.5 talks about using
NOZZLE to protect Adobe Acrobat Reader.

We begin our evaluation by showing what a heap-
spraying attack looks like as measured using our nor-
malized attack surface metric. Figure 8 shows the at-
tack surface area of the heap for two web sites: a benign
site (economist.com), and a site with a published heap-
spraying attack, similar to the one presented in Figure 2.
Figure 8 illustrates how distinctive a heap-spraying attack



is when viewed through the normalized attack surface fil-
ter. The success of NOZZLE depends on its ability to dis-
tinguish between these two kinds of behavior. After see-
ing Figure 8, one might conclude that we can detect heap
spraying activity based on how rapidly the heap grows.
Unfortunately, benign web sites as economist.com can
possess as high a heap growth rate as a rogue page per-
forming heap spraying. Moreover, unhurried attackers
may avoid such detection by moderating the heap growth
rate of their spray. In this section, we present the false pos-
itive and false negative rate of NOZZLE, as well as its per-
formance overhead, demonstrating that it can effectively
distinguish benign from malicious sites.

For our evaluations, we collected 10 heavily-used be-
nign web sites with a variety of content and levels of
scripting, which we summarize in Figure 9. We use
these 10 sites to measure the false positive rate and also
the impact of NOZZLE on browser performance, dis-
cussed in Section 5.3. In our measurements, when visit-
ing these sites, we interacted with the site as a normal user
would, finding a location on a map, requesting driving di-
rections, etc. Because such interaction is hard to script
and reproduce, we also studied the false positive rate of
NOZZLE using a total of 150 benign web sites, chosen
from the most visited sites as ranked by Alexa [5]1. For
these sites, we simply loaded the first page of the site and
measured the heap activity caused by that page alone.

To evaluates NOZZLE’s ability to detect malicious at-
tacks, we gathered 12 published heap-spraying exploits,
summarized in Figure 10. We also created 2,000 syn-
thetically generated exploits using the Metasploit frame-
work [12]. Metasploit allows us to create many malicious
code sequences with a wide variety of NOP sled and shell-
code contents, so that we can evaluate the ability of our
algorithms to detect such attacks. Metasploit is parame-
terizable, and as a result, we can create attacks that contain
NOP sleds alone, or NOP sleds plus shellcode. In creat-
ing our Metasploit exploits, we set the ratio of NOP sled
to shellcode at 9:1, which is quite a low ratio for a real
attack but nevertheless presents no problems for NOZZLE
detection.

5.1 False Positives

To evaluate the false positive rate, we first consider using
NOZZLE as a global detector determining whether a heap
is under attack, and then consider the false-positive rate
of NOZZLE as a local detector that is attempting to detect
individual malicious objects. In our evaluation, we com-
pare NOZZLE and STRIDE [4], a recently published local
detector.

1Our tech report lists the full set of sites used [32].

Download JavaScript Load time
Site URL (kilobytes) (kilobytes) (seconds)

economist.com 613 112 12.6
cnn.com 885 299 22.6
yahoo.com 268 145 6.6
google.com 25 0 0.9
amazon.com 500 22 14.8
ebay.com 362 52 5.5
facebook.com 77 22 4.9
youtube.com 820 160 16.5
maps.google.com 285 0 14.2
maps.live.com 3000 2000 13.6

Figure 9: Summary of 10 benign web sites we used as
NOZZLE benchmarks.

Date Browser Description milw0rm

11/2004 IE IFRAME Tag BO 612
04/2005 IE DHTML Objects Corruption 930
01/2005 IE .ANI Remote Stack BO 753
07/2005 IE javaprxy.dll COM Object 1079
03/2006 IE createTextRang RE 1606
09/2006 IE VML Remote BO 2408
03/2007 IE ADODB Double Free 3577
09/2006 IE WebViewFolderIcon setSlice 2448

09/2005 FF 0xAD Remote Heap BO 1224
12/2005 FF compareTo() RE 1369
07/2006 FF Navigator Object RE 2082

07/2008 Safari Quicktime Content-Type BO 6013

Figure 10: Summary of information about 12 published
heap-spraying exploits. BO stands for “buffer overruns”
and RE stands for “remote execution.”

