
The Security Architecture of the Chromium Browser

Adam Barth∗

UC Berkeley
Collin Jackson∗

Stanford University

Charles Reis∗

University of Washington
Google Chrome Team

Google Inc.

ABSTRACT
Most current web browsers employ a monolithic architec-
ture that combines “the user” and “the web” into a single
protection domain. An attacker who exploits an arbitrary
code execution vulnerability in such a browser can steal sen-
sitive files or install malware. In this paper, we present the
security architecture of Chromium, the open-source browser
upon which Google Chrome is built. Chromium has two
modules in separate protection domains: a browser kernel,
which interacts with the operating system, and a rendering
engine, which runs with restricted privileges in a sandbox.
This architecture helps mitigate high-severity attacks with-
out sacrificing compatibility with existing web sites. We
define a threat model for browser exploits and evaluate how
the architecture would have mitigated past vulnerabilities.

1. INTRODUCTION
In the past several years, the web has evolved to be-

come a viable platform for applications. However, most
web browsers still use the original monolithic architecture
introduced by NCSA Mosaic in 1993. A monolithic browser
architecture has many limitations for web applications with
substantial client-side code. For example, a crash caused
by one web application takes down the user’s entire web
experience instead of just the web application that misbe-
haved [21]. From a security point of view, monolithic web
browsers run in a single protection domain, allowing an at-
tacker who can exploit an unpatched vulnerability to com-
promise the entire browser instance and often run arbitrary
code on the user’s machine with the user’s privileges.

In this paper, we present and evaluate the security ar-
chitecture of Chromium, the open-source web browser upon
which Google Chrome is built. Chromium uses a modular
architecture, akin to privilege separation in SSHD [18]. The
browser kernel module acts on behalf of the user, while the
rendering engine module acts on behalf of “the web.” These
modules run in separate protection domains, enforced by a
sandbox that reduces the privileges of the rendering engine.
Even if an attacker can exploit an unpatched vulnerability in
the rendering engine, obtaining the privileges of the entire
rendering engine, the sandbox helps prevent the attacker
from reading or writing the user’s file system because the
web principal does not have that privilege.

∗The authors conducted this work while employed by Google.

.

There have been a number of research proposals for mod-
ular browser architectures [8, 27, 5, 7] that contain multiple
protection domains. Like Chromium’s architecture, these
proposals aim to provide security against an attacker who
can exploit an unpatched vulnerability. Unlike Chromium’s
architecture, these proposals trade off compatibility with ex-
isting web sites to provide architectural isolation between
web sites or even individual pages. The browser’s secu-
rity policy, known as the “same-origin policy,” is complex
and can make such fine-grained isolation difficult to achieve
without disrupting existing sites. Users, however, demand
compatibility because a web browser is only as useful as the
sites that it can render. To be successful, a modular browser
architecture must support the entire web platform in addi-
tion to improving security.

Chromium’s architecture allocates the various components
of a modern browser between the browser kernel and the
rendering engine, balancing security, compatibility, and per-
formance. The architecture allocates high-risk components,
such as the HTML parser, the JavaScript virtual machine,
and the Document Object Model (DOM), to its sandboxed
rendering engine. These components are complex and his-
torically have been the source of security vulnerabilities.
Running these components in a sandbox helps reduce the
severity of unpatched vulnerabilities in their implementa-
tion. The browser kernel is responsible for managing persis-
tent resources, such as cookies and the password database,
and for interacting with the operating system to receive user
input, draw to the screen, and access the network. The ar-
chitecture is based on two design decisions:

1. The architecture must be compatible with the existing
web. Specifically, the security restrictions imposed by
the architecture should be transparent to web sites.
This design decision greatly limits the landscape of
possible architectures but is essential in order for Chro-
mium to be useful as a web browser. For example, the
architecture must support uploading files to web sites
in order to be compatible with web-based email sites
that let users add attachments to emails.

2. The architecture treats the rendering engine as a black
box that takes unparsed HTML as input and produces
rendered bitmaps as output (see Figure 1). In par-
ticular, the architecture relies on the rendering engine
alone to implement the same-origin policy. This design
decision reduces the complexity of the browser kernel’s
security monitor because the browser kernel need only
enforce coarse-grained security restrictions. For exam-
ple, the browser kernel grants the ability to upload a

1

file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been affected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insufficient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
difficult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering
Engine

IPC

Browser Kernel

Rendered BitmapHTML, JS, ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how effectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are sufficient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving traffic via advertising. It is difficult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].

2

3. The attacker knows, and is able to exploit, an un-
patched arbitrary code execution vulnerability in the
user’s web browser. For example, the attacker might
know of an unpatched buffer overflow in the browser’s
HTML parser [17], an integer overflow in the regu-
lar expression library [14], or a buffer overflow in the
bookmarks system [15].

In-Scope Goals. Chromium’s architecture focuses on pre-
venting the attacker from achieving three high-value goals:

• Persistent Malware. The attacker attempts to in-
stall malicious software on the user’s computer. For
example, the attacker might attempt to install a bot-
net client [6] that receives commands over the net-
work and participates in coordinated attacks on the
user or on network targets. In particular, the attacker
attempts to install persistent malicious software that
survives the user closing his or her browser.

• Transient Keylogger. The attacker attempts to mon-
itor the user’s keystrokes when the user interacts with
another program. Such system-wide keyloggers are of-
ten used to steal user passwords, credit card numbers,
and other sensitive information. To achieve this goal,
the attacker’s keylogger need not survive the user clos-
ing the browser.