5.1.1 Global False Positive Rate

Figure 11 shows the maximum normalized attack surface
measured by NOZZLE for our 10 benchmark sites (top)
as well as the top 150 sites reported by Alexa (bottom).
From the figure, we see that the maximum normalized
attack surface remains around 6% for most of the sites,
with a single outlier from the 150 sites at 12%. In prac-
tice, the median attack surface is typically much lower
than this, with the maximum often occurring early in the
rendering of the page when the heap is relatively small.
The economist.com line in Figure 8 illustrates this ef-
fect. By setting the spray detection threshold at 15% or
above, we would observe no false positives in any of the
sites measured.

5.1.2 Local False Positive Rate

In addition to being used as a heap-spray detector, NOZ-
ZLE can also be used locally as a malicious object de-
tector. In this use, as with existing NOP and shellcode
detectors such as STRIDE [4], a tool would report an ob-
ject as potentially malicious if it contained data that could
be interpreted as code, and had other suspicious proper-
ties. Previous work in this area focused on detection of
malware in network packets and URIs, whose content is
very different than heap objects. We evaluated NOZZLE



Figure 11: Global normalized attack surface for 10 benign
benchmark web sites and 150 additional top Alexa sites,
sorted by increasing surface. Each element of the X-axis
represents a different web site.

Figure 12: Local false positive rate for 10 benchmark web
sites using NOZZLE and STRIDE. Improved STRIDE is a
version of STRIDE that uses additional instruction-level
filters, also used in NOZZLE, to reduce the false positive
rate.

and STRIDE algorithm, to see how effective they are at
classifying benign heap objects.

Figure 12 indicates the false positive rate of two vari-
ants of STRIDE and a simplified variant of NOZZLE. This
simplified version of NOZZLE only scans a given heap ob-
ject and attempts to disassemble and build a control flow
graph from its contents. If it succeeds in doing this, it
considers the object suspect. This version does not in-
clude any attack surface computation. The figure shows
that, unlike previously reported work where the false pos-
itive rate for URIs was extremely low, the false positive
rate for heap objects is quite high, sometimes above 40%.
An improved variant of STRIDE that uses more informa-
tion about the x86 instruction set (also used in NOZZLE)
reduces this rate, but not below 10% in any case. We con-

Figure 13: Distribution of filtered object surface area
for each of 10 benchmark web sites (benign) plus 2,000
synthetic exploits (see Section 5.2). Objects measured
are only those that were considered valid instruction se-
quences by NOZZLE (indicated as false positives in Fig-
ure 12.

clude that, unlike URIs or the content of network pack-
ets, heap objects often have contents that can be entirely
interpreted as code on the x86 architecture. As a result,
existing methods of sled detection do not directly apply to
heap objects. We also show that even NOZZLE, without
incorporating our surface area computation, would have
an unacceptably high false positive rate.

To increase the precision of a local detector based on
NOZZLE, we incorporate the surface area calculation de-
scribed in Section 4. Figure 13 indicates the distribution
of measured surface areas for the roughly 10% of objects
in Figure 12 that our simplified version of NOZZLE was
not able to filter. We see from the figure that many of those
objects have a relatively small surface area, with less that
10% having surface areas from 80-100% of the size of
the object (the top part of each bar). Thus, roughly 1%
of objects allocated by our benchmark web sites qualify
as suspicious by a local NOZZLE detector, compared to
roughly 20% using methods reported in prior work. Even
at 1%, the false positive rate of a local NOZZLE detector
is too high to raise an alarm whenever a single instance
of a suspicious object is observed, which motivated the
development of our global heap health metric.

5.2 False Negatives
As with the false positive evaluation, we can consider
NOZZLE both as a local detector (evaluating if NOZZLE
is capable of classifying a known malicious object cor-
rectly), and as a global detector, evaluating whether it cor-
rectly detects web pages that attempt to spray many copies
of malicious objects in the heap.