• File Theft. The attacker attempts to read sensitive
files on the user’s hard drive. For example, the attacker
might attempt to read the system’s password database
or the user’s financial records. File theft is an impor-
tant concern for enterprise users whose machines often
contain large amounts of confidential information.

If an attacker is able to achieve one or more of these goals,
he or she has the ability to cause serious harm to the user.
For example, an attacker who is able to install malware is no
longer constrained by the browser’s security policy and often
said to “own” the user’s machine. Chromium’s architecture
aims to prevent an attacker with the above abilities from
achieving these goals.

Out-of-Scope Goals. There are a number of other at-
tacker goals for which Chromium’s architecture does not
provide additional protection. Chromium includes features
that help defend against these threats, but these features
rely on the rendering engine to enforce the same-origin pol-
icy.

• Phishing. In a phishing attack, the attacker tricks
the user into confusing a dishonest web site with an
honest web site. The confused user supplies his or her
password to the dishonest web site, who can then im-
personate the user at the honest web site. An attacker
who exploits an unpatched vulnerability can create a
convincing phishing site by corrupting a window dis-
playing the honest site.

Chromium has a number of security features to help
mitigate phishing attacks. For example, the browser’s
location bar highlights the web site’s domain name,
aiding users in determining whether they are viewing
an honest or a dishonest web site. The browser also
black-lists known phishing sites, showing a full-page

warning if the user visits a known phishing site. Addi-
tionally, the browser displays additional security user
interface elements if the site has an extended valida-
tion certificate. Many of these security features can
be found in other browsers and are orthogonal to the
design of Chromium’s architecture.

• Origin Isolation. Chromium’s architecture treats
the rendering engine as representing the entire web
principal, meaning an attacker who compromises the
rendering engine can act on behalf of any web site. For
example, an attacker who exploits an arbitrary code
execution vulnerability can obtain the cookies for ev-
ery web site and can read all the passwords stored in
the browser’s password database. If the attacker is not
able to exploit an unpatched vulnerability, the usual
browser security policy prevents the attacker from read-
ing cookies or passwords from host names that are not
under his or her control.

• Firewall Circumvention. The same-origin policy is
designed to restrict an attacker’s network access from
within the browser [9]. These restrictions are intended
to protect confidential resources behind organizational
firewalls. However, an attacker who exploits an un-
patched vulnerability can bypass these restrictions and
can read HTTP responses from internal servers by
making use of the browser’s URL requesting facilities.
The ability to request arbitrary web URLs follows the
compatibility and black-box design decisions in order
to support stylesheets and image tags.

• Web Site Vulnerabilities. Chromium’s architec-
ture does not protect an honest web site if the site
contains cross-site scripting (XSS), cross-site request
forgery (CSRF), or header injection vulnerabilities. To
be secure against web attackers, these sites must repair
their vulnerabilities. Chromium supports HttpOnly

cookies [12], which can be used as a partial mitigation
for XSS.

3. CHROMIUM’S ARCHITECTURE
Chromium’s architecture has two modules: a rendering

engine and a browser kernel. At a high level, the render-
ing engine is responsible for converting HTTP responses
and user input events into rendered bitmaps, whereas the
browser kernel is responsible for interacting with the oper-
ating system. The browser kernel exposes an API that the
rendering engine uses to issue network requests, access per-
sistent storage, and display bitmaps on the user’s screen.
The browser kernel is trusted to act as the user, whereas
the rendering engine is trusted only to act as the web.

• Rendering Engine. The rendering engine interprets
and executes web content by providing default behav-
iors (for example, drawing <input> elements) and by
servicing calls to the DOM API. Rendering web con-
tent proceeds in several stages, beginning with parsing,
building an in-memory representation of the DOM,
laying out the document graphically, and manipulat-
ing the document in response to script instructions.
The rendering engine is also responsible for enforcing
the same-origin policy, which helps prevent malicious
web sites from disrupting the user’s session with hon-
est web sites.

3

Rendering Engine Browser Kernel
HTML parsing Cookie database

CSS parsing History database
Image decoding Password database

JavaScript interpreter Window management
Regular expressions Location bar

Layout Safe Browsing blacklist
Document Object Model Network stack

Rendering SSL/TLS
SVG Disk cache

XML parsing Download manager
XSLT Clipboard

Both
URL parsing

Unicode parsing

Table 1: The assignment of tasks between the ren-
dering engine and the browser kernel.

The rendering engine contains the bulk of the browser’s
complexity and interacts most directly with untrusted
web content. For example, most parsing occurs in the
rendering engine, including HTML parsing, image de-
coding, and JavaScript parsing. These components are
complex and have a history of security vulnerabilities
(see Section 6). To interact with the user, the local
machine, or the network, the rendering engine uses
the browser kernel API. The rendering engine runs in
a sandbox that restricts access to the operating system
(see Section 4).

• Browser Kernel. The browser kernel is responsi-
ble for managing multiple instances of the rendering
engine and for implementing the browser kernel API
(see Section 5). For example, the browser kernel imple-
ments a tab-based windowing system, including a loca-
tion bar that displays the URL of the currently active
tab its associated security indicators. The browser ker-
nel manages persistent state, such as the user’s book-
marks, cookies, and saved passwords. It is also re-
sponsible for interacting with the network and inter-
mediating between the rendering engine and the op-
erating system’s native window manager. To imple-
ment its API, the browser kernel maintains state in-
formation about the privileges it has granted to each
rendering engine, such as a list of which files each ren-
dering engine is permitted to upload. The browser
kernel uses this state to implement a security policy
that constrains how a compromised rendering engine
can interact with the user’s operating system.