Figure 14 evaluates how effective NOZZLE is at avoid-



Configuration min mean std

Local, NOP w/o shellcode 0.994 0.997 0.002
Local, NOP with shellcode 0.902 0.949 0.027

Figure 14: Local attack surface metrics for 2,000 gener-
ated samples from Metasploit with and without shellcode.

Configuration min mean std

Global, published exploits 0.892 0.966 0.028
Global, Metasploit exploits 0.729 0.760 0.016

Figure 15: Global attack surface metrics for 12 published
attacks and 2,000 Metasploit attacks integrated into web
pages as heap sprays.

ing local false negatives using our Metasploit exploits.
The figure indicates the mean and standard deviation of
the object surface area over the collection of 2,000 ex-
ploits, both when shellcode is included with the NOP sled
and when the NOP sled is measured alone. The figure
shows that NOZZLE computes a very high attack surface
in both cases, effectively detecting all the Metasploit ex-
ploits both with and without shellcode.

Figure 15 shows the attack surface statistics when using
NOZZLE as a global detector when the real and synthetic
exploits are embedded into a web page as a heap-spraying
attack. For the Metasploit exploits which were not specif-
ically generated to be heap-spraying attacks, we wrote our
own JavaScript code to spray the objects in the heap. The
figure shows that the published exploits are more aggres-
sive than our synthetic exploits, resulting in a mean global
attack surface of 97%. For our synthetic use of spraying,
which was more conservative, we still measured a mean
global attack surface of 76%. Note that if we set the NOP
sled to shellcode at a ratio lower than 9:1, we will observe
a correspondingly smaller value for the mean global at-
tack surface. All attacks would be detected by NOZZLE
with a relatively modest threshold setting of 50%. We
note that these exploits have global attack surface metrics
6–8 times larger than the maximum measured attack sur-
face of a benign web site.

5.3 Performance

To measure the performance overhead of NOZZLE, we
cached a typical page for each of our 10 benchmark sites.
We then instrument the start and the end of the page with
the JavaScript newDate().getTime() routine and com-
pute the delta between the two. This value gives us how
long it takes to load a page in milliseconds. We collect
our measurements running Firefox version 2.0.0.16 on a
2.4 GHz Intel Core2 E6600 CPU running Windows XP

Figure 16: Relative execution overhead of using NOZZLE
in rendering a typical page of 10 benchmark web sites as
a function of sampling frequency.

Service Pack 3 with 2 gigabytes of main memory. To min-
imize the effect of timing due to cold start disk I/O, we
first load a page and discard the timing measurement. Af-
ter this first trial, we take three measurements and present
the median of the three values. The experiments were per-
formed on an otherwise quiescent machine and the vari-
ance between runs was not significant.

In the first measurement, we measured the overhead of
NOZZLE without leveraging an additional core, i.e., run-
ning NOZZLE as a single thread and, hence, blocking Fire-
fox every time a memory allocation occurs. The resulting
overhead is shown in Figure 16, both with and without
sampling. The overhead is prohibitively large when no
sampling is applied. On average, the no sampling ap-
proach incurs about 4X slowdown with as much as 13X
slowdown for maps.live.com. To reduce this overhead,
we consider the sampling approach. For these results,
we sample based on object counts; for example, sam-
pling at 5% indicates that one in twenty objects is sam-
pled. Because a heap-spraying attack has global impact
on the heap, sampling is unlikely to significantly reduce
our false positive and false negative rates, as we show in
the next section. As we reduce the sampling frequency,
the overhead becomes more manageable. We see an aver-
age slowdown of about 60%, 20% and 10% for sampling
frequency of 25%, 10% and 5%, respectively, for the 10
selected sites.

For the second measurement, taking advantage of the
second core of our dual core machine, we configured
NOZZLE to use one additional thread for scanning, hence,
unblocking Firefox when it performs memory allocation.
Figure 17 shows the performance overhead of NOZZLE
with parallel scanning. From the Figure, we see that with
no sampling, the overhead of using NOZZLE ranges from
30% to almost a factor of six, with a geometric mean of



Figure 17: Overhead of using NOZZLE on a dual-core ma-
chine.