The assignment of browser components to modules is driven
by security, compatibility, and performance, but some as-
signments are due to historical artifacts. For example, the
browser kernel is responsible for displaying JavaScript alert
dialog boxes, whereas <select> drop-down menus are dis-
played by the rendering engine. Some features, such as the
cookie database, are implemented by the browser kernel be-
cause of its direct access to the file system. Other features,
such as regular expressions, are implemented by the render-
ing engine because they are performance-sensitive and have
often been the source of security vulnerabilities [22].

As shown in Table 1, the rendering engine is responsible
for most parsing and decoding tasks because, historically,
these tasks have been the source of a large number of browser
vulnerabilities. For example, to display a web site’s short-
cut icon in the browser’s user interface, the browser kernel
retrieves the image from the network but does not attempt
to decode it. Instead, the browser kernel sends the image
to the rendering engine for decoding. The rendering engine
responds with an uncompressed bitmap of the icon, which
the browser kernel then copies to the screen. This seem-
ingly convoluted series of steps helps prevent an attacker
who knows an unpatched vulnerability in the image decoder
from taking control of the browser kernel.

One exception to this pattern is the network stack. The
HTTP stack is responsible for parsing HTTP response head-
ers and invoking a gzip or bzip2 decoder to decompress
HTTP responses with these Content-Encodings. These tasks
could be allocated to the rendering engine, at the cost of
complicating the network stack and lowering performance.
As another example, both the browser kernel and the render-
ing engine parse URLs because URL handling is ubiquitous
in a browser.

Process Granularity. Roughly speaking, Chromium uses
a separate instance of the rendering engine for each tab that
displays content from the web, providing fault tolerance in
the case of a rendering engine crash. Chromium also uses
the rendering engine to display some trusted content, such
as the interstitial warnings for HTTPS certificate errors and
phishing sites. However, these rendering tasks are performed
by a separate instance of the rendering engine that does not
handle content obtained from the web. The main exception
to this pattern is the Web Inspector, which displays trusted
content and is rendered by a rendering engine that contains
web content. Chromium uses this design because the Web
Inspector interacts extensively with the page it is inspecting.

Plug-ins. In Chromium’s architecture, each plug-in runs in
a separate host process, outside both the rendering engines
and the browser kernel. In order to maintain compatibility
with existing web sites, browser plug-ins cannot be hosted
inside the rendering engine because plug-in vendors expect
there to be at most one instance of a plug-in for the entire
web browser. If plug-ins were hosted inside the browser
kernel, a plug-in crash would be sufficient to crash the entire
browser.

By default, each plug-in runs outside of the sandbox and
with the user’s full privileges. This setting maintains com-
patibility with existing plug-ins and web sites because plug-
ins can have arbitrary behavior. For example, the Flash
Player plug-in can access the user’s microphone and web-
cam, as well as write to the user’s file system (to update
itself and store Flash cookies). The limitation of this set-
ting is that an attacker can exploit unpatched vulnerabilities
in plug-ins to install malware on the user’s machine.

Vendors could write future versions of plug-ins that oper-
ate within Chromium’s sandbox, to provide greater defense
against plug-in exploits. Chromium also contains an op-
tion to run existing plug-ins inside the sandbox. To do so,
run the browser with the --safe-plugins command line
option. This setting is experimental and might cause in-
stability or unexpected behavior. For example, sandboxed
plug-ins might not be able to update themselves to newer
versions.

4

4. THE SANDBOX
To help defend against an attacker who exploits a vulner-

ability in the rendering engine, Chromium runs each render-
ing engine in a sandbox. This sandbox restricts the rendering
engine’s process from issuing some system calls that could
help the attacker reach the goals from Section 2.

Goals. Ideally, the sandbox would force the rendering en-
gine to use the browser kernel API to interact with the out-
side world. Many DOM methods, such as appendChild,
simply mutate state within the rendering engine and can
be implemented entirely within the rendering engine. Other
DOM methods, such as XMLHttpRequest’s send method, re-
quire that the rendering engine do more than just manipu-
late internal state. An honest rendering engine can use the
browser kernel interface to implement these methods. The
goal of the sandbox is to require even a compromised ren-
dering engine to use the browser kernel interface to interact
with the file system.

Implementation. Currently, Chromium relies on Windows-
specific features to sandbox the rendering engine. Instead of
running with the user’s Windows security token, the render-
ing engine runs with a restricted security token. Whenever
the rendering engine attempts to access a “securable ob-
ject,” the Windows Security Manager checks whether the
rendering engine’s security token has sufficient privileges to
access the object. The sandbox restricts the rendering en-
gine’s security token in such a way that the token fails almost
every such security check.

Before rendering web content, the rendering engine ad-
justs the security token of its process by converting its se-
curity identifiers (SIDs) to “DENY_ONLY,” adding a restricted
SID, and calling the AdjustTokenPrivileges function. The
rendering engine also runs on a separate desktop, mitigat-
ing the lax security checking of some Windows APIs, such
as SetWindowsHookEx, and limiting the usefulness of some
unsecured objects, such as HWND_BROADCAST, whose scope is
limited to the current desktop. Additionally, the rendering
engine runs in a Windows Job Object, restricting the ren-
dering engine’s ability to create new processes, read or write
to the clipboard, or access USER handles. Other researchers
have advocated similar approaches [10]. For further details
about the Chromium sandbox, see the design document [4].