Figure 18: Average error rate due to sampling of the com-
puted average surface area for 10 benign benchmark web
sites.

two times slowdown. This is a significant improvement
over the serial version. When we further reduce the sam-
pling rate, we see further performance improvement as
with the first measurement. Reducing the sampling rate
to 25%, the mean overhead drops to 45%, while with a
sampling rate of 5%, the performance overhead is only
6.4%.

5.4 Impact of Sampling on Detection

In this section, we show the impact of sampling on the
amount of error in the computation of the attack surface
metric for both benign and malicious inputs.

Figure 18 shows the error rate caused by different
levels of sampling averaged across the 10 benign web
sites. We compute the error rate E = |Sampled −
Unsampled|/Unsampled. The figure shows that for
sample rates of 0.1% or above the error rate is less than
30%. To make this concrete, for a benign website, instead
of calculating the normalized attack surface correctly as
5%, with a 0.1% sampling rate, we would instead calcu-

Sampling Rate
100% 25% 10% 5% 1%

12 Published 0 0 0 0 50%
2,000 Metasploit 0 0 0 0 0

Figure 19: False negative rate for 12 real and 2,000 Metas-
ploit attacks given different object sampling rates.

late the normalized attack surface as 6.5%, still far below
any threshold we might use for signaling an attack. Not-
ing that the malicious pages have attack surfaces that are
6–8 times larger than benign web pages, we conclude that
sampling even at 5% is unlikely to result in significant
numbers of false positives.

In Figure 19, we show the impact of sampling on the
number of false negatives for our published and synthetic
exploits. Because existing exploits involve generating the
heap spray in a loop, the only way sampling will miss such
an attack is to sample at such a low rate that the objects
allocated in the loop escape notice. The figure illustrates
that for published attacks sampling even at 5% results in
no false negatives. At 1%, because several of the pub-
lished exploits only create on the order of tens of copies of
very large spray objects, sampling based on object count
can miss these objects, and we observe a 50% (6/12) false
negative rate. Sampling based on bytes allocated instead
of objects allocated would reduce this false negative rate
to zero.

5.5 Case Study: Adobe Reader Exploit
In February 2009, a remote code execution vulnerability
was discovered in Adobe Acrobat and Adobe Reader [26].
The attack, which is still active on the Internet as of the
time of this writing, exploited an integer overflow error
and was facilitated by a JavaScript heap spray. With-
out making any modifications to NOZZLE, we used De-
tours to instrument the commercially-distributed binary of
Adobe Reader 9.1.0 (acrord32.exe) with NOZZLE. The
instrumentation allowed us to monitor the memory allo-
cations being performed by the embedded JavaScript en-
gine and detect possible spraying attacks. To test whether
NOZZLE would detect this new attack, we embedded the
heap spraying part of the published attack [6], disabling
the JavaScript that caused the integer overflow exploit.

NOZZLE correctly detected this heap spraying attack,
determining that the attack surface of the heap was greater
than 94% by the time the heap spray was finished. No
modifications were made either to the NOZZLE imple-
mentation or the surface area calculation to enable NOZ-
ZLE to detect this attack, which gives us confidence that
NOZZLE is capable of protecting a wide range of soft-
ware, going well beyond just web browsers.



To facilitate overhead measurements, we created a large
document by concatenating six copies of the ECMA 262
standard — a 188-page PDF document [11] — with it-
self. The resulting document was 1,128 pages long and
took 4,207 kilobytes of disk space. We added scripting
code to the document to force Adobe Reader to “scroll”
through this large document, rendering every page se-
quentially. We believe this workload to be representa-
tive of typical Adobe Reader usage, where the user pages
through the document, one page at a time.