Limitations. Although the sandbox restricts the ability of
a compromised rendering engine to interact with the oper-
ating system, the sandbox has some limitations:

• FAT32. The FAT32 file system does not support ac-
cess control lists. Without access control lists, the
Windows security manager ignores a process’s secu-
rity token when granting access to a FAT32 file. The
FAT32 file system is rarely used on modern hard drives
but is used on many USB thumb drives. For example,
if a user mounts a USB thumb drive that uses FAT32,
a compromised rendering engine can read and write
the contents of the drive.

• Misconfigured Objects. If an object has a NULL
discretionary access control list (DACL), the Windows
security manager will grant access without considering
the accessing security token. Although NULL DACLs
are uncommon, some third-party applications create
objects with NULL DACLs. On the NTFS file system,

this limitation is largely mitigated because the sand-
box removes the privilege to “bypass traverse check-
ing,” forcing Windows to check that the rendering en-
gine has access to the target file’s parent directories.

• TCP/IP. Theoretically, the rendering engine could
create a TCP/IP socket on Windows XP because the
low-level system calls to open a socket do not appear
to require OS handles or to perform access checks. In
practice, though, the usual Win32 library calls for cre-
ating a socket fail, because those APIs require handles
which the rendering engine is unable to obtain. We
have attempted to build a proof-of-concept but are as
yet unable to open a socket from within a sandboxed
process. On Windows Vista, the relevant system calls
perform access checks based on the current security
token.

5. THE BROWSER KERNEL INTERFACE
The sandbox restricts the rendering engine’s ability to in-

teract directly with the underlying operating system. To ac-
cess operating system functionality, such as user interaction,
persistent storage, and networking, the rendering engine re-
lies on the browser kernel API. In providing functionality to
the rendering engine, the browser kernel must be carefully
designed not to grant more privileges than are necessary. In
particular, the browser kernel interface is designed not to
leak the ability to read or write the user’s file system.

User Interaction. Commodity operating systems expose
an interface that lets applications interact with the user,
but these interfaces are often not designed to be used by
untrusted applications. For example, in the X Window Sys-
tem, the ability to create a window on an X server also
implies the ability to monitor all of the user’s keystrokes [2].
The browser kernel mediates the rendering engine’s interac-
tion with the user to help enforce two security constraints:

• Rendering. Instead of granting the rendering engine
direct access to a window handle, the rendering engine
draws into an off-screen bitmap. To display the bitmap
to the user, the rendering engine sends the bitmap to
the browser kernel, and the browser kernel copies the
bitmap to the screen. This design adds a single video
memory to video memory copy to the usual drawing
pipeline, which has a similarly small performance im-
pact to double buffering, and clips the rendered bitmap
to the browser window’s content area.1

• User Input. Instead of delivering user input events
directly to the rendering engine, the operating sys-
tem delivers these events to the browser kernel. The
browser kernel dispatches these events according to the
currently focused user interface element. If focus re-
sides in the browser chrome, the input events are han-
dled internally by the browser kernel. If the content
area has focus, the browser kernel forwards the input
events to the rendering engine. This design leverages
the user’s intent (which interface element is in focus)
to restrict which user input events can be observed by
a compromised rendering engine.

1In the initial beta release of Google Chrome, the browser
kernel also exposes an API for drawing menus for the
<select> element that can be used to draw over arbitrary
regions of the screen.

5

Persistent Storage. The sandbox is responsible for en-
suring that the rendering engine cannot access the user’s
file system directly. However, the rendering engine does re-
quire some access to the user’s file system to upload and
download files.

• Uploads. Users can upload files to web sites using the
file upload control. When the user clicks the form con-
trol, the browser displays a file picker dialog that lets
the user select a file to upload. If the browser kernel
did not restrict which files the rendering engine could
upload, an attacker who compromised the rendering
engine could read an arbitrary file on the user’s file
system by uploading the file to attacker.com.

Instead of confirming each file upload with a dialog
box, Chromium uses a design similar to the DarpaBrowser’s
“powerbox” pattern [27], treating the user’s selection
of a file with a file picker dialog as an authorization to
upload the file to an arbitrary web site. The browser
kernel is responsible for displaying the file picker di-
alog and records which files the user has authorized
for which instances of the rendering engine. Similarly,
dragging and dropping a file onto the browser’s content
area grants the active rendering engine the permission
to upload that file. These authorizations last for the
lifetime of the rendering engine, which is often shorter
than the lifetime of the entire browser because new in-
stances of the rendering engine are created as the user
opens and closes tabs.

• Downloads. When downloading a file, a web site is
permitted to write to the user’s file system. Rather
than writing to the file system directly, the render-
ing engine uses the browser kernel API to download
URLs. Left unchecked, a compromised rendering en-
gine could abuse this API to compromise the integrity
of the user’s file system. To help protect the file sys-
tem, the browser kernel directs downloads to a desig-
nated download directory. Additionally, the browser
kernel blacklists certain kinds of file names that the
rendering engine could use to elevate its privileges,
including reserved device names [13], file names with
.local extensions [11], and shell-integrated file names,
such as Desktop.ini.