We measured the overhead of NOZZLE running in
Adobe Reader on an Intel Core 2 2.4 GHz computer
with 4 GB of memory running Windows Vista SP1. We
measured elapsed time for Adobe Reader with and with-
out NOZZLE on a lightly loaded computer and averaged
five measurements with little observed variation. With-
out NOZZLE, Adobe Reader took an average of 18.7 sec-
onds to render all the pages, and had a private working
set of 18,772 kilobytes as measured with the Windows
Task Manager. With a sampling rate set to 10% and mul-
tiprocessor scanning disabled, Adobe Reader with NOZ-
ZLE took an average of 20.2 seconds to render the pages,
an average CPU overhead of 8%. The working set of
Adobe Reader with NOZZLE average 31,849 kilobytes,
an average memory overhead of 69%. While the mem-
ory overhead is high, as mentioned, we anticipate that this
overhead could easily be reduced by integrating NOZZLE
more closely with the underlying memory manager.

6 Limitations of NOZZLE

This section discusses assumptions and limitations of the
current version of NOZZLE. In summary, assuming that
the attackers are fully aware of the NOZZLE internals,
there are a number of ways to evade its detection.

• As NOZZLE scans objects at specific times, an
attacker could determine that an object has been
scanned and arrange to put malicious content into the
object only after it has been scanned (a TOCTTOU
vulnerability).

• As NOZZLE currently starts scanning each object at
offset zero, attackers can avoid detection by writing
the first few bytes of the malicious object with a se-
ries of uninterpretable opcodes.

• Since NOZZLE relies on the use of a threshold for
detection, attackers can populate the heap with fewer
malicious objects to stay just under the detection
threshold.

• Attackers can find ways to inject the heap with sprays
that do not require large NOP sleds. For example,
sprays with jump targets that are at fixed offsets in
every sprayed page of memory are possible [39].

• Attackers can confuse NOZZLE’s surface area mea-
surement by designing attacks that embed multiple
shellcodes within the same object or contain cross-
object jumps.

Below we discuss these issues, their implications, and
possible ways to address them.

6.1 Time-of-check to Time-of-use
Because NOZZLE examines object contents only at spe-
cific times, this leads to a potential time-of-check to time-
of-use (TOCTTOU) vulnerability. An attacker aware that
NOZZLE was being used could allocate a benign object,
wait until NOZZLE scans it, and then rapidly change the
object into a malicious one before executing the attack.

With JavaScript-based attacks, since JavaScript
Strings are immutable, this is generally only possible
using JavaScript Arrays. Further, because NOZZLE
may not know when objects are completely initialized, it
may scan them prematurely, creating another TOCTTOU
window. To address this issue, NOZZLE scans objects
once they mature on the assumption that most objects
are written once when initialized, soon after they are
allocated. In the future, we intend to investigate other
ways to reduce this vulnerability, including periodically
rescanning objects. Rescans could be triggered when
NOZZLE observes a significant number of heap stores,
perhaps by reading hardware performance counters.

Moreover, in the case of a garbage-collected language
such as JavaScript or Java, NOZZLE can be integrated di-
rectly with the garbage collector. In this case, changes
observed via GC write barriers [29] may be used to trig-
ger NOZZLE scanning.

6.2 Interpretation Start Offset
In our discussion so far, we have interpreted the contents
of objects as instructions starting at offset zero in the ob-
ject, which allows NOZZLE to detect the current genera-
tion of heap-spraying exploits. However, if attackers are
aware that NOZZLE is being used, they could arrange to
fool NOZZLE by inserting junk bytes at the start of ob-
jects. There are several reasons that such techniques will
not be as successful as one might think. To counter the
most simplistic such attack, if there are invalid or illegal
instructions at the beginning of the object, NOZZLE skips
bytes until it finds the first valid instruction.