Networking. Rather than accessing the network directly,
the rendering engine retrieves URLs from the network via
the browser kernel. Before servicing a URL request, the
browser kernel checks whether the rendering engine is au-
thorized to request the URL. Web URL schemes, like http,
https, and ftp, can be requested by every instance of the
rendering engine. However, the browser kernel prevents
most rendering engines from requesting URLs with the file

scheme, because a compromised rendering engine could read
the user’s hard drive by requesting various file URLs. Chro-
mium is able to render HTML documents stored in the local
file system if requested by the user (for example, by typing
a file URL in the address bar). However, these documents
are rendered in a dedicated rendering engine.

6. SECURITY EVALUATION
It is difficult to evaluate the security of a system empir-

ically because determining whether a system is secure re-

Browser Renderer Unclassified
Internet Explorer 4 10 5

Firefox 17 40 3
Safari 12 37 1

Table 2: Total Number of Browser CVEs by Chro-
mium Module

quires considering all possible attacks. Instead of reason-
ing about all possible attacks, we examine recent security
vulnerabilities in web browsers and evaluate whether those
vulnerabilities, if they had existed in Chromium, would have
allowed attackers to achieve the goals listed in Section 2. Af-
ter analyzing vulnerabilities statistically, we present a case
study of one vulnerability and explain how it was mitigated
by Chromium’s architecture.

6.1 Browser CVE Analysis
To evaluate the extent to which Chromium’s architecture

protects users from security vulnerabilities, we analyze all
browser security vulnerabilities that were patched between
July 1, 2007 and July 1, 2008 for Internet Explorer, Firefox,
and Safari. We classify each vulnerability, identified by its
Common Vulnerabilities and Exposure (CVE) identifier, by
what an attacker could gain by exploiting the vulnerabil-
ity and by which module in Chromium’s architecture would
have contained the vulnerability had the vulnerability been
present in an implementation of the architecture.

During this period, Internet Explorer patched 19 vulnera-
bilities, Firefox patched 60 vulnerabilities, and Safari patched
50 vulnerabilities. These counts cannot be compared di-
rectly because each browser has its own methodology for
reporting bugs. For example, most security updates to Fire-
fox contain one or two CVEs for “crashes with evidence of
memory corruption,” but these CVEs often represent 20 or
30 separate bugs (i.e., internal “Bugzilla” IDs). Also, closed
source browser vendors are not required to obtain CVEs for
vulnerabilities that are discovered internally [24].

Complexity. First, we classify each browser vulnerability
by module (see Table 2). We use the relative number of
vulnerabilities for each module as a rough estimate of the
relative complexity of that module. If a module has had a
greater proportion of vulnerabilities in the past, we assume
that the module is likely to contain a greater proportion
of future vulnerabilities. In almost all cases, the classifica-
tion was self-evident. For example, a vulnerability caused
by memory corruption in the layout engine is assigned to
the rendering engine because layout occurs in the render-
ing engine. We are unable to classify several vulnerabilities,
described below.

• One Internet Explorer CVE [16] did not contain enough
information to determine which module would have
contained the vulnerability. The four remaining un-
classified vulnerabilities are in Internet Explorer’s han-
dling of ActiveX objects.

• We are unable to classify one Firefox vulnerability in
Firefox’s extension interface because Chromium does
not yet contain an extension interface. The remaining
two unclassified vulnerabilities related to email han-
dling, which is not present in Chromium.

6

Browser Renderer Unclassified
Internet Explorer 1 9 5

Firefox 5 19 0
Safari 5 10 0

Table 3: Number of Arbitrary Code Execution
CVEs by Chromium Module

• The unclassified vulnerability in Safari was present in
Safari’s PDF viewer. (Chromium does not contain a
built-in PDF viewer.)

Table 2 reveals that rendering engines account for the great-
est number of disclosed vulnerabilities, suggesting that the
rendering engine is more complex than the browser kernel.
This observation is consistent with the line count heuristic
for code complexity. Chromium’s rendering engine contains
approximately 1,000,000 lines of code (excluding blank lines
and comments), whereas the browser kernel contains ap-
proximately 700,000 lines of code.

Arbitrary Code Execution. Chromium’s security archi-
tecture is designed to mitigate the impact of arbitrary code
execution vulnerabilities in the rendering engine by limiting
the ability of the attacker to issue system calls after com-
promising the rendering engine. Many of the vulnerabilities
considered above are not mitigated by Chromium’s architec-
ture because they do not let an attacker read or write the
user’s file system. For example, one of the Firefox vulnera-
bilities let an attacker learn the URL of the previous page.
While patching these vulnerabilities is important to protect
the user’s privacy (and sensitive information), these vulnera-
bilities are not as severe as vulnerabilities that let web sites
install malicious programs, such as botnet clients [20], on
the user’s machine.

If we restrict our attention to those vulnerabilities that
lead to arbitrary code execution (see Table 3), we find that
the rendering engine contained more arbitrary code execu-
tion vulnerabilities than the browser kernel. (As mentioned
above, the four unclassified Internet Explorer vulnerabilities
were related to ActiveX plug-ins and one contained insuf-
ficient information to determine the module.) Chromium’s
architecture helps mitigate these vulnerabilities by sandbox-
ing the arbitrary code the attacker chooses to execute.

Of the vulnerabilities in the browser kernel that lead to
arbitrary code execution, the majority (8 of 11) of these
vulnerabilities were caused by insufficient validation of in-
puts to system calls and not by buffer overflows or other
memory-safety issues. These vulnerabilities are unlikely to
be mitigated by sandboxing more browser components be-
cause the browser must eventually issue the system calls in
question, suggesting that other techniques are required to
mitigate these issues.