Note that while it may seem that the attacker has much
flexibility to engineer the offset of the start of the mali-
cious code, the attacker is constrained in several important
ways. First, we know that it is likely that the attacker is
trying to maximize the probability that the attack will suc-
ceed. Second, recall that the attacker has to corrupt a con-
trol transfer but does not know the specific address in an



object where the jump will land. If the jump lands on an
invalid or illegal instruction, then the attack will fail. As a
result, the attacker may seek to make a control transfer to
every address in the malicious object result in an exploit.
If this is the case, then NOZZLE will correctly detect the
malicious code. Finally, if the attacker knows that NOZ-
ZLE will start interpreting the data as instructions starting
at a particular offset, then the attacker might intentionally
construct the sled in such a way that the induced instruc-
tions starting at one offset look benign, while the induced
instructions starting at a different offset are malicious. For
example, the simplist form of this kind of attack would
have uniform 4-byte benign instructions starting at byte
offset 0 and uniform malicious 4-byte instructions start-
ing at byte offset 2. Note also that these overlapped se-
quences cannot share any instruction boundaries because
if they did, then processing instructions starting at the be-
nign offset would eventually discover malicious instruc-
tions at the point where the two sequences merged.

While the current version of NOZZLE does not address
this specific simple case, NOZZLE could be modified to
handle it by generating multiple control flow graphs at
multiple starting offsets. Furthermore, because x86 in-
structions are typically short, most induced instruction se-
quences starting at different offsets do not have many pos-
sible interpretations before they share a common instruc-
tion boundary and merge. While it is theoretically possi-
ble for a determined attacker to create a non-regular, non-
overlapping sequence of benign and malicious instruc-
tions, it is not obvious that the malicious sequence could
not be discovered by performing object scans at a small
number of offsets into the object. We leave an analysis of
such techniques for future work.

6.3 Threshold Setting

The success of heap spraying is directly proportional to
the density of dangerous objects in the program heap,
which is approximated by NOZZLE’s normalized attack
surface metric. Increasing the number of sprayed mali-
cious objects increases the attacker’s likelihood of suc-
cess, but at the same time, more sprayed objects will in-
crease the likelihood that NOZZLE will detect the attack.
What is worse for the attacker, failing attacks often re-
sult in program crashes. In the browser context, these
are recorded on the user’s machine and sent to browser
vendors using a crash agent such as Mozilla Crash report-
ing [24] for per-site bucketing and analysis.

What is interesting about attacks against browsers is
that from a purely financial standpoint, the attacker has
a strong incentive to produce exploits with a high likeli-
hood of success. Indeed, assuming the attacker is the one
discovering the vulnerability such as a dangling pointer
or buffer overrun enabling the heap-spraying attack, they

can sell their finding directly to the browser maker. For
instance, the Mozilla Foundation, the makers of Firefox,
offers a cash reward of $500 for every exploitable vulner-
ability [25]. This represents a conservative estimate of the
financial value of such an exploit, given that Mozilla is
a non-profit and commercial browser makes are likely to
pay more [15]. A key realization is that in many cases
heap spraying is used for direct financial gain. A typical
way to monetize a heap-spraying attack is to take over a
number of unsuspecting users’ computers and have them
join a botnet. A large-scale botnet can be sold on the black
market to be used for spamming or DDOS attacks.

According to some reports, to cost of a large-scale bot-
net is about $.10 per machine [40, 18]. So, to break even,
the attacker has to take over at least 5,000 computers. For
a success rate α, in addition to 5,000 successfully com-
promised machines, there are 5, 000 × (1 − α)/α failed
attacks. Even a success rate as high as 90%, the attack
campaign will produce failures for 555 users. Assuming
these result in crashes reported by the crash agent, this
many reports from a single web site may attract atten-
tion of the browser maker. For a success rate of 50%,
the browser make is likely to receive 5,000 crash reports,
which should lead to rapid detection of the exploit!

As discussed in Section 5, in practice we use the rela-
tive threshold of 50% with Nozzle. We do not believe that
a much lower success rate is financially viable from the
standpoint of the attacker.