Summary. Although “number of CVEs” is not an ideal se-
curity metric, this data suggests that Chromium’s division
of responsibilities between the browser kernel and the ren-
dering engine places the more complex, vulnerability-prone
code in the sandboxed rendering engine, making it harder
for an attacker to read or write the user’s hard drive by ex-
ploiting a vulnerability. Moreover, most of the remaining
vulnerabilities would not have been mitigated by additional
sandboxing, suggesting that assigning more tasks to the ren-
dering engine would not significantly improve security.

6.2 Case Study: XML External Entities
Another method for evaluating Chromium’s security ar-

chitecture is to determine whether the architecture success-
fully defends against unknown vulnerabilities in the render-
ing engine. In this case study, we examine one vulnerability
in detail and explain how the security architecture mitigated
threats in the scope of our threat model but did not mit-
igate threats that are out of scope. This vulnerability is
“unknown” in the sense that we discovered the vulnerability
after implementing the sandbox and browser kernel security
monitor. The vulnerability was fixed before the initial beta
release, but this section describes the state of affairs just
after we discovered the vulnerability.

XXE. An XML Entity is an escape sequence, such as ©,
that an XML (or an HTML) parser replaces with one or
more characters. In the case of ©, the entity is re-
placed with the copyright symbol, c©. The XML standard
also provides for external entities [3], which are replaced by
the content obtained by retrieving a URL.

In an Xml eXternal Entity (XXE) attack, the attacker’s
XML document, hosted at http://attacker.com/, includes
an external entity from a foreign origin [25]. For example,
the malicious XML document might contain an entity from
https://bank.com/ or from file:///etc/passwd:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE doc [<!ENTITY ent SYSTEM "/etc/passwd">]>

<html>

<head><script> ... </script></head>

<body>&ent;</body>

</html>

If vulnerable to XXE attacks, the browser will retrieve the
content from the foreign origin and incorporate it into the
attacker’s document. The attacker can then read the con-
tent, circumventing a confidentiality goals of the browser’s
security policy.

libXML. Like many browsers, Chromium uses libXML to
parse XML documents. Unlike other browsers, Chromium
delegates parsing tasks, including XML parsing, to a sand-
boxed rendering engine. After implementing the sandbox,
but prior to the initial beta release of Google Chrome, we
became aware that the rendering engine’s use of libXML was
vulnerable to XXE attacks. As a result, the rendering engine
was not preventing web content from retrieving URLs from
foreign origins. Instead, the rendering engine was passing
the requests, unchecked, to the browser kernel.

Using our proof-of-concept exploit, we observed that the
browser kernel performed its usual black-box checks on the
URLs requested by the rendering engine. If the external
entity URL was a web URL, for example with the http,
https, or ftp schemes, the browser kernel serviced the re-
quest, as instructed. However, if the external entity URL
was from the user’s file system, i.e. from the file scheme,
then the browser kernel blocked the request, preventing our
proof-of-concept from reading confidential information, such
as passwords, stored in the user’s file system.

Discussion. The vulnerability illustrates three properties
of Chromium’s security architecture:

1. By parsing web content in the sandboxed rendering en-
gine, Chromium’s security architecture mitigated an
unknown vulnerability. The sandbox helped prevent

7

the attacker from reading confidential information stored
in the user’s file system.

2. The sandbox did not completely defend against the
XXE vulnerability because the attacker was still able
to retrieve URLs from foreign web sites. However,
the security architecture does not aim to prevent an
attacker who exploits a bug in the rendering engine
from requesting web URLs. To block such requests and
treat the rendering engine as a black box, the browser
kernel would need to sacrifice compatibility (e.g., ban
cross-site images).

3. Chromium’s architecture mitigated the XXE vulner-
ability even though the vulnerability did not let an
attacker execute arbitrary code. Although the archi-
tecture is designed to protect against an attacker who
fully compromises a rendering engine, the architecture
also helps mitigate less-severe vulnerabilities that lead
to partial compromises of the rendering engine.

7. RELATED WORK
In this section, we compare Chromium’s architecture to

the architectures of other web browsers.

Monolithic. Traditionally, browsers are implemented with
a monolithic architecture that combines the rendering en-
gine and the browser kernel into a single process image. For
example, Internet Explorer 7, Firefox 3, and Safari 3.1 each
execute in a single operating system protection domain. If
an attacker can exploit an unpatched vulnerability in one
of these browsers, the attacker can gain all the privileges of
the entire browser. In typical configurations of Firefox 3 and
Safari 3.1, these privileges include the full privileges of the
current user. Internet Explorer 7 on Windows Vista can run
in a “protected mode” [23], which runs the browser as a low-
integrity process. Running in protected mode, the browser
is restricted from writing to the user’s file system, but an
attacker exploits a vulnerability can still read the user’s file
system and exfiltrate confidential documents.

The VMware browser appliance [26] hosts Firefox inside
a virtual machine with limited rights. The virtual machine
provides a layer of isolation that helps prevent an attacker
who exploits a vulnerability in the browser from reading
or writing the user’s file system. The protection afforded
by this architecture is coarse-grained in the sense that the
browser is prevented from reading any of the user’s files, even
files the user wishes to upload to web sites (for example, to
a photo-sharing site or to attach to email messages at a
webmail site).

Modular. A number of researchers have proposed other
modular browser architectures and have made different de-
sign decisions. Because of these different decisions, these
architectures have different security properties than Chro-
mium’s architecture.