6.4 Targeted Jumps into Pages
One approach to circumventing NOZZLE detection is
for the attacker to eliminate the large NOP sled that
heap sprays typically use. This may be accomplished
by allocating page-size chunks of memory (or multiples
thereof) and placing the shellcode at fixed offsets on every
page [39]. While our spraying detection technique cur-
rently will not discover such attacks, it is possible that the
presence of possible shellcode at fixed offsets on a large
number of user-allocated pages can be detected by extend-
ing NOZZLE, which we will consider in future work.

6.5 Confusing Control Flow Patterns
NOZZLE attempts to find basic blocks that act as sinks
for random jumps into objects. One approach that will
confuse NOZZLE is to include a large number of copies
of shellcode in an object such that no one of them has a
high surface area. Such an approach would still require
that a high percentage of random jumps into objects result
in non-terminating control flow, which might also be used
as a trigger for our detector.

Even more problematic is an attack where the attacker
includes inter-object jumps, under the assumption that,



probabilistically, there will be a high density of malicious
objects and hence jumps outside of the current object will
still land in another malicious object. NOZZLE currently
assumes that jumps outside of the current object will re-
sult in termination. We anticipate that our control flow
analysis can be augmented to detect groupings of objects
with possible inter-object control flow, but we leave this
problem for future work.

6.6 Summary
In summary, there are a number of ways that clever at-
tackers can defeat NOZZLE’s current analysis techniques.
Nevertheless, we consider NOZZLE an important first step
to detecting heap spraying attacks and we believe that im-
provements to our techniques are possible and will be im-
plemented, just as attackers will implement some of the
possible exploits described above.

The argument for using NOZZLE, despite the fact that
hackers will find ways to confound it, is the same rea-
son that virus scanners are installed almost ubiquitously
on computer systems today: it will detect and prevent
many known attacks, and as new forms of attacks de-
velop, there are ways to improve its defenses as well. Ul-
timately, NOZZLE, just like existing virus detectors, is just
one layer of a defense in depth.

7 Related Work
This section discusses exploit detection and memory at-
tack prevention.

7.1 Exploit Detection
As discussed, a code injection exploit consists of at least
two parts: the NOP sled and shellcode. Detection tech-
niques target either or both of these parts. Signature-based
techniques, such as Snort [33], use pattern matching, in-
cluding possibly regular expressions, to identify attacks
that match known attacks in their database. A disadvan-
tage of this approach is that it will fail to detect attacks that
are not already in the database. Furthermore, polymorphic
malware potentially vary its shellcode on every infection
attempt, reducing the effectiveness of pattern-based tech-
niques. Statistical techniques, such as Polygraph [27], ad-
dress this problem by using improbable properties of the
shellcode to identify an attack.

The work most closely related to NOZZLE is Abstract
Payload Execution (APE), by Toth and Kruegel [43], and
STRIDE, by Akritidis et al. [4, 30], both of which present
methods for NOP sled detection in network traffic. APE
examines sequences of bytes using a technique they call
abstract execution where the bytes are considered valid

and correct if they represent processor instructions with
legal memory operands. APE identifies sleds by comput-
ing the execution length of valid and correct sequences,
distinguishing attacks by identifying sufficiently long se-
quences.

The authors of STRIDE observe that by employing
jumps, NOP sleds can be effective even with relatively
short valid and correct sequences. To address this prob-
lem, they consider all possible subsequences of length n,
and detect an attack only when all such subsequences are
considered valid. They demonstrate that STRIDE handles
attacks that APE does not, showing also that tested over a
large corpus or URIs, their method has an extremely low
false positive rate. One weakness of this approach, ac-
knowledged by the authors is that “...a worm writer could
blind STRIDE by adding invalid instruction sequences at
suitable locations...” ([30], p. 105).

NOZZLE also identifies NOP sleds, but it does so in
ways that go beyond previous work. First, prior work
has not considered the specific problem of sled detection
in heap objects or the general problem of heap spraying,
which we do. Our results show that applying previous
techniques to heap object results in high false positive
rates. Second, because we target heap spraying specifi-
cally, our technique leverages properties of the entire heap
and not just individual objects. Finally, we introduce the
concept of surface area as a method for prioritizing the
potential threat of an object, thus addressing the STRIDE
weakness mentioned above.