• SubOS. In SubOS [8], the authors leverage sub-process
isolation features of an experimental operating system
to divide a web browser into multiple modules. In-
stead of implementing the usual same-origin security
policy, SubOS isolates web pages with different URLs,
rendering SubOS incompatible with many web sites.

• DarpaBrowser. The DarpaBrowser [27] uses an ob-
ject capability discipline to grant an untrusted ren-
dering engine a limited set of capabilities necessary to
render a web page. For example, the DarpaBrowser
grants the rendering engine the capability to navigate
to URLs contained in HTML hyperlinks but does not
grant the engine the ability to navigate to any other
URLs. This non-black-box architecture prevents the
DarpaBrowser from being compatible with many web
sites (e.g., those that navigate using JavaScript).

The DarpaBrowser has high goals for security. Its de-
signers seek to render honest web sites in a compro-
mised rendering engine without granting the rendering
engine the capability to exfiltrate confidential informa-
tion found on those web sites. This goal conflicts with
compatibility because the web platform provides many
avenues for exfiltrating data.

• Tahoma. Tahoma [5] runs each “site” in a separate
protection domain, isolated using a virtual machine
monitor. Tahoma defines a site by a manifest file that
enumerates the URLs that the site wishes to be in-
cluded in the same protection domain. Sites run in
separate instances of a rendering engine and are unable
to communicate with each other. The rendering en-
gine includes the vast majority of browser components,
including the cookie store, history database, network
cache, and password database. The browser kernel,
which runs outside the virtual machines, is responsi-
ble only for compositing the rendered output of the
rendering engines onto the user’s screen. The browser
also limits the network connectivity of rendering en-
gines by implementing a reverse proxy that mediates
network requests.

The Tahoma architecture has strong isolation prop-
erties. Tahoma helps prevent an attacker who com-
promises one of the rendering engines from reading or
writing files on the user’s file system. To make use
of these isolation features, a web site operator must
opt-in by publishing a manifest file. After publishing
a manifest, the web site operator need not use a stan-
dard rendering engine and can, instead, run arbitrary
code inside the virtual machine. To help prevent at-
tacker from abusing the privilege, Tahoma asks the
user approve each web site. If the user incorrectly ap-
proves a malicious web site, that web site can steal
confidential documents from within an organizational
firewall or use the user’s machine to send spam e-mail.

The Tahoma architecture makes it difficult to support
some features of the web platform. For example, sup-
porting the file upload control is cumbersome and re-
quires a two-step authorization process. The architec-
ture makes it difficult to implement web features, such
as postMessage, that provide for controlled communi-
cation between web applications.

• OP Browser. Similar to Chromium, the Opus Palla-
dianum (OP) web browser [7] runs multiple instances
of a rendering engine, each in a separate protection do-
main isolated using different trust labels in SE Linux.
Unlike Chromium, the OP browser uses a separate
protection domain for each web page and implements

8

the JavaScript interpretor, the network stack, and the
cookie store in separate modules.

In the OP architecture, the browser kernel is more akin
to a micro-kernel: chiefly responsible for message pass-
ing. This design mitigates unpatched vulnerabilities
but does not support a number of widely used browser
features, such as inter-frame scripting, downloads, and
uploads. For example, the OP browser would not be
compatible with Gmail, which uses of all of these fea-
tures. The OP browser’s sandboxing of plug-ins is also
more restrictive than Chromium’s --safe-plugins op-
tion, imposing a higher compatibility cost. For exam-
ple, OP’s architecture does not support Flash Player’s
cross-domain communication mechanisms (LocalCon-
nection and URLRequest).

Unlike Chromium, the OP web browser’s rendering en-
gine uses X Windows to draw to the user’s screen. Un-
fortunately, the X Windows API is not designed for
security. A compromised rendering engine can snoop
on the user’s keystrokes or disrupt the integrity of the
user’s window environment by drawing to arbitrary re-
gions of the screen. For example, the attacker could
overwrite the browser’s address bar.

Although the OP browser seeks to protect web sites
from each other, an attacker can still exploit rendering
engine vulnerabilities to compromise other sites. For
example, suppose the attacker knows an arbitrary code
execution vulnerability in the browser’s image parser.
If an honest site includes an image from the attacker,
e.g. , the
OP browser decodes this image in the honest site’s se-
curity context. By maliciously crafting the image, the
attacker can exploit this vulnerability and compromise
the honest site’s security context, violating the secu-
rity property checked by their model.

• Internet Explorer 8. Internet Explorer 8 runs tabs
in separate processes, each of which runs in protected
mode. This architecture is designed to improve relia-
bility, performance, and scalability [28]. Because In-
ternet Explorer 8’s protected mode is the same as In-
ternet Explorer 7’s protected mode, it does not provide
any additional security. Unlike Chromium, protected
mode does not seek to protect the confidentiality of
the user’s file system [23].

8. CONCLUSIONS
Chromium’s security architecture divides the browser into

two protection domains, the browser kernel and the render-
ing engine. The sandboxed rendering engine is responsible
for performing many complex, error-prone tasks, such as
parsing HTML and executing JavaScript. As a result, the
architecture helps protect the confidentiality and integrity
of the user’s file system even if an attacker exploits an un-
patched vulnerability in the rendering engine. Our design
decisions differ from those of other proposals for a modular
browser architecture. Being compatible with existing sites
requires that the architecture supports all the features of
the web platform. Treating the rendering engine as a black
box reduces the complexity of the browser kernel’s security
monitor. Minimizes user security decisions avoids constant
security prompts.