7.2 Memory Attack Prevention

While NOZZLE focuses on detecting heap spraying based
on object and heap properties, other techniques take dif-
ferent approaches. Recall that heap spraying requires an
additional memory corruption exploit, and one method of
preventing a heap-spraying attack is to ignore the spray
altogether and prevent or detect the initial corruption er-
ror. Techniques such as control flow integrity [1], write
integrity testing [3], data flow integrity [9], and program
shepherding [17] take this approach. Detecting all such
possible exploits is difficult and, while these techniques
are promising, their overhead has currently prevented
their widespread use.

Some existing operating systems also support mech-
anisms, such as Data Execution Prevention (DEP) [21],
which prevent a process from executing code on specific
pages in its address space. Implemented in either soft-
ware or hardware (via the no-execute or “NX” bit), exe-
cution protection can be applied to vulnerable parts of an
address space, including the stack and heap. With DEP
turned on, code injections in the heap cannot execute.

While DEP will prevent many attacks, we believe that
NOZZLE is complementary to DEP for the following rea-



sons. First, security benefits from defense-in-depth. For
example, attacks that first turn off DEP have been pub-
lished, thereby circumventing its protection [37]. Second,
compatibility issues can prevent DEP from being used.
Despite the presence of NX hardware and DEP in modern
operating systems, existing commercial browsers, such as
Internet Explorer 7, still ship with DEP disabled by de-
fault [13]. Third, runtime systems that perform just-in-
time (JIT) compilation may allocate JITed code in the
heap, requiring the heap to be executable. Finally, code
injection spraying attacks have recently been reported in
areas other than the heap where DEP cannot be used.
Sotirov and Dowd describe spraying attacks that introduce
exploit code into a process address space via embedded
.NET User Controls [42]. The attack, which is disguised
as one or more .NET managed code fragments, is loaded
in the process text segment, preventing the use of DEP.
In future work, we intend to show that NOZZLE can be
effective in detecting such attacks as well.

8 Conclusions

We have presented NOZZLE, a runtime system for detect-
ing and preventing heap-spraying security attacks. Heap
spraying has the property that the actions taken by the at-
tacker in the spraying part of the attack are legal and type
safe, allowing such attacks to be initiated in JavaScript,
Java, or C#. Attacks using heap spraying are on the rise
because security mitigations have reduced the effective-
ness of previous stack and heap-based approaches.

NOZZLE is the first system specifically targeted at de-
tecting and preventing heap-spraying attacks. NOZZLE
uses lightweight runtime interpretation to identify specific
suspicious objects in the heap and maintains a global heap
health metric to achieve low false positive and false neg-
ative rates, as measured using 12 published heap spray-
ing attacks, 2,000 synthetic malicious exploits, and 150
highly-visited benign web sites. We show that with sam-
pling, the performance overhead of NOZZLE can be re-
duced to 7%, while maintaining low false positive and
false negative rates. Similar overheads are observed when
NOZZLE is applied to Adobe Acrobat Reader, a recent
target of heap spraying attacks. The fact that NOZZLE
was able to thwart a real published exploit when applied
to the Adobe Reader binary, without requiring any modi-
fications to our instrumentation techniques, demonstrates
the generality of our approach.

While we have focused our experimental evaluation on
heap-spraying attacks exclusively, we believe that the our
techniques are more general. In particular, in future work,
we intend to investigate using our approach to detect a
variety of exploits that use code masquarading as data,
such as images, compiled bytecode, etc. [42].

In the future, we intend to further improve the selectiv-
ity of the NOZZLE local detector, demonstrate NOZZLE’s
effectiveness for attacks beyond heap spraying, and fur-
ther tune NOZZLE’s performance. Because heap-spraying
attacks can be initiated in type-safe languages, we would
like to evaluate the cost and effectiveness of incorpo-
rating NOZZLE in a garbage-collected runtime. We are
also interested in extending NOZZLE from detecting heap-
spraying attacks to tolerating them as well.
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