One difficulty in evaluating the security of Chromium’s
architecture is that it aims to provide security even if the
implementation has bugs. We cannot simply assume that all
vulnerabilities will arise in the rendering engine because the
browser kernel is also of significant complexity. To estimate
where future vulnerabilities might occur, we survey recent
browser vulnerabilities and find that 67.4% (87 of 129) would
have occurred in the rendering engine had they been present
in Chromium. We also find that the architecture would have
mitigated 70.4% (38 of 54) of the most severe vulnerabilities.

Of the arbitrary code execution vulnerabilities that would
have occurred in the browser kernel, 8 of 11 are a result of in-
sufficient validation of parameters to operating system calls.
These vulnerabilities are difficult to mitigate with sandbox-
ing because the browser must eventually issue those sys-
tem calls to render web sites. These observations suggest
that Chromium’s architecture division of tasks between the
browser kernel and the rendering engine uses the sandbox
effectively.

To download an implementation of the architecture, visit
http://www.google.com/chrome/. The source code of our
implementation is available at http://dev.chromium.org/.

9. REFERENCES
[1] Adam Barth, Collin Jackson, and John C. Mitchell.

Robust defenses for cross-site request forgery. In 15th
ACM Conference on Computer and Communications
Security (CCS), October 2008.

[2] Rune Braathen. Crash course in X Windows security,
November 1994. http://www.ussg.iu.edu/usail/
external/recommended/Xsecure.html.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler, and François Yergeau. Extensible Markup
Language (XML) 1.0 (Fourth Edition), section 4.2.2.
http:

//www.w3.org/TR/REC-xml/#sec-external-ent.

[4] The Chromium Authors. Sandbox, 2008.
http://dev.chromium.org/developers/

design-documents/sandbox.

[5] Richard S. Cox, Jacob Gorm Hansen, Steven D.
Gribble, and Henry M. Levy. A safety-oriented
platform for web applications. In IEEE Symposium on
Security and Privacy, 2006.

[6] Neil Daswani, Michael Stoppelman, and the Google
Click Quality and Security Teams. The anatomy of
Clickbot.A. In Proceedings of HotBots 2007, 2007.

[7] Chris Grier, Shuo Tang, and Samuel T. King. Secure
web browsing with the op web browser. In IEEE
Symposium on Security and Privacy, 2008.

[8] Sotiris Ioannidis and Steven M. Bellovin. Building a
secure web browser. In Proceedings of the USENIX
Annual Technical Conference, Freenix Track, June
2001.

[9] Collin Jackson, Adam Barth, Andrew Bortz, Weidong
Shao, and Dan Boneh. Protecting browsers from DNS
rebinding attacks. In Proceedings of the 14th ACM
Conference on Computer and Communications
Security (CCS 2007), November 2007.

[10] David LeBlanc. Practical Windows sandboxing, July
2007. http://blogs.msdn.com/david_leblanc/
archive/2007/07.aspx.

[11] Microsoft. Dynamic-link library redirection. http://

9

msdn.microsoft.com/en-us/library/ms682600.aspx.

[12] Microsoft. Migitating cross-site scripting with
HTTP-only cookies. http://msdn.microsoft.com/
en-us/library/ms533046.aspx.

[13] Microsoft. Naming a file. http://msdn2.microsoft.
com/en-us/library/aa365247(VS.85).aspx.

[14] Mitre. CVE-2006-7228, 2006.

[15] Mitre. CVE-2007-3743, 2007.

[16] Mitre. CVE-2007-3893, 2007.

[17] Mitre. CVE-2008-3360, 2008.

[18] Niels Provos, Markus Friedl, and Peter Honeyman.
Preventing privilege escalation. In 12th USENIX
Security Symposium, August 2003.

[19] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu
Rajab, and Fabian Monrose. All your iFRAMEs point
to us. In Proceedings of the 17th USENIX Security
Symposium, July 2008.

[20] Niels Provos, Dean McNamee, Panayiotis
Mavrommatis, K. Wang, and Nagendra Modadugu.
The ghost in the browser - analysis of web-based
malware. In Proceedings of HotBots 2007, April 2007.

[21] Charles Reis, Brian Bershad, Steven D. Gribble, and
Henry M. Levy. Using processes to improve the
reliability of browser-based applications. Technical
report, 2007. University of Washington Technical
Report UW-CSE-2007-12-01.

[22] SecurityFocus. PCRE Regular Expression Library
Multiple Security Vulnerabilities, 2007.
http://www.securityfocus.com/bid/26346.

[23] Marc Silbey and Peter Brundrett. Understanding and
working in Protected Mode Internet Explorer, 2006.
http://msdn.microsoft.com/en-us/library/

bb250462.aspx.

[24] Window Snyder. Critical vulnerability in Microsoft
metrics, November 2007.
http://blog.mozilla.com/security/2007/11/30/

critical-vulnerability-in-microsoft-metrics/.

[25] Gregory Steuck. XXE (Xml eXternal Entity) attack,
October 2002. http://www.securiteam.com/
securitynews/6D0100A5PU.html.

[26] VMWare. Browser appliance. http://www.vmware.
com/appliances/directory/browserapp.html.

[27] David Wagner and Dean Tribble. A security analysis
of the Combex DarpaBrowser architecture, March
2002.
http://www.combex.com/papers/darpa-review/.

[28] Andy Zeigler. IE8 and Loosely-Coupled IE, March
2008. http://blogs.msdn.com/ie/archive/2008/03/
11/ie8-and-loosely-coupled-ie-lcie.aspx.

10